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phisme (9/(9 -> K /K. A noter aussi que, d'après la première assertion, on

a dim ker (D, (9m) > + + hm - m (théorème de Perron pour les

systèmes).

§ 4. — Remarques diverses

a) Equations dépendant d'un paramètre

La théorie des équations différentielles dépendant d'un paramètre

présente de nombreuses difficultés. Nous donnerons seulement ici un
énoncé simple, qui « relativise » la proposition 1.1, et cela sans chercher les

hypothèses minimum nécessaires. Soit Z une variété analytique complexe

connexe, et soit D l'opérateur différentiel « dépendant du paramètre z e Z » :

m dp
D 2>p TZipejf(AxZ), A le disque unité ouvert; supposons

o d xp

am A 0; soit V cz A x Z l'ensemble des zéros de am9 et supposons que
la projection V -» Z induite par la projection naturelle n : A x Z -» Z soit

propre. Soit le complexe 0-»^fJxZ->jfjxZ-»0, avec j^ZxZ désignant
le faisceau des fonctions holomorphes sur A x Z.

Proposition 4.1. Le complexe est à cohomologie z-cohérente.
Autrement dit, les faisceaux associés aux préfaisceaux U -»

ker x U)) et U -» coker (A x 17)), U ouvert de Z, sont

^fz-cohérents. Esquissons la démonstration: on peut, en restreignant Z,
supposer que V est contenu dans Ar x Z, avec 0 < r < 1, Ar le disque
fermé de rayon r; prenons r' vérifiant r < r' < 1. On démontre facilement,
à l'aide du théorème d'existence, d'unicité, et de dépendance d'un
paramètre pour les équations différentielles que le préfaisceau associé au faisceau
U (ker D,jf(A x U)) [resp. U K (coker D,j4?(A x l/))] est isomorphe
au noyau (resp. ou conoyau) du morphisme de faisceaux z (Bm(A rd) D

>

z(ß%dr/)), ici, E étant un Banach, on note J^Z(E) le faisceau des

fonctions holomorphes sur Z à valeurs dans E. Nous sommes alors ramenés
à la situation classique de perturbation analytique d'un opérateur à indice
dans des espaces de Banach; d'où le résultat.

On a aussi des énoncés analogues avec par exemple Z espace analytique
ou espace topologique séparé, ou variété différentielle (dans ces deux
derniers cas, il faudrait remplacer l'énoncé, comme d'habitude en
géométrie analytique relative, par un énoncé de pseudo-cohérence pour
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R 7i% (jf); voir divers articles consacrés aux images directes en géométrie
analytique: Kiehl, ou Forster-Knorr, à paraître aux ïnventiones, ou la
thèse de Houzel à paraître quelque part; nous n'entrerons pas dans les

détails).

b) Equations non-linéaires

Soit <P une fonction holomorphe sur A x U, A le disque unité

ouvert, U un ouvert de Cm+1; une solution de l'équation (.E):

#(x,/, /', ...,/(m)) 0 dans A est une fonction / holomorphe sur A,
telle que l'application x -> (/(x), /(m) (x)) soit à valeurs dans U,

et telle qu'on ait identiquement $ (x, /(x), /(m) (x)) 0. Nous

nous proposons d'examiner très rapidement des questions du type
suivant: dans quelle mesure peut-on «paramétrer naturellement» les

solutions de (E) par les points d'un espace analytique (la notion de «

paramétrage naturel » se définit ici, comme d'habitude dans ce genre de

problèmes, par la représentabilité d'un foncteur facile à définir; nous laisserons

le lecteur expliciter).
Nous examinerons seulement la possibilité de « paramétrer » les solutions

voisines d'une solution f0 donnée; par définition, les points singuliers

(E) en f0 sont les points singuliers de l'équation linéarisée en /0, i.e. les

d $
points x vérifiant (x, /0(x),...,/(oKx)) 0- Nous supposerons que

8ym
" /

/0 n'est pas une « intégrale singulière », c'est-à-dire qu'il existe des points
non singuliers.

Soit d'abord r, avec 0 < r < 1, tel que le cercle { | x | r} ne
contienne pas de points singuliers. L'application qui à / fait correspondre

(x,/,...,/(m)), qu'on notera / W (f) est alors une application
analytique définie sur un voisinage de f0 dans Bm (Ar), à valeurs dans

d V
B° (Ar); comme l'application (/0) est à indice, d'après une variante de

Ô f
la proposition 1.1, des raisonnements connus montrent que l'espace
analytique banachique iF~1 (0) est, au voisinage de /0, de dimension finie

(cf. Douady [1]); cela paramètre l'ensemble des solutions de (E) dans

Bm(Ar), voisines de /0. Il est facile aussi de voir que la dimension f0 du

germe de cet ensemble est comprise entre m et l'indice de l'équation linéarisée

^(/o): Bm(Ar)->B°(Ar)
o f
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et que ce dernier indice est égal à mle nombre des zéros dans

4 de T~(x>/o,->/o(m))-
oym

Soit maintenant r quelconque, avec 0 < r < 1. Pour r' > r, assez voisin
de r, le cercle | x \ — r' ne contiendra pas de points singuliers de (E) en /0.
On pourra alors faire la construction précédente, et obtenir un germe d'espace

analytique; pour tous les r' assez voisins de r, ces germes coïncident, en

vertu du résultat suivant; il existe r0 > r possédant la propriété suivante:

pour tout r\ avec r < r' < r0, on peut trouver g(r') > 0 tel que toute /
o

solution de (E)dans Ar-, et vérifiant sup | / (x) — /0 (x) | < e (r') se
I X 1 ^ I"

o

prolonge en une solution de (E) dans Aro (Cela se déduit facilement des

résultats sur la « dépendance des conditions initiales ». dans le théorème
d'existence et d'unicité). Cela nous définit un germe d'espace analytique
paramétrant les solutions voisines de f0 dans 2/d (dr); en particulier, cek

vaut pour r, 0, i.e. pour les solutions voisines de f0 dans 0.

Il faut noter cependant que le résultat précédent n'est guère satisfaisant,
d'une part, les solutions d'une équation différentielle non-linéaire ont en

général des domaines d'existences variables, et non univalents, ce qui rend
le problème considéré un peu artificiel. D'autre part, le germe qui vient
d'être construit, est bien universel en f0 ; mais il peut ne pas être universel
aux points voisins, à cause de l'existence des singularités mobiles (par contre,
s'il n'y a que des singularité fixes, on peut voir que ce canular ne se produit
pas).

§ 5. — Irrégularité d'un système différentiel formel

d A
Soit D xk+1 M, avec M eEnd(Km), ke;Z on va définir

dx
l'irrégularité de D par une adaptation des calculs des § 1-3. Tout d'abord
on se ramène h k 0 en posant pour le Z : i(xlD) i(D). Dans toute
la suite du paragraphe, on supposera donc k 0.

A A
Rappelons qu'on appelle réseau dans Km un sous 0-module E de type

A A A
fini tel qu'on ait E ® K K m; il est connu qu'un tel E est libre sur 0,

A
&

AA A
donc est de la forme A (9m, avec A eG\(m, K et réciproquement. Si l'on
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