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Théorème 2.3. Même énoncé que 2.1 avec K remplacé par S.

L'assertion a) coïncide avec celle de 2.1. D'autre part, il résulte de la

remarque 1.7 que r assez petit, on a x(D,5r) 0; le fait qu'on ait
X(D, S) 0 s'en déduit par passage à la limite inductive.

Pour démontrer l'assertion coker (D, S/K) 0, il suffit de démontrer
ceci: désignons par Kr le sous-espace de Sr formé des fonctions méro-

morphes en 0; alors, pour r assez petit, on a Sr D Sr + Kr; or cela

résulte du fait que Kr est dense dans Sr (muni de sa topologie usuelle de

Fréchet) et de ce que D Sr est de codimension finie dans Sn donc fermé

d'après un lemme classique.
L'assertion «dim ker (D,S/K) i(D)» se démontre alors en

utilisant les précédents et la suite exacte de cohomologie, comme l'assertion

1.4.2; d'où le théorème.

àfPar exemple, si D f =x — — /, une base de ker (D, S /K) est
dx

fx e~1/x; comme fl provient d'un élément de ker (D, S) l'application
coker (D, K) -> coker (D, S) est ici bijective.

§ 3. — Extension aux systèmes

Il sera commode ici de prendre les systèmes d'abord sous la forme
d F A

F x M F F e Km (ou Km, ou S m), M matrice carrée à coeffi-
dx

cients dans K [on écrira: M e End (Km)].
Soit A e Gl (m,K), i.e. A e End (Km), A inversible; la transformation

dG
F A G transforme D en D' avec D' G x N G, N

d A
— A'1 M A — x A"1 Rappelons le résultat suivant (voir Deligne [1]

dx
lemme IL 1.3).

Théorème 3.1. Il existe A g Gl (m,K) tel que N ait la forme suivante

0 10 .0
N

0

An lm — 2 "m- 1
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Soit alors Al'opérateur différentiel défini par

A f ôm f-Am_i 5m_1 f - X0f, avec
d

d x
il est immédiat que D' est « équivalent » h A et, de façon plus précise, qu'on
a le résultat suivant :

Considérons le diagramme

d

avec u (/) « (/0,. /m_i), v(g) (0, 09g); alors ce diagramme
induit un isomorphisme entre le noyau de A et le noyau de D' d'une part, le

conoyau de A et le conoyau de D' d'autre part; le même résultat est encore
A

vrai avec K remplacé par K, S, etc.

Définissons alors l'irrégularité de A par la formule i (A) i (xkA),
k un entier tel que xk A soit à coefficients holomorphes. Cela ne dépend
visiblement pas de k, et on laisse le lecteur vérifier la formule suivante

(3.2) i(A) sup (0, sup (Ap))

Définissons ensuite l'irrégularité de D par i(D) i(A). Les
théorèmes 2.1 et 2.3 entraînent immédiatement le résultat suivant

Théorème 3.3.

a) L'application D : Km -» Km est à indice et l'on a K) — i (D).
A A A

b) L'application D : Km -> Km est à indice et l'on a x (D, K 0.
A A

c) On a coker (D,K'"I Km) 0 et dim ker (D, K m/K m) i(D).
A

d) Mêmes énoncés avec K remplacé par S.

Ce théorème montre en particulier, que i (D) ne dépend que de D, et
non pas du choix de A dans 3.1 ; nous donnerons une démonstration
algébrique de ce résultat dans le prochain exposé.

Rappelons maintenant que, suivant une définition classique, l'origine
est un point singulier régulier de D s'il existe un A e Gl (m, K) tel que

d A
N A 1 M A — x A 1 n'ait pas de pôle. Cela est classiquement
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équivalent à la propriété suivante: n'importe quelle détermination d'une

(ou de toute) matrice fondamentale de P est à croissance polynomiale en -x
au voisinage de 0; ceci équivaut encore au fait qu'on a P Q exp (Clog x),
avec Q à coefficients méromorphes, i.e. Q e Gl (m, K).

Proposition 3.4. Pour que 0 soit un point singulier régulier de D il faut
et il suffit qu 'on ait i (D) 0.

Supposons qu'on ait i (D) 0, et soit A comme au théorème 3.1 ; alors

i(A) 0, donc, d'après la formule 3.2, les Xp n'ont pas de pôle; donc N
n'a pas de pôle.

Pour démontrer la réciproque, nous utiliserons le lemme suivant.

Lemme 3.5. Supposons que M n \ait pas de pôle ; alors l 'application
A A

D : (9m (9m est d \indice nul.

La démonstration est analogue à celle de la proposition 1.3. Soit Fk un
vecteur de Cm; on a D (Fkxk) [kl — M (0)] xk + (termes de degré > k);
pour k assez grand, disons k > fc0, kl — M (0) est inversible; de là, il
résulte que l'application D : mk((9m) ->mk((9m) est bijective pour k > k0.
Le lemme en résulte immédiatement.

Sous la même hypothèse que M n'ait pas de pôle, la proposition 3.6,

ci-dessous, montre que D : (9m -> (9m est encore d'indice nul; donc, l'indice

de D : (9m / (9m -> (9m / (9m est nul; en vertu de l'isomorphisme (9 / (9 K / K,
le théorème 3.3 c) nous montre alors qu'on a i (D) 0; d'où la proposition.

Par la suite, il sera nécessaire aussi d'envisager des systèmes sous la
forme un peu plus générale suivante: H étant une matrice diagonale à

„ dF
coefficients entiers (/2A, ^zm) on pose DF =x MF, avec

d x
M g End(Km). Par définition, on prendra i(D) i(xT~HD), moyennant
quoi le théorème 3.3 est encore vrai pour D.

On a aussi la proposition suivante.

Proposition 3.6. Si M est sans pôle, et les h{ positifs, alors D : (9m (9m

A A

a pour indice (h1 + + hm — m) et D : (9m -» (9m a pour indice

i(D) + (h1 + +hm-m).
La première assertion se démontre comme la proposition 1.1. La seconde

résulte de là, du fait que le théorème 3.3 s'applique à D, et de l'isomor-
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phisme (9/(9 -> K /K. A noter aussi que, d'après la première assertion, on

a dim ker (D, (9m) > + + hm - m (théorème de Perron pour les

systèmes).

§ 4. — Remarques diverses

a) Equations dépendant d'un paramètre

La théorie des équations différentielles dépendant d'un paramètre

présente de nombreuses difficultés. Nous donnerons seulement ici un
énoncé simple, qui « relativise » la proposition 1.1, et cela sans chercher les

hypothèses minimum nécessaires. Soit Z une variété analytique complexe

connexe, et soit D l'opérateur différentiel « dépendant du paramètre z e Z » :

m dp
D 2>p TZipejf(AxZ), A le disque unité ouvert; supposons

o d xp

am A 0; soit V cz A x Z l'ensemble des zéros de am9 et supposons que
la projection V -» Z induite par la projection naturelle n : A x Z -» Z soit

propre. Soit le complexe 0-»^fJxZ->jfjxZ-»0, avec j^ZxZ désignant
le faisceau des fonctions holomorphes sur A x Z.

Proposition 4.1. Le complexe est à cohomologie z-cohérente.
Autrement dit, les faisceaux associés aux préfaisceaux U -»

ker x U)) et U -» coker (A x 17)), U ouvert de Z, sont

^fz-cohérents. Esquissons la démonstration: on peut, en restreignant Z,
supposer que V est contenu dans Ar x Z, avec 0 < r < 1, Ar le disque
fermé de rayon r; prenons r' vérifiant r < r' < 1. On démontre facilement,
à l'aide du théorème d'existence, d'unicité, et de dépendance d'un
paramètre pour les équations différentielles que le préfaisceau associé au faisceau
U (ker D,jf(A x U)) [resp. U K (coker D,j4?(A x l/))] est isomorphe
au noyau (resp. ou conoyau) du morphisme de faisceaux z (Bm(A rd) D

>

z(ß%dr/)), ici, E étant un Banach, on note J^Z(E) le faisceau des

fonctions holomorphes sur Z à valeurs dans E. Nous sommes alors ramenés
à la situation classique de perturbation analytique d'un opérateur à indice
dans des espaces de Banach; d'où le résultat.

On a aussi des énoncés analogues avec par exemple Z espace analytique
ou espace topologique séparé, ou variété différentielle (dans ces deux
derniers cas, il faudrait remplacer l'énoncé, comme d'habitude en
géométrie analytique relative, par un énoncé de pseudo-cohérence pour
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