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le cas D,, d’aprés la remarque précédente, r est entier, donc le procédé
donné en D, diminue i (D).

Le lemme (C, i) et donc aussi le lemme fondamental, est ainsi compléte-
ment établi. |

Remarque. Au lieu de faire une récurrence sur lirrégularité i (D), il
aurait été tout aussi naturel (et méme encore plus) d’utiliser a priori « lir-
régularité de Katz », i.e. le nombre r qui vient d’€tre introduit et qui mesure
I’ordre minimum des pOles a considérer (voir a ce sujet Gérard-Levelt [1],
et un article a paraitre de Levelt).

§ 10. — APPLICATIONS

A. Le théoréme 7.1 entraine le théoréme suivant, en apparence plus
général :

Théoréme 10.1. Soit ® une fonction de classe € des 2 m + 1 variables

b

X, Y = (Pis eoes V), € Z = (24, ..., 2,) au voisinage de 0,Y° Z° a

~valeurs dans R™; supposons qu’il existe une série formelle H € O™ (& coeffi-

dH A dH
cients réels) vérifiant H (0) = YO, T (0) = Z° et & (x, H, T) = 0;
X X

0P dH _ A
supposons enfin que la matrice 57 (x, H (x), T) soit inversible sur K

(i.e. appartienne a Gl (m, K)); alors, il existe F € &™, a valeurs réelles véri-
A dH
fiant F = H,®(x, H, d—) == .
X

La réduction de ce résultat au cas (7.1) se fait suivant une méthode
habituelle dans des questions voisines.

a) On traite d’abord le cas ou I'on a ¢ (x, Y, Z) = ¥ (x, Y)Z —
x (x, Y), ¥ une matrice d’ordre m a coefficients ¥* ; pour cela, on se raméne
aucas ol H = 0,donc Y° = Z° = 0; on a alors la situation suivante:
x (x, 0) est plat, et ¥ (x, 0) est inversible dans K &; il existe donc M e
End (6™) et k e N tel qu’on ait M ¥ (x, 0) = x* I; posons alors F = x* G;
on a M ¥ (x,xG) = x*¥, (x,G), avec ¥, (x,0) = I, donc ¥, (x, Y)
inversible au voisinage de (0, 0) dans les matrices & coefficients €* ; on a

aussi M y (x, X*G) = x* y, (x, G), avec y, de classe ¥*; on est alors
ramené a ’équation
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¢ —kx*"1G + P71 (x, G) gy (x, G)

|

b) On rameéne le cas général au précédent, par dérivation, en remplagant
I’équation initiale par le systéme

dF G =0
dx B

al}’( FG)+6'P( F,G)G 8‘!’( FG)dG 0
— \X, I’ — X, I, Py s & s - =
3 x PR% Tz dx -

B. Dans le cas linéaire, on a le théoréme suivant

dF
Théoréeme 10.2. Soit D = x* = M F, avec ke N, M € End (6™);
X

soit @' I’espace des germes de distributions en O dans R ; alors,ona D &' = &’

Soit a > 0, assez petit, et soit I I'intervalle [ —a, a]; par dualité, il suffit
de démontrer que l'application D’ : 97 — 27 est d’image fermée (Z;
désignant I'espace des fonctions de classe ¥* a support dans I); d’apres
un lemme classique puisque 2, est un espace de Fréchet, il suffit de démontrer
que D’ 97 est de codimension finie dans &7 ; soit E I’espace des F € €* (I)™
telles qu’on ait D' F < 27 ; d’aprés le théoréme d’existence et d’unicité
usuel, 9" est le sous-espace de E formé des F telles qu’on ait F (-a) =
F (a) = 0, donc 27 est de codimension finie dans E, et il suffit de démontrer
que D’ E est de codimension finie dans &;; or, le théoréme 7.1, joint au
théoréme usuel de prolongement des solutions d’une équation différentielle

A A A

montre que D’ E est ’ensemble des F € &7 tels qu'on ait F € D' 0™; ceci

A A

joint au fait que D’ : 0™ — (O™ est a indice (proposition 3.6) et a la surjec-
A

A

tivité de I'application  : &, — 0, entraine le résultat cherché.

C. Le théoréme 7.1 a été démontré indépendamment par Kouznetsov [1]
qui en a donné une intéressante application a I’étude des « formes normales »

des systémes différentiels. Disons qu'un systétme D = x Pl M,
X
-1
M € End (K ™) est «élémentaire» si 'on a M = X A,xP1 + M,,
=k
avec M, € End (C") et 4, e C; on a alors le résultat suivant:
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d m
Théoréme 10.3 — (Kouznetsov). Soit D = x rri M, M €End (K&™)

un systéme différentiel. Par un changement de variables x = y* (q entier
> 0) suivi d’une transformation F = A F;, AeGl (m, K &), on peut
réduire D a la forme « diagonale »

D, O

0 D

p

~ les D; étant élémentaires.

Indiquons rapidement comment ce résultat peut se démontrer; tout

- d’abord, le théoréme 7.1 permet de se réduire a démontrer le résultat
~ analogue dans le cas formel, c’est-a-dire dans le cas ou ’on remplace dans

A A

- Iénoncé précédent & par 0, et K& par K. Dans ce dernier cas, le résultat
. d0 & Turrittin, peut se démontrer par les mémes arguments que ceux employés
. au§ 9; d’ailleurs, ici, les choses se simplifient; il suffit d’une double récurrence

!

B ST L s AR a5 i DT T B TR B S e

~ sur m d’une part, i (D) (ou mieux encore, l'irrégularité¢ de Katz) d’autre

part; nous n’entrerons pas dans les détails.

Soit enfin 4 un secteur angulaire fermé de sommet 0 dans C, de mesuer
angulaire u (4); désignons par o7 (4) I’espace des germes en 0 de fonction
%> sur A, et holomorphes dans I'intérieur de 4. D’apres Turritin et Wasow,
les théorémes 7.1 et 10.3 sont encore vrais lorsqu’on y remplace & par
o (4), et K& par K ® o (4) pourvu que u (4) soit assez petit (pour le

0

. : T s 1. .
théoréme 7.1, il suffit qu’on ait p(4) < T ); & vrai dire, ces auteurs travaillent

avec des « fonctions holomorphes dans un secteur ouvert, admettant un
développement asymptotique en 0 », et non avec .« (4), mais le lecteur
vérifiera facilement qu’il s’agit 1a d’une modification inoffensive.

La démonstration, sous ces nouvelles hypothéses, est presque la méme
que la précédente, et méme plus simple: en effet, on démontre directement
8.2 sous T'’hypotheése « A; # 0» (voir Wasow [1]); pour établir 7.1, on n’a
alors plus besoin de « systémes standard », et il suffit d’'une double récur-
rence sur (m, i (D)). La démonstration ainsi esquissée est d’ailleurs celle
que donne Wasow a la simplification prés qu’apporte la transformation de
Katz. Quant aux énoncés relatifs au développement asymptotique des
solutions d’une équation différentielle, ils sont une conséquence facile de
cette version du théoréme 10.3; nous laissons cette question au lecteur.
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