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Cette dernière application est injective pour assez grand, puisque
A

ker (,xkD, (9m) est de dimension finie sur C. Donc son indice est < 0, et il
est nul si et seulement si l'application est surjective. Dans ce dernier cas,AAA A

par passage au quotient, l'application xk D de mp {(9m) / mp+i dans

lui-même sera encore surjective; or dans la base évidente, la matrice de

cette application est précisément M_fc; donc M_fc doit être surjective, donc
inversible. D'où la proposition.

Signalons pour terminer, sans démonstration, une autre manière de

définir i (D), due à Gérard et Levelt [1]. On prend un réseau E et on forme
la suite de réseaux Ep définie par E0 E, $ Ep © D Ep_1 (le
fait qu'on obtienne bien ainsi deux réseaux résulte facilement de la formule

A
D(cpF) cpD F + (dcp) F, (p e (9); posons ensuite Ep Ep\Ep_x.
L'application D induit une application surjective D:Ep-+Ep+1, donc
dim q Ep est décroissante, et indépendante de p pour p assez grand. On
démontre que cette dimension ne dépend pas non plus de E, et qu'elle est

précisément égale à / (D).
Supposons en particulier que 0 soit un point singulier régulier: on aura

alors Ep — 0 pour p assez grand; en fait, on démontre même qu'on a

nécessairement, quel que soit E : Em 0, donc D£m_1 c Em_1; ceci

donne un critère simple pour reconnaître effectivement si l'on est dans le

cas d'un point singulier régulier (ce critère se trouve déjà, au moins
implicitement, dans Manin [1]. Un critère différent se trouve dans Moser [1]).

§ 6. — Points singuliers réguliers

Ce paragraphe est en grande partie composé de rappels, empruntés à

Wasow [1]. On pourra trouver un exposé plus systématique dans Manin [1].
d A

Traitons d'abord le cas formel; soit D x—- — M, avec, M eEnd($m)
a dx

(i.e. M e End (Km), sans pôle).

Proposition 6.1. Supposons que deux valeurs propres distinctes de M (0)
A

ne diffèrent jamais d'un entier. Il existe alors un et un seul A e End ($m),

avec A (0) — I tel que la transformation F AG transforme D en

d
D' x M (0).

d x
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Posons en effet M Mpxp, A YjApxp, avec A0 — I ; on doit
o o

résoudre l'équation
dA

x M A — A M0
d x

en égalant les coefficients de xp dans les deux membres, on trouve d'abord

M0 A0 — A0 M0 0 qui est vérifié, et ensuite, pour p > 1

(pi — M0) Ap + Ap M0 0 (A0f..., Ap-i\ JVf0,..., Mp)

On pourra résoudre ces équations par récurrence, d'une manière et

d'une seule, en vertu du lemme suivant, qu'on laisse au lecteur à titre
d'exercice.

Lemme 6.2. Soient P e End Cp et Qe End Cq donnés ; pour que l 'équation
P X — X Q Y, avec X, Y e End (Cq, Cp) ait une solution X et une

seule quel que soit Y ilfaut et il suffit que P et Qn 'aientpas de valeur propre
commune.

La proposition résulte immédiatement de là. Remarquons aussi que
d A

l'opérateur différentiel A\-+x M A + A M0 a un point singulier
dx

régulier en 0; par suite, en vertu des théorèmes de comparaison (ou d'un
résultat classique, dans ce cas particulier), si M est convergente, A sera
aussi convergente.

Montrons ensuite comment on peut ramener le cas général au cas où
M (0) satisfait les hypothèses de la proposition 6.1; soient A1?. Xp les

valeurs propres distinctes de M0 ; il suffit de montrer qu'on peut faire une
a dA

transformation A eGl (m, K) telle que N — A~x M A — x A~1
d x

soit sans pôle et ait comme valeurs propres (X1 — 1), A2, 5 : en
appliquant par récurrence ce procédé, on amènera les valeurs propres de

M (0) qui diffèrent d'un entier à être égales.
| Par un changement linéaire de coordonnées, on peut supposer qu'on a

M (0) ^oq)' aVCC P Ct ^ triangulaires inférieures, P ayant pour valeurs

jpropres À2,... ,AP, et Q ayant l'unique valeur propre soient p et q
jrespectivement l'ordre de P et l'ordre de g; on prend avec des notations
| évidentes

A
\

'h 0

0 xL
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En posant Mi on trouve N (0) ^ rY cette matrice est
\y à) \y Q-IJ

encore triangulaire inférieure, et a visiblement les valeurs propres cherchées ;

d'où le résultat.
Passons maintenant au cas ^°° ; nous emploierons les notations suivantes,

dans la fin de ces exposés : ë désigne l'espace des germes de fonctions ^°° en
0 e R, à valeurs complexes (ou à valeurs réelles, dans quelques cas où ce

A
sera explicitement mentionné) ; l'application S 6 qui à / associe sa série

A
de Taylor en 0 sera notée / |-> /. On pose encore Kë — K ® ë, espace

0
des germes en 0 de «fonctions semi-méromorphes » ; l'application ë -* 0

A
s'étend alors en une application Kë - K, et il est bien connu que ces

A A
applications sont surjectives. Si f e Kë, / e(9, on a f eë à cause du

g
lemme élémentaire suivant: soit geë, avec g (0) 0; alors -eë. Les

*
f eë qui vérifient / 0 seront dites « plates ».

à
Si l'on a D x M, M k coefficients dans Kë, on poserad- -dx

D xk+1 M, i (D) i (D); si i (D) 0, on dira que 0 est un point
d x

singulier régulier de D.
La proposition suivante est un cas particulier d'un théorème qui sera

démontré par la suite.

Proposition 6.3. Soit D xk+i — — M, avec M e End (Këm)ke Z
d x A

et i(D) — 0; soit G e K ëm donné; supposons qu'il existe H eKm, avec
A A A

DH G. Alors il existe F e K ëm vérifiant DF — G, F — H, et un

tel F est unique.
A

Prenons F1e Këm tel qu'on ait Ft H, et cherchons F sous la forme

Fi + F2, avec F2 plat; on doit aussi avoir D F2 G — D F1, et le second

membre est plat par hypothèse. Par conséquent, on peut supposer qu'on
est dans le cas suivant: G est plat et H 0 (i.e. on cherche F plat).

Comme une fonction plate le reste après multiplication par xl(leZ),
on peut d'abord se ramener k k — 1 ; on peut ensuite, au moyen d'une

transformation F A F ', A e Gl (m, K ë) (ensemble des matrices d'ordre

m inversibles à coefficients dans K ë), et en utilisant les transformations
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formelles qui précèdent, se ramener au cas où l'on a M M0 + M^, M0
constante et M m plate.

Enfin, il suffit de trouver F à droite de 0 et tendant vers 0 ainsi que

toutes ses dérivées en 0 (nous dirons qu'une telle F est « plate à droite en

0 »); on fera ensuite la même opération à gauche, en changeant i en - x.
Posons alors F exp (M0log x)Fi, G exp (M0logx)G1; il est

clair par l'expression explicite de exp (M0log x) pour M0 triangulaire, que
F et F1 seront simultanément plates à droite en 0, et de même pour G et

G1. On est ramené à l'équation

d F
X—- - No0F1Gu avec Nxexp (-M0logx)M0O exp (M0logx),

a x

donc Noo est plate à droite en 0 ; en divisant par x, on est ramené au théorème

d'existence et d'unicité usuel. D'où la proposition.

d
Corollaire 6.4. Soit D x M, avec M g End (KSm), et suppo-dx

sons que 0 soit un point singulier régulier. Il existe alors A g Gl (m, KS')
d

tel que la transformation F A F ' transforme D en D' — x N,
d x

avec N constant.
Comme ci-dessus, on peut supposer M M0 + Mœ, avec M0

constant, M ^ plat. Considérons alors l'équation

d A
x -— M A — A M0, avec A à coefficients dans S, ^4 (0) I.

d x

Cette équation admet pour solution formelle /; d'après 6.3, elle admetf'AIdonc une solution A, avec A /; d'où le résultat.
| On déduit immédiatement de ce corollaire, l'expression générale d'une
; matrice fondamentale d'un système à points singuliers réguliers, et à coeffi-
jcients ^°° au voisinage de 0.

J § 7. — Le cas ^°° : énoncé du teiéorème principal
j

Soit k un entier; soit d'autre part <t> une fonction de classe (gœ des
m + 1 variables x et Y— ...,3 définie au voisinage de (0, 7°), et

A
à valeurs dans Rm; notons <f> son développement de Taylor en (0, 7°).
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