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Théoréme 2.3. Méme énoncé que 2.1 avec K remplacé par S.

L’assertion a) coincide avec celle de 2.1. D’autre part, il résulte de la
remarque 1.7 que r assez petit, on a y (D, S,) = 0; le fait qu'on ait
x(D,S) = 0 s’en déduit par passage a la limite inductive.

Pour démontrer ’assertion coker (D, S/K) = 0, il suffit de démontrer
ceci: désignons par K, le sous-espace de S, formé des fonctions méro-
morphes en 0; alors, pour r assez petit, on a S, = D S, + K,; or cela
résulte du fait que K, est dense dans S, (muni de sa topologie usuelle de
Fréchet) et de ce que D S, est de codimension finie dans S,, donc fermé
d’apres un lemme classique.

L’assertion « dim ker (D, S/K) = i(D)» se démontre alors en uti-
lisant les précédents et la suite exacte de cohomologie, comme I’asser-
tion 1.4.2; d’ou le théoréme.

Par exemple, si D f = x? % — f, une base de ker (D, S/K) est
fi = e 1/*; comme f, provient d’un élément de ker (D, S) I'application
coker (D, K) — coker (D, S) est ici bijective.

§ 3. — EXTENSION AUX SYSTEMES

Il sera commode ici de prendre les systémes d’abord sous la forme

dF A . r bl
F 5x— —MF,FeK™(uK™ ouS™), M matrice carrée a coeffi-
X

cients dans K [on écrira: M € End (K™)].
Soit A € Gl (m, K), i.e. A€ End (K™), A inversible; la transformation

dG
F = A G transforme D en D' avec D' G = x— — NG, N
JA dx
= A 'MA —-—xA"?! e Rappelons le résultat suivant (voir Deligne [1]
X
lemme II.1.3).

Théoréme 3.1. Il existe A € Gl (m, K) tel que N ait la forme suivante

— 0 1 0 . : 0
N =
o . . . 0 1
__}uo . . . j.m_.z )Nm_l_____
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Soit alors A I'opérateur différentiel défini par
d
dx’
il est immédiat que D’ est « équivalent » & 4 et, de fagon plus précise, qu’on
a le résultat suivant:
Considérons le diagramme

Af=0"f — A, 0™  f...—Af,avec 0 = x—

K _ 4 »K
u ‘ ]’ v
L,
I m W___)Kn
avec U (f) = (fose-v>Sfma1) (@) = (0,...,0,9); alors ce diagramme

induit un isomorphisme entre le noyau de 4 et le noyau de D’ d’une part, le
conoyau de 4 et le conoyau de D" d’autre part; le méme résultat est encore

vrai avec K remplacé par K S, etc.

Définissons alors lirrégularité de A par la formule i (4) = i (x*4),
k un entier tel que x* A4 soit & coefficients holomorphes. Cela ne dépend
visiblement pas de k, et on laisse le lecteur vérifier la formule suivante

(3.2) i(4) = sup (0,sup—v(4,))

Définissons ensuite lirrégularit¢ de D par i(D) = i(4). Les théo-
remes 2.1 et 2.3 entrainent immédiatement le résultat suivant

Théoréeme 3.3.

a) L’application D : K " — K ™ est a indice et l'on a y (D, K) = — i(D).
b) L’application D : K " K ™ est a indice et [’ on a y (D, K) = 0.
c) On a coker (D, K’"/K’") 0 et dim ker (D,K’"/K'") = i (D).

d) Mémes énoncés avec K remplacé par S.

Ce théoréme montre en particulier, que i (D) ne dépend que de D, et
non pas du choix de 4 dans 3.1; nous donnerons une démonstration algé-
brique de ce résultat dans le prochain exposé.

Rappelons maintenant que, suivant une définition classique, I’origine

est un point singulier régulier de D ¢’il existe un A e Gl (m, K) tel que

N =471 ~ 24 0 I
: = MA—-xA Ty n'ait pas de pdle. Cela est classiquement
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équivalent & la propriété suivante: n’importe quelle détermination d’une

: . , 1
(ou de toute) matrice fondamentale de P est a croissance polynomiale en —
X

au voisinage de 0; ceci équivaut encore au fait quona P = Qexp (Clog x),
avec Q a coeflicients méromorphes, i.e. Q € Gl (m, K).

Proposition 3.4. Pour que O soit un point singulier régulier de D il faut
et il suffit qu’on ait i (D) = 0.

Supposons qu’on ait i (D) = 0, et soit A comme au théoréme 3.1; alors
i (4) = 0, donc, d’apres la formule 3.2, les 4, n’ont pas de pdle; donc N
n’a pas de pole.

Pour démontrer la réciproque, nous utiliserons le lemme suivant.

Lemme 3.5. Supposons que M n’ait pas de pole; alors [’application

D : (9'" — (9’" est d’indice nul.

La démonstration est analogue a celle de la proposmon 1. 3 Soit F, un
vecteur de C"; on a D (F\x*) = [kI — M (0)] x* + (termes de degré > k);
pour k assez grand, disons k > k,, kI — M (0) est inversible; de 1a, il
résulte que Papplication D : m* (0™) — m* (0™) est bijective pour k > k,.
Le lemme en résulte immédiatement.

Sous la méme hypothése que M n’ait pas de pole, la proposition 3.6,
cl- dessous montre que D: 0™ — O™ est encore d’indice nul; donc 1’1ndlce

deD : (9'"/ 0" — (9'"/ O™ est nul; en vertu de 'isomorphisme (0/ 0> K/ K,
le théoréme 3.3 ¢) nous montre alors qu’on a i (D) = 0; d’ou la proposition.

Par la suite, il sera nécessaire aussi d’envisager des systémes sous la
forme un peu plus générale suivante: H <¢tant une matrice diagonale a

coefficients entiers (hy,...,h,) on pose DF = xH % MF, avec
X

M e End (K ™). Par définition, on prendra i (D) = i (x'"#D), moyennant
quoi le théoréme 3.3 est encore vrai pour D.
On a aussi la proposition suivante.

Proposition 3.6. Si M est sans pdle, et les h; positifs, alors D : O™ — O™
a pour indice (hy+...+h,—m) et D:0™ > 0" a pour indice
i(D) + (hy +... +h, —m).

La premiére assertion se démontre comme la proposition 1.1. La seconde
résulte de 1a, du fait que le théoréme 3.3 s’applique a D, et de I'isomor-
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phisme 0/0 — K /K . A noter aussi que, d’aprés la premicre assertion, on
a dim ker (D,0™ >hy + ... + h, — m (théoréme de Perron pour les
systémes).

§ 4. — REMARQUES DIVERSES

a) Equations dépendant d’un paramétre

La théorie des équations différentielles dépendant d’un paramétre
présente de nombreuses difficultés. Nous donnerons seulement ici un
énoncé simple, qui « relativise » la proposition 1.1, et cela sans chercher les
hypothéses minimum nécessaires. Soit Z une variété analytique complexe

connexe, et soit D opérateur différentiel « dépendant du parameétre z e Z »:
p

D = Z():ap Tk a,e¥ (AxZ), 4 le disque unité ouvert; supposons

a, # 0;s0it Ve 4 x Z I'ensemble des zéros de a,, et supposons que
la projection V' — Z induite par la projection naturelle 7: 4 X Z — Z soit
propre. Soit A" le complexe 0 = # 4«7 = H 4z = 0, avec # 4, désignant
le faisceau des fonctions holomorphes sur 4 x Z.

Proposition 4.1. Le complexe w,A est a cohomologie A ,-cohérente.

Autrement dit, les faisceaux associés aux préfaisceaux U —
ker (D,# (4 x U)) et U — coker (D,# (4 x U)), U ouvert de Z, sont
H ,-cohérents. Esquissons la démonstration: on peut, en restreignant Z,
supposer que ¥ est contenu dans 4, X Z, avec 0 <r < 1, 4, le disque
fermé de rayon r; prenons r’ vérifiant r < r’ < 1. On démontre facilement,
a I'aide du théoréme d’existence, d’unicité, et de dépendance d’un para-
meétre pour les équations différentielles que le préfaisceau associé au faisceau
U — (kerD,# (4 x U)) [resp. U > (coker D,# (4 x U))] est isomorphe
au noyau (resp. ou conoyau) du morphisme de faisceaux # , (B™(4 )2,
o 7(B°(4,)), ici, E étant un Banach, on note # ,(E) le faisceau des
fonctions holomorphes sur Z a valeurs dans E. Nous sommes alors ramenés
a la situation classique de perturbation analytique d’un opérateur & indice
dans des espaces de Banach; d’ou le résultat.

On a aussi des énoncés analogues avec par exemple Z espace analytique
ou espace topologique séparé, ou variété différentielle (dans ces deux
derniers cas, il faudrait remplacer I’énoncé, comme d’habitude en géo-
métrie analytique relative, par un énoncé de pseudo-cohérence pour
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