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le cas D2, d'après la remarque précédente, r est entier, donc le procédé

donné en D2 diminue i {D).
Le lemme (C, i) et donc aussi le lemme fondamental, est ainsi complètement

établi.

Remarque. Au lieu de faire une récurrence sur l'irrégularité i (D), il
aurait été tout aussi naturel (et même encore plus) d'utiliser a priori «

l'irrégularité de Katz », i.e. le nombre r qui vient d'être introduit et qui mesure
l'ordre minimum des pôles à considérer (voir à ce sujet Gérard-Levelt [1],

et un article à paraître de Levelt).

§ 10. — Applications

A. Le théorème 7.1 entraîne le théorème suivant, en apparence plus
général :

Théorème 10.1. Soit une fonction de classe ^°° des 2 m + 1 variables

x, Y (yl9 ym), et Z (zl9 zm) au voisinage de 0, 7°, Z°, à
A

valeurs dans Rm ; supposons qu 'il existe une série formelle H e(9m (à coejfi-
d H A d H

cients réels) vérifiant H (0) Y0, (0) Z°, et <P (x, if, 0;
dx dx

dH
x, H (x), —— soit inversible sur K

A u jl, dx
(i.e. appartienne à Gl (m, K)); alors, il existe F e à valeurs réelles véri-

dH
fiant F ü, #(x, Ü, =0.

d x
La réduction de ce résultat au cas (7.1) se fait suivant une méthode

habituelle dans des questions voisines.

a) On traite d'abord le cas où l'on a $ (x, Y, Z) W (x, Y) Z —

X (x, Y), W une matrice d'ordre m à coefficients ^°° ; pour cela, on se ramène
au cas où H 0, donc Y0 Z° 0; on a alors la situation suivante:
X (x, 0) est plat, et F (x, 0) est inversible dans KS ; il existe donc M e
End (êm) et k e N tel qu'on ait M W (x, 0) x/c /; posons alors F xk G ;

on a MF (x, xkG) xk Wt (x, G), avec (x, 0) /, donc Wx (x, Y)
inversible au voisinage de (0, 0) dans les matrices à coefficients ^°° ; on a
aussi M x (x, xkG) xk Xi (x9 G), avec Xi de classe ^°° ; on est alors
ramené à l'équation

supposons enfin que la matrice
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X^= -kxk~YG+
dx

b) On ramène le cas général au précédent, par dérivation, en remplaçant
l'équation initiale par le système

dF
— -G 0
d x

dF dF dF dG
— (x, F, G) + — (x, F, G) G + — (x, F, G) — =0

d x öY <7 Z dx

B. Dans le cas linéaire, on a le théorème suivant

*dF
Théorème 10.2. Soit D x — — MF, avec k e N, Me End (Sm)\

dx
soit & l 'espace des germes de distributions en 0 dans R ; alors, on a D Q)' Çè'

Soit a > 0, assez petit, et soit / l'intervalle \ — a,d\ \ par dualité, il suffit
de démontrer que l'application D' : ^7 ^7 es* d'image fermée {ßi
désignant l'espace des fonctions de classe ^°° à support dans /); d'après

un lemme classique puisque $)l est un espace de Fréchet, il suffit de démontrer

que D' est de codimension finie dans ; soit F l'espace des F e ^°° (7)m

telles qu'on ait D' F c d'après le théorème d'existence et d'unicité
usuel, ^7 est le sous-espace de F formé des F telles qu'on ait F (-a)

F Ça) 0, donc est de codimension finie dans F, et il suffit de démontrer

que D'E est de codimension finie dans \ or, le théorème 7.1, joint au
théorème usuel de prolongement des solutions d'une équation différentielle

A A A

montre que D'E est l'ensemble des F e S) tels qu'on ait F e Df 0m; ceci
A A

joint au fait que D' : Gm -» (Dm est à indice (proposition 3.6) et à la surjec-
A A

tivité de l'application : -+ (9, entraîne le résultat cherché.

C. Le théorème 7.1 a été démontré indépendamment par Kouznetsov [1]

qui en a donné une intéressante application à l'étude des « formes normales »

d
des systèmes différentiels. Disons qu'un système D x M,

dx
-î

M e End (K êm) est « élémentaire » si l'on a M I Xp xp I + M0,
-k

avec M0 e End (Cm) et Ap e C ; on a alors le résultat suivant :
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Théorème 10.3 — (Kouznetsov).SoitD x- e End
dx

un système différentiel. Par un changement de variables x yq (q entier

> 0J suivi d'une transformation F A Fl9 A e Gl (m, KS), on peut

réduire D à la forme « diagonale »

; les Dj étant élémentaires.

Indiquons rapidement comment ce résultat peut se démontrer; tout
d'abord, le théorème 7.1 permet de se réduire à démontrer le résultat

analogue dans le cas formel, c'est-à-dire dans le cas où l'on remplace dans
i A A

; l'énoncé précédent S par @9 et K S par K. Dans ce dernier cas, le résultat

dû à Turrittin, peut se démontrer par les mêmes arguments que ceux employés
; au § 9 ; d'ailleurs, ici, les choses se simplifient ; il suffit d'une double récurrence
'

sur m d'une part, i (D) (ou mieux encore, l'irrégularité de Katz) d'autre
î part ; nous n'entrerons pas dans les détails.

Soit enfin d un secteur angulaire fermé de sommet 0 dans C, de mesuer
j angulaire fi (d); désignons par sé (d) l'espace des germes en 0 de fonction

^°° sur d, et holomorphes dans l'intérieur de d. D'après Turritin et Wasow,
| les théorèmes 7.1 et 10.3 sont encore vrais lorsqu'on y remplace S par
j sé (d), et Kê par K (g) sé (d) pourvu que p (d). soit assez petit (pour le
i 0 ^i 71

l théorème 7.1, il suffit qu'on ait p (d) < -); à vrai dire, ces auteurs travaillent
k

i avec des « fonctions holomorphes dans un secteur ouvert, admettant un
i développement asymptotique en 0 >>, et non avec sé (d), mais le lecteur
\ vérifiera facilement qu'il s'agit là d'une modification inoffensive.
\ La démonstration, sous ces nouvelles hypothèses, est presque la même

i que la précédente, et même plus simple: en effet, on démontre directement
8.2 sous l'hypothèse « ^ 0 » (voir Wasow [1]); pour établir 7.1, on n'a
alors plus besoin de « systèmes standard », et il suffit d'une double récurrence

sur (m, i (D)). La démonstration ainsi esquissée est d'ailleurs celle

que donne Wasow à la simplification près qu'apporte la transformation de

Katz. Quant aux énoncés relatifs au développement asymptotique des

solutions d'une équation différentielle, ils sont une conséquence facile de

cette version du théorème 10.3; nous laissons cette question au lecteur.
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