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Cette derniére application est injective pour p assez grand, puisque

A
ker (x*D, O™) est de dimension finie sur C. Donc son indice est << 0, et il
est nul si et seulement si I’application est surjective. Dans ce dernier cas,

A A A

A
par passage au quotient, I'application x* D de m?(0™)/ m?*! (0™) dans
lui-méme sera encore surjective; or dans la base évidente, la matrice de
cette application est précisément M _,; donc M _, doit étre surjective, donc
inversible. D’ol la proposition.

Signalons pour terminer, sans démonstration, une autre maniére de
définir 7 (D), due a Gérard et Levelt [1]. On prend un réseau E et on forme
la suite de réseaux E, définie par E, = E,...,E, = E,_; ®DE,_, (le
fait qu’on obtienne bien ainsi deux réseaux résulte facilement de la formule

A
D(pF) = ¢ DF + (0p)F, p € 0); posons ensuite E, = E,/E,_;. L’ap-
plication D induit une application surjective D:E, - E, .4, donc
dim ¢ E, est décroissante, et indépendante de p pour p assez grand. On
démontre que cette dimension ne dépend pas non plus de E, et qu’elle est
précisément-égale a i (D).

Supposons en particulier que 0 soit un point singulier régulier: on aura
alors E, = 0 pour p assez grand; en fait, on démontre méme qu’on a
nécessairement, quel que soit E: E, =0, donc DE,,_; < E,,_4; ceci
donne un critére simple pour reconnaitre effectivement si ’on est dans le
cas d’un point singulier régulier (ce critére se trouve déja, au moins impli-

citement, dans Manin [1]. Un critére différent se trouve dans Moser [1]).

§ 6. — POINTS SINGULIERS REGULIERS

Ce paragraphe est en grande partie composé de rappels, empruntés a
Wasow [1]. On pourra trouver un expos¢ plus systématique dans Manin [1].

d A
Traitons d’abord le cas formel;soitD = x i M, avec, M €End (0™)
X

(i.e. M € End (K™), sans pole).
Proposition 6.1. Supposons que deux valeurs propres distinctes de M (0)

ne différent jamais d’un entier. 1l existe alors un et un seul A €End(0O™),
avec A(0) =1 tel que la transformation F = A G ftransforme D en

d
D' = x — — M (0).
dx
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Posons en effet M = Y M, x?, A = ) A,x?, avec 4, = I; on doit
0 0 ‘

résoudre ’équation
dA
x—=MA—-AM,
dx
en égalant les coefficients de x? dans les deux membres, on trouve d’abord

M, A, — Ay M, = 0 qui est vérifié, et ensuite, pour p > 1
(pI —'MO) Ap + Ap MO = @(Ao, ceey Ap—l; Mo, ceey Mp)

On pourra résoudre ces équations par récurrence, d’'une maniere et
d’une seule, en vertu du lemme suivant, qu’on laisse au lecteur a titre
d’exercice.

Lemme 6.2. Soient P e End C? et Q e End C? donnés ; pour que l’équation
PX — X Q = Y, avec X, Y € End (C4, C?) ait une solution X et une
seule quel que soit Y il faut et il suffit que P et Q n’aient pas de valeur propre
commune.

La proposition résulte immédiatement de 13. Remarquons aussi que
I'opérateur différentiel A4 |- x % — M A+ AM, a un point singulier
régulier en O; par suite, en vertu des théorémes de comparaison (ou d’un
résultat classique, dans ce cas particulier), si M est convergente, A sera
aussi convergente.

Montrons ensuite comment on peut ramener le cas général au cas ol
M (0) satisfait les hypothéses de la proposition 6.1; soient 4;,..., 4, les
valeurs propres distinctes de M ; il suffit de montrer qu’on peut faire une
dA

‘ dx
soit sans pole et ait comme valeurs propres (4;—1), 4,,...,4,: en
‘appliquant par récurrence ce procédé, on ameénera les valeurs propres de
M (0) qui différent d’un entier a étre égales.

Par un changement linéaire de coordonnées, on peut supposer qu’on a

M () =<P0

transformation AeGl(m, K) telle que N = A" 'M 4 —x A1

00
propres A,,...,4,, et Q ayant 'unique valeur propre 1,; soient p et g
irespectivement P'ordre de P et 'ordre de Q; on prend avec des notations
iévidentes

i

| 7.0
A =17 .

z KO qu>

-

. xrwr o~ - o~

>, avec P et Q triangulaires inférieures, P ayant pour valeurs
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| P 0 .
En posant M, = ( % P ), on trouve N (0) = ( >; cette matrice est

encore triangulaire inférieure, et a visiblement les valeurs propres cherchées;
d’ou le résultat.

Passons maintenant au cas €% ; nous emploierons les notations suivantes,
dans la fin de ces exposés: & désigne I’espace des germes de fonctions €% en
0 e R, & valeurs complexes (ou a valeurs réelles, dans quelques cas ou ce

A

sera explicitement mentionné); ’application & — @ qui a f associe sa série
A

de Taylor en O sera notée f > f. On pose encore K& = K ® &, espace

0 A

des germes en 0 de « fonctions semi-méromorphes »; ’application & — 0
A

s’étend alors en une application K& — K, et il est bien connu que ces

A A
applications sont surjectives. Si f € K&, f €0, on a f e§ a cause du

lemme élémentaire suivant: soit g €&, avec g (0) = 0; alors J €&. Les
X .

A
f €& qui vérifient f = O seront dites « plates ».

'

Si'onaD =x +1—d—— — M, M a coefficients dans K &, on posera
A A X

D =xk+13—— M,i(D) = i(D); sii(D) = 0, on dira que 0 est un point
x

singulier régulier de D.
La proposition suivante est un cas particulier d’un théoréme qui sera
démontré par la suite.

d
Proposition 6.3. Soit D = x**! i M, avec M € End (K™ keZ
x .

et i(D) = 0; soit Ge K &™ donné; supposons qu’il existe H e K™, avec
A

DH G Alors il existe F € K &™ vérifiant DF = G, F = H, et un
tel F est unique.

I

A

Prenons F, € K&™ tel qu’on ait F;, = H, et cherchons F sous la forme
F, + F,, avec F, plat; on doit aussi avoir DF, = G — D Fy, et le second
membre est plat par hypothése. Par conséquent, on peut supposer qu’on
est dans le cas suivant: G est plat et H = 0 (i.e. on cherche F plat).

Comme une fonction plate le reste aprés multiplication par x'(/eZ),
on peut d’abord se ramener a k = 1; on peut ensuite, au moyen d’une
transformation ¥ = AF ', Ae Gl (m, K &) (ensemble des matrices d’ordre
m inversibles a coefficients dans K &), et en utilisant les transformations
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formelles qui précédent, se ramener au cas o 'ona M = M, + M, M,
constante et M plate.

Enfin, il suffit de trouver F a dr01te de O et tendant vers O ainsi que
toutes ses dérivées en 0 (nous dirons qu’une telle F est « plate a droite en
0 »); on fera ensuite la méme opération a gauche, en changeant x en — x.

Posons alors F = exp (Mylog x) F,;, G = exp (M, log x) G;; il est
clair par I’expression explicite de exp (M, log x) pour M, triangulaire, que
F et F, seront simultanément plates a droite en 0, et de méme pour G et
G,. On est ramené a I’équation

XT —~ N_F, = G,,avec N, = exp (—M,logx) M , exp (M,logx),
X

donc N, est plate a droite en O; en divisant par x, on est ramené au théoréme
d’existence et d’unicité usuel. D’ou la proposition.

d
Corollaire 6.4. Soit D = x P M, avec M € End (K &™), et suppo-
X

sons que O soit un point singulier régulier. Il existe alors A € Gl (m, K &)

d

tel que la transformation F = AF ' transforme D en D' = x T N,
X
avec N constant.
Comme ci-dessus, on peut supposer M = M, + M_, avec M,
constant, M , plat. Considérons alors I’équation
d A
d = M A — AM,, avec 4 a coeflicients dans &, 4(0) = I.
%

Cette ¢quation admet pour solution formelle 7; d’aprés 6.3, elle admet

A

donc une solution A4, avec 4 = [; d’ou le résultat.
On déduit immédiatement de ce corollaire, 'expression générale d’une

‘matrice fondamentale d’un systéme a points singuliers réguliers, et & coeffi-
‘cients €~ au voisinage de 0.

i

§ 7. — LE CAS ¥* : ENONCE DU THEOREME PRINCIPAL

Soit k un entier; soit d’autre part & une fonction de classe €* des
m + 1 variables x et Y = (yy, ..., y,,), définie au voisinage de (0, Y°), et
ey

a valeurs dans R™; notons ¢ son développement de Taylor en (0, Y9).
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