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formelles qui précédent, se ramener au cas o 'ona M = M, + M, M,
constante et M plate.

Enfin, il suffit de trouver F a dr01te de O et tendant vers O ainsi que
toutes ses dérivées en 0 (nous dirons qu’une telle F est « plate a droite en
0 »); on fera ensuite la méme opération a gauche, en changeant x en — x.

Posons alors F = exp (Mylog x) F,;, G = exp (M, log x) G;; il est
clair par I’expression explicite de exp (M, log x) pour M, triangulaire, que
F et F, seront simultanément plates a droite en 0, et de méme pour G et
G,. On est ramené a I’équation

XT —~ N_F, = G,,avec N, = exp (—M,logx) M , exp (M,logx),
X

donc N, est plate a droite en O; en divisant par x, on est ramené au théoréme
d’existence et d’unicité usuel. D’ou la proposition.

d
Corollaire 6.4. Soit D = x P M, avec M € End (K &™), et suppo-
X

sons que O soit un point singulier régulier. Il existe alors A € Gl (m, K &)

d

tel que la transformation F = AF ' transforme D en D' = x T N,
X
avec N constant.
Comme ci-dessus, on peut supposer M = M, + M_, avec M,
constant, M , plat. Considérons alors I’équation
d A
d = M A — AM,, avec 4 a coeflicients dans &, 4(0) = I.
%

Cette ¢quation admet pour solution formelle 7; d’aprés 6.3, elle admet

A

donc une solution A4, avec 4 = [; d’ou le résultat.
On déduit immédiatement de ce corollaire, 'expression générale d’une

‘matrice fondamentale d’un systéme a points singuliers réguliers, et & coeffi-
‘cients €~ au voisinage de 0.

i

§ 7. — LE CAS ¥* : ENONCE DU THEOREME PRINCIPAL

Soit k un entier; soit d’autre part & une fonction de classe €* des
m + 1 variables x et Y = (yy, ..., y,,), définie au voisinage de (0, Y°), et
ey

a valeurs dans R™; notons ¢ son développement de Taylor en (0, Y9).




— 164 —

A

Théoréme 7.1. Supposons qu’il existe H € O™, a coefficients réels, avec
d A
H(0) = Y°, qui vérifie 1’équation x**1! = @ (x, H). Alors il existe
R X
F €&™, a valeurs réelles vérifiant F = H, x**1 e = @ (x, F).
X

Nous allons d’abord indiquer comme ce théoréme peut €tre déduit d’un
lemme sur les équations linéaires, lemme qui sera démontré dans les para-
graphes suivants. Soient a > 0, et p entier >0; nous désignerons
par B(p;a) Vespace des fonctions f continues sur [0,a] a valeurs
complexes, et telles que x~? f (x) soit bornée sur cet intervalle; on posera

[ f 1 = sup [ x™? f (x)|. Pour feB(p;a)", F = (f1,....fn) on
posera par exemple | F |, = sup | f;|,.
d
Lemme fondamental 7.2. Soit D = x**1 — M, avec M €End (&™)
X

et keZ; on peut trouver leZ,p,eN,eta, >0, possédant les pro-
priétés suivantes: Pour 0 < a < a,, il existe une application linéaire
K : B(py,a)" = B(p,—1,a)™ inverse a droite de D (ie. DK G = G),
et telle que, pour tout p > p,, la restriction de K a B(p, a)™ soit une appli-
cation linéaire continue B (p,a)™ — B(p—1,a)".

Remarquons que I’on peut aussi supposer la norme de K : B(p; a)" —
B(p —1I; a)™ majorée par une quantité indépendante de a (mais non de p),
pourvu qu’on ait supposé p, — [ > 0, ce qu’on fera par la suite; en effet,
supposons K obtenu pour a = a,, €t notons le K, ; pour obtenir un K,

on peut opérer ainsi: soit G le prolongement a ]0, ay] d’'une fonction G
continue sur ]0, a] obtenu en posant G(x) = G(a),a <x <a,; on a
évidemment | G|, = | G|,, et I'on posera simplement K, G = (restriction

a10,a]de K, G).
Montrons comment ce théoréme 7.1 résulte du lemme précédent
(appliqué aux fonctions a valeurs réelles). Comme au § 6, on se raméne

d’aboid au cas ou Y° = 0, H = 0; onaalors ¢ (x,0) = 0, et on cherche
F plat; il suffit de trouver F a droite de O (on le trouvera ensuite a
gauche de la méme manicre, en changeant x en — x); écrivons alors
P(x,Y) =d(x,0) + M(x) Y + ¥Y(x,Y)(Y,Y) avec M € End (&™), ¥
une forme quadratique a coefficients € “(x, Y); on applique le lemme
précédent, et 'on cherche F € B(p,a)™ (p et a a déterminer), solution de
Péquation F = K [®(x,0)+ ¥ (x, F) (F, F)].
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Notons L (F) le second membre de 'équation précédente, et choisissons
p > p,, et vérifiant p — /> 1. Supposons a < 1; on a alors, puisque
@ (x,0) est plat | (x,0)|,+; < C (a), avec C (a) = 0 si a = 0; d’autre
part, si |F |,<<1,ona |F |, <1 donc Y (X, F) est borné, et par suite
on a, avec C indépendant de a:

| (¥ (x, F) (F,F) |, < C|F |3, donc | ¥ (x, F)(F,F) |+, < CalF |

il résulte de 13, et de la remarque qui suit 'énoncé du lemme que, pour a
assez petit, L envoie la boule unité ~ de B” (p, a) dans clle-méme.
Un calcul analogue montre que pour |F |, <1,|G]|, <1, on a

| ¥ (x,F)(F,F) = ¥(x,0)(G,0) |,, <C|F - G|,
d’ou
IT(X,F)(F,F) - lP(xa G)(G5 G) lp+l< Ca IF - Glp

on en déduit que, pour a assez petit, L est contractante sur X; alors I’équa-
tion F = L(F) a une solution et une seule dans X; comme F vérifie

k+1 dF !
X T = @ (x,F) dans ]0,a], F est de classe ¥ sur ]0, a]. Reste a
| X

montrer que F est plate en 0.

Tout d’abord, montrons que x 24 F est borné sur ]0, a], quel que soit
g > p; ceci est vrai pour p, donc par récurrence, il suffit de le montrer pour
g + 1, en supposant le résultat établi pour ¢; or, on a alors F € B(q; a)",
donc ¥ (x, F)(F,F)eB(2q;a)™; a fortiori Y (x,F)eB(qg+!+1,a)™ et,
par hypothése x, @ (x,0)eB(g+/+1,a)"; donc L(F)eB(q+1,a)", ce
qui démontre le résultat; en utilisant ’équation différentielle x**?! - =

X

D(x,0) + M (x)F + ¥ (x,F)(F, F), et le résultat précédent, on voit que

dF
x 8 T est encore born€ pour tout g; en dérivant I’équation, on voit que
X
_, d*F . . :
x ¥ e est encore borné pour tout g, et ainsi de suite. Par conséquent
X

modulo le lemme 7.2, le théoréme 7.1 est complétement démontré.

Proposition 7.3. Si D a un point singulier régulier en 0, le lemme 7.2. est
vrai.

Il est clair que, si le lemme garde un sens lorsqu’on suppose
M € End (K &™), et que d’autre part, on ne change rien (sauf les valeurs
eventuelles de p, et 1) en multipliant D par x? (peZ) et en faisant une
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transformation du type F = AF,, G = AG,, avec AeGl (m, K &).
D’apres le corollaire (6.4), on peut donc supposer k = 1, et M constant;
on peut méme supposer que M est triangulaire inférieure; alors en rai-
sonnant par récurrence, on est ramené a démontrer le résultat lorsque D

est Popérateur différentiel scalaire x P A, A eC; ce cas peut étre laissé
X

au lecteur, (ici, on pourra méme prendre / = 0, mais peu importe).

§ 8. — LE CAS FAVORABLE

La proposition suivante est classique:

Proposition 8.1. Avec les notations du lemme 7.2, supposons k > 1, et
supposons que les valeurs propres 1; de M (0) vérifient Re (4;) # 0. Alors
le lemme 7.2 est vrai avec | = 0.

Démonstration

1) 11 suffit de démontrer la proposition pour M = M (0); en effet,
supposons le résultat établi dans ce cas; soit K° : B(p;a)™ - B(p; a)"

I'inverse a droite de x**! P M (0) (K° dépend de a, mais non de
X

P = Po); on pose alors M (x) = M (0) + x N (x), N € End (™), et on
note L lapplication F— x N K ° F; il suffit de trouver K ', inverse de
I — L, car alors K ° K! = K sera un inverse a droite de D.

Or, pour a < 4, on a |K,F|,<C|F|, (cf. remarque suivant
I'énoncé du lemme 7.2), d’ou, par un calcul analogue a ceux du §7:
|LF|pO < C'a | Fipo; en choisissant a pour qu’on ait C’'a < 1, on voit
que la série K ' = X L" converge dans P'espace des applications linéaires
continues de B (p,; @)™ dans lui-méme.

Montrons par récurrence sur p > p, que K' envoie continusment
B(p; a)™ dans lui-méme; supposons donc le résultat acquis pour p — 1;
I’équation H = K G équivaut & H = G + L H; si G parcourt un borné
de B(p, @)", H parcourt un borné de B(p—1; a)” par hypothése de récur-
rence; donc L H = x NK°® H parcourt un borné de B(p;a)"; donc
H = C + L H parcourt un borné de B (p; a)", ce qui démontre le résultat.

Il est alors clair que K = K ° K ! répond a la question; d’ou la propo-
sition.
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