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et que ce dernier indice est égal à mle nombre des zéros dans

4 de T~(x>/o,->/o(m))-
oym

Soit maintenant r quelconque, avec 0 < r < 1. Pour r' > r, assez voisin
de r, le cercle | x \ — r' ne contiendra pas de points singuliers de (E) en /0.
On pourra alors faire la construction précédente, et obtenir un germe d'espace

analytique; pour tous les r' assez voisins de r, ces germes coïncident, en

vertu du résultat suivant; il existe r0 > r possédant la propriété suivante:

pour tout r\ avec r < r' < r0, on peut trouver g(r') > 0 tel que toute /
o

solution de (E)dans Ar-, et vérifiant sup | / (x) — /0 (x) | < e (r') se
I X 1 ^ I"

o

prolonge en une solution de (E) dans Aro (Cela se déduit facilement des

résultats sur la « dépendance des conditions initiales ». dans le théorème
d'existence et d'unicité). Cela nous définit un germe d'espace analytique
paramétrant les solutions voisines de f0 dans 2/d (dr); en particulier, cek

vaut pour r, 0, i.e. pour les solutions voisines de f0 dans 0.

Il faut noter cependant que le résultat précédent n'est guère satisfaisant,
d'une part, les solutions d'une équation différentielle non-linéaire ont en

général des domaines d'existences variables, et non univalents, ce qui rend
le problème considéré un peu artificiel. D'autre part, le germe qui vient
d'être construit, est bien universel en f0 ; mais il peut ne pas être universel
aux points voisins, à cause de l'existence des singularités mobiles (par contre,
s'il n'y a que des singularité fixes, on peut voir que ce canular ne se produit
pas).

§ 5. — Irrégularité d'un système différentiel formel

d A
Soit D xk+1 M, avec M eEnd(Km), ke;Z on va définir

dx
l'irrégularité de D par une adaptation des calculs des § 1-3. Tout d'abord
on se ramène h k 0 en posant pour le Z : i(xlD) i(D). Dans toute
la suite du paragraphe, on supposera donc k 0.

A A
Rappelons qu'on appelle réseau dans Km un sous 0-module E de type

A A A
fini tel qu'on ait E ® K K m; il est connu qu'un tel E est libre sur 0,

A
&

AA A
donc est de la forme A (9m, avec A eG\(m, K et réciproquement. Si l'on
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a deux réseaux E c= Eu il existe k e N vérifiant xkEx c E ; on en déduit
immédiatement que EJE est de dimension finie sur C.

Proposition 5.1. Soient E et Ex deux réseaux vérifiant DE c- Ex. Alors
Vapplication D : E -> E1 est à indice.

Dans la suite, cet indice sera noté % (D; E, Et).

Démonstration. Supposons d'abord la proposition démontrée pour un
couple particulier (E,E1), et démontrons-là pour un autre couple

(E\E[). Prenons un troisième couple (E" ,E{) vérifiant E" zd E kjE',
E\ d£1u£;,D£"C E[.

Considérons la suite exacte de morphismes

0 • E "/E 0

D D D

0 —y Ei —> E ^ —y E i/E^_ —y 0

La première flèche verticale est à indice par hypothèse, et la troisième
l'est aussi puisqu'elle va d'un espace de dimension finie dans un autre. Par
suite la seconde est à indice; de plus, on a

(5.2) x (D; E ", É[) x (D; E, Et) + dim E "fE - dim É'fiE^

On opère ensuite de même avec les couples (E \E [) et (E ",E '[).

Reste à trouver un couple particulier (E, Et) tel que D : E -> E± soit
A

à indice; pour cela, en utilisant le théorème (3.1) (qui est vrai aussi pour K
au lieu de K), on se ramène au cas où M a la forme suivante

0 1 0

(5.3) M

—

0

^m-2

1

Am_ ]

Posons comme au paragraphe 3, A ôm — Am_x ôm 1
— — A0, avec

d
d x — ; posons encore i i (A) sup (0, sup —v(l et prenons

dx

Et nm-1 ® x 0; les raisonnements des § 1-3 montrent que
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l'application D :E->E± a un noyau (resp. un conoyau) isomorphe au
A A

noyau (resp. du conoyau) de l'application A : (9 -» x'1 (9, et que cette

dernière application est d'indice nul. D'où la proposition.
Considérons maintenant tous les couples de réseaux (£, Ef) avec

E œ EUDE a JE±; je dis que le nombre %(D;£,£],) + dim E1/E est

indépendant du couple (E, Ex). Pour établir ce résultat, il suffit de raisonner

comme à la proposition précédente, et d'utiliser 5.2. Cela justifie la définition

suivante:

Définition 5.3. On appelle irrégularité de D le nombre x(D: E, E±) +
dim EJE, E et E1 étant deux réseaux vérifiant E cz Eu D E a E1.

Le calcul fait à la fin de la proposition précédente, montre immédiatement

que si M est de la forme 5.3, on a, comme en 3.2.

(5.4) i(D) sup (0, sup — v (Xp))

Par conséquent, notre définition coïncide dans le cas analytique avec
celle du § 3 ; et l'on a encore i (D) > 0.

On définit encore les points singuliers réguliers comme au § 3, avec
A

K au lieu de K (il est équivalent de dire qu'il existe un réseau E tel qu'on
ait DE a E). La proposition suivante se démontre alors comme 3.4.

Proposition 5.5. Pour que 0 soit un point singulier régulier, il faut et il
suffit qu 'on ait i (D) 0.

+ 00

Proposition 5.6. Si l'on a M Mp xp (fc> 1), on a i (D) < k m;
-k

pour qu 'on ait i (D) < k m, il faut et il sujfit que M_k soit inversible.
Pour démontrer cette proposition, nous allons appliquer la définition 5.3,

A A
avec E &mEt x~k&m;enremplaçant D par xk D, il revient au même

A /\
de démontrer l'assertion suivante: l'indice de l'application xkD : (9m -> (9m

est <0; cet indice est nul si et seulement si M_k est inversible.
Supposons d'abord M_k inversible; pour tout monôme Axp, Ae Cm,

on a (xkD)(Axp) M_kAxp + (termes d'ordre >p + l); donc, de
A A

proche en proche, on voit que xkD :&m-»(9mestbijectif, donc d'indice nul.
Dans le cas général, prenons un p entier >0; les arguments de suite

exacte déjà utilisés en 5.1 montrent que l'application précédente a même
indice que

xk D : -+ (m, l'idéal maximal de (9).
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Cette dernière application est injective pour assez grand, puisque
A

ker (,xkD, (9m) est de dimension finie sur C. Donc son indice est < 0, et il
est nul si et seulement si l'application est surjective. Dans ce dernier cas,AAA A

par passage au quotient, l'application xk D de mp {(9m) / mp+i dans

lui-même sera encore surjective; or dans la base évidente, la matrice de

cette application est précisément M_fc; donc M_fc doit être surjective, donc
inversible. D'où la proposition.

Signalons pour terminer, sans démonstration, une autre manière de

définir i (D), due à Gérard et Levelt [1]. On prend un réseau E et on forme
la suite de réseaux Ep définie par E0 E, $ Ep © D Ep_1 (le
fait qu'on obtienne bien ainsi deux réseaux résulte facilement de la formule

A
D(cpF) cpD F + (dcp) F, (p e (9); posons ensuite Ep Ep\Ep_x.
L'application D induit une application surjective D:Ep-+Ep+1, donc
dim q Ep est décroissante, et indépendante de p pour p assez grand. On
démontre que cette dimension ne dépend pas non plus de E, et qu'elle est

précisément égale à / (D).
Supposons en particulier que 0 soit un point singulier régulier: on aura

alors Ep — 0 pour p assez grand; en fait, on démontre même qu'on a

nécessairement, quel que soit E : Em 0, donc D£m_1 c Em_1; ceci

donne un critère simple pour reconnaître effectivement si l'on est dans le

cas d'un point singulier régulier (ce critère se trouve déjà, au moins
implicitement, dans Manin [1]. Un critère différent se trouve dans Moser [1]).

§ 6. — Points singuliers réguliers

Ce paragraphe est en grande partie composé de rappels, empruntés à

Wasow [1]. On pourra trouver un exposé plus systématique dans Manin [1].
d A

Traitons d'abord le cas formel; soit D x—- — M, avec, M eEnd($m)
a dx

(i.e. M e End (Km), sans pôle).

Proposition 6.1. Supposons que deux valeurs propres distinctes de M (0)
A

ne diffèrent jamais d'un entier. Il existe alors un et un seul A e End ($m),

avec A (0) — I tel que la transformation F AG transforme D en

d
D' x M (0).

d x
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