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formelles qui précèdent, se ramener au cas où l'on a M M0 + M^, M0
constante et M m plate.

Enfin, il suffit de trouver F à droite de 0 et tendant vers 0 ainsi que

toutes ses dérivées en 0 (nous dirons qu'une telle F est « plate à droite en

0 »); on fera ensuite la même opération à gauche, en changeant i en - x.
Posons alors F exp (M0log x)Fi, G exp (M0logx)G1; il est

clair par l'expression explicite de exp (M0log x) pour M0 triangulaire, que
F et F1 seront simultanément plates à droite en 0, et de même pour G et

G1. On est ramené à l'équation

d F
X—- - No0F1Gu avec Nxexp (-M0logx)M0O exp (M0logx),

a x

donc Noo est plate à droite en 0 ; en divisant par x, on est ramené au théorème

d'existence et d'unicité usuel. D'où la proposition.

d
Corollaire 6.4. Soit D x M, avec M g End (KSm), et suppo-dx

sons que 0 soit un point singulier régulier. Il existe alors A g Gl (m, KS')
d

tel que la transformation F A F ' transforme D en D' — x N,
d x

avec N constant.
Comme ci-dessus, on peut supposer M M0 + Mœ, avec M0

constant, M ^ plat. Considérons alors l'équation

d A
x -— M A — A M0, avec A à coefficients dans S, ^4 (0) I.

d x

Cette équation admet pour solution formelle /; d'après 6.3, elle admetf'AIdonc une solution A, avec A /; d'où le résultat.
| On déduit immédiatement de ce corollaire, l'expression générale d'une
; matrice fondamentale d'un système à points singuliers réguliers, et à coeffi-
jcients ^°° au voisinage de 0.

J § 7. — Le cas ^°° : énoncé du teiéorème principal
j

Soit k un entier; soit d'autre part <t> une fonction de classe (gœ des
m + 1 variables x et Y— ...,3 définie au voisinage de (0, 7°), et

A
à valeurs dans Rm; notons <f> son développement de Taylor en (0, 7°).
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Théorème 7.1. Supposons qu'il existe H e(9m, à coefficients réels, avec
à H A

0) Y0, qui vérifie l'équation xk+1 <P(x,H). Alors il existe
a dx dp

F e à valeurs réelles vérifiant F H, xk+1— $(x, F).
d x

Nous allons d'abord indiquer comme ce théorème peut être déduit d'un
lemme sur les équations linéaires, lemme qui sera démontré dans les

paragraphes suivants. Soient a > 0, et p entier > 0; nous désignerons

par B(p;a) l'espace des fonctions / continues sur [0, a] à valeurs

complexes, et telles que x~p f (x) soit bornée sur cet intervalle; on posera

\f\p= sup \x~p f {x)\.Pour feB(p;a)m,F on
xe]0,a]

posera par exemple | F \p sup | fi \p.

Lemme fondamental 7.2. Soit D xk+1 M, avec M eEnd(<fm)
dx

et keZ; on peut trouver le Z, p0 g IV, et a0 >0, possédant les

propriétés suivantes: Pour 0 < a < a0, il existe une application linéaire

K : B(p0,a)m -> B (p0 — /, a)m inverse à droite de D (i.e. DKG G),
et telle que, pour tout p > p0, la restriction de K à B (p, a)m soit une
application linéaire continue B (p, a)m -> B(p—l, a)m.

Remarquons que l'on peut aussi supposer la norme de K : B(p; a)m-+

B(p—l; a)m majorée par une quantité indépendante de a (mais non de p),

pourvu qu'on ait supposé p0 — / > 0, ce qu'on fera par la suite; en effet,

supposons K obtenu pour a a0, et notons le Kao\ pour obtenir un Ka,

on peut opérer ainsi: soit G le prolongement à ]0, a0] d'une fonction G

continue sur ]0, a] obtenu en posant G(x) G (a), a<x<a0; on a

évidemment \ G \p \ G \p, et l'on posera simplement KaG (restriction

à]0,fl]de Kao G).
Montrons comment ce théorème 7.1 résulte du lemme précédent

(appliqué aux fonctions à valeurs réelles). Comme au § 6, on se ramène
A

d'aboid au cas où 7° 0, H 0; on a alors #(x, 0) 0, et on cherche

F plat; il suffit de trouver F à droite de 0 (on le trouvera ensuite à

gauche de la même manière, en changeant x en — x); écrivons alors

<2)(x5 Y) $(x, 0) + M (x) Y + îP(x, Y) (Y, Y) avec M g End(0, ¥
une forme quadratique à coefficients #00(x, 7); on applique le lemme

précédent, et l'on cherche F eB (p,a)m (p et a à déterminer), solution de

l'équation F K [# (x, 0) + W (x, F) (F, F)].
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Notons LF)le second membre de l'équation précédente, et choisissons

p > p0,et vérifiant p— /> 1. Supposons < 1; on a alors, puisque

$ (x, 0) est plat | <2> (x, 0) |p+1 < C (a), avec C (a) -+ 0 si -+ 0; d'autre

part, si \F\p< 1, on a |F |0 < 1 donc «P (JSf, P") est borné, et par suite

on a, avec C indépendant de a:

| (Y (x, F) (F, F) \2p <C\F \2p, donc | Y (x, F) (F, F) \p+l <Ca\F \2p

il résulte de là, et de la remarque qui suit l'énoncé du lemme que, pour a

assez petit, L envoie la boule unité 1 de Bm (p, a) dans elle-même.

Un calcul analogue montre que pour |F|P<1,|G|P<1, on a

| Y(x,F)(F,F) - Y(x,G)(G,G)\2p<C\F - G \p

d'où
| Y(x,F)(F,F) - W(x,G)(G,G)\p+l<Ca\F - G \p

on en déduit que, pour a assez petit, L est contractante sur I ; alors l'équation

F — L (F) a une solution et une seule dans I ; comme F vérifie
d F

xk+1 — <P(x,F) dans ]0, a], F est de classe ^°° sur ]0, a\. Reste à
à x

montrer que F est plate en 0.

Tout d'abord, montrons que x~qF est borné sur ]0, a], quel que soit

q > p\ ceci est vrai pour p, donc par récurrence, il suffit de le montrer pour
q + 1, en supposant le résultat établi pour q; or, on a alors F eB(q; a)m,

donc W (x, F) (F, F) eB (2q; a)m\ a fortiori W (x, F) eB (q +/+ 1, à)m et,

par hypothèse x, $ (x, 0) eB (q +/ +1, a)m; donc L (F) e B (q + 1, a)m, ce

d F
qui démontre le résultat; en utilisant l'équation différentielle xk+1 —d x
<P (x, 0) + M (x) F + Y (x, F) (F, F), et le résultat précédent, on voit que

dF
x q — est encore borné pour tout q\ en dérivant l'équation, on voit qued x

d2 F
x q -—- est encore borné pour tout q, et ainsi de suite. Par conséquent

modulo le lemme 7.2, le théorème 7.1 est complètement démontré.

Proposition 7.3. Si D a un point singulier régulier en 0, le lemme 7.2. est
vrai.

Il est clair que, si le lemme garde un sens lorsqu'on suppose
M e End(J£é?m), et que d'autre part, on ne change rien (sauf les valeurs
éventuelles de p0 et 1) en multipliant D par xp (jpeZ) et en faisant une
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transformation du type F A Fl9 G AGl9 avec ,4 e Gl {m, KS).
D'après le corollaire (6.4), on peut donc supposer k 1, et M constant;
on peut même supposer que M est triangulaire inférieure; alors en
raisonnant par récurrence, on est ramené à démontrer le résultat lorsque D

à
est l'opérateur différentiel scalaire x 2, k eC; ce cas peut être laissé

dx
au lecteur, (ici, on pourra même prendre / 0, mais peu importe).

§ 8. — Le cas favorable

La proposition suivante est classique :

Proposition 8.1. Avec les notations du lemme 7.2, supposons k > 1, et

supposons que les valeurs propres Àj de M (0) vérifient R e (Ifi ^ 0. Alors
le lemme 7.2 est vrai avec l 0.

Démonstration

i) Il suffit de démontrer la proposition pour M M (0) ; en effet,

supposons le résultat établi dans ce cas; soit K° : B(p; a)m -» B(p; a)m

l'inverse à droite de xk+1 M (0) (K° dépend de a, mais non de
dx

P^>Po)l on Pose al°rs M (x) M (0) + x N (x), iVeEnd (<Sm), et on
note L l'application F |-> x NK 0 F; il suffit de trouver K1, inverse de

I — L, car alors K° K1 K sera un inverse à droite de D.
Or, pour a < a09 on a | K0 F | Po< C | F\Po (cf. remarque suivant

l'énoncé du lemme 7.2), d'où, par un calcul analogue à ceux du § 7 :

| L F \Po < C ' a | F \Po; en choisissant a pour qu'on ait C' a < 1, on voit
que la série K 1 I Ln converge dans l'espace des applications linéaires
continues de B(p0; a)m dans lui-même.

Montrons par récurrence sur p > p0 que K 1 envoie continuement

B(p;a)m dans lui-même; supposons donc le résultat acquis pour p — 1;

l'équation H K1 G équivaut à/7 G+ L77;siG parcourt un borné
de B (p, a)m, H parcourt un borné de B {p — 1 ; a)m par hypothèse de

récurrence; donc LH xNK° H parcourt un borné de B(p;a)m; donc

H C + L H parcourt un borné de B (p ; a)m, ce qui démontre le résultat.

Il est alors clair que K K° K1 répond à la question; d'où la proposition.
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