Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1974)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES POINTS SINGULIERS DES ÉQUATIONS

DIFFÉRENTIELLES

Autor: Malgrange, Bernard

Kapitel: §2. — Autres théorèmes de comparaison

DOI: https://doi.org/10.5169/seals-46900

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

est exacte et ker (D, \mathcal{H}) est localement isomorphe à \mathbb{C}^m (théorème d'existence et d'unicité usuel); par suite l'application $D: \mathcal{H}(\Omega^*) \to \mathcal{H}(\Omega^*)$ a pour indice $m(1-b^1_*)$, $b^1_* = \dim H^1(\Omega^*, \mathbb{C})$.

D'autre part, pour chaque $a \in Z$, soit Δ_a un disque ouvert centré en a, avec $\Delta_a \in \Omega$, $\Delta_a \cap \Delta_b = \phi$ si $a \neq b$. Comme $H^1(\Omega, \mathcal{H}) = 0$, on a

$$\mathscr{H}(\Omega^*)/\mathscr{H}(\Omega) \simeq \bigoplus_{a \in \Delta_a} \mathscr{H}(\Delta_a^*)/\mathscr{H}(\Delta_a), \text{ avec } \Delta_a^* = \Delta_a - \{a\}.$$

On a $\chi(D, \mathcal{H}(\Delta_a^*)) = 0$ par le raisonnement précédent, et $\chi(D, \mathcal{H}(\Delta_a))$ = $m - v(a_m, a)$ (par passage à la limite projective, à partir de 1.2.) On conclut alors en utilisant la suite exacte

$$0 \to \mathcal{H} (\Omega) \to \mathcal{H} (\Omega^*) \to \mathcal{H} (\Omega^*) / \mathcal{H} (\Omega) \to 0.$$

§ 2. — Autres théorèmes de comparaison

Nous reprenons les hypothèses de la proposition 1.1.

Théorème 2.1.

- a) L'application $D: K \to K$ est à indice et l'on a $\chi(D, K) = -i(D)$.
- b) L'application $D: \hat{K} \to \hat{K}$ est à indice, et l'on a $\chi(D, \hat{K}) = 0$.
- c) On a coker (D, K/K) = 0 et dim ker (D, K/K) = i(D).

L'assertion c) résulte de 1.4 et de l'isomorphisme naturel $\hat{\mathcal{O}}/_{\mathcal{O}} \xrightarrow{\sim} \hat{K}/_{K}$. Les assertions a) et b) vont résulter du lemme suivant:

Lemme 2.2. L'application $D: K/_{\mathcal{O}} \to K/_{\mathcal{O}}$ a pour indice — $\sup [p-v(a_p)]$. Désignons en effet par K_{-p} l'ensemble des éléments f de K, avec $v(f) \geqslant -p$; un calcul analogue à celui de la proposition 1.3 fait avec les puissances négatives de x montre qu'on a, avec $n = \sup [p-v(a_p)]: DK_{-p} \subset K_{-p-n}$, et que, pour p assez grand, l'application $D: K/K_{-p} \to K/K_{-p-n}$ est un isomorphisme. Le lemme en résulte immédiatement. L'assertion a) résulte alors de 1.1 et 2.2 en utilisant la suite exacte $0 \to 0 \to K \to K/_{\mathcal{O}} \to 0$; l'assertion b) résulte de manière analogue de 1.3 et 2.2, et de l'isomorphisme $K/_{\mathcal{O}} \to K/_{\mathcal{O}}$.

Soit S_n l'espace des fonctions holomorphes dans la couronne 0 < |x| < r, et $S = \bigcup_{r>0} S_r$. On a le résultat suivant (cf. Deligne [1], prop. II.6.20).

Théorème 2.3. Même énoncé que 2.1 avec K remplacé par S.

L'assertion a) coïncide avec celle de 2.1. D'autre part, il résulte de la remarque 1.7 que r assez petit, on a $\chi(D, S_r) = 0$; le fait qu'on ait $\chi(D, S) = 0$ s'en déduit par passage à la limite inductive.

Pour démontrer l'assertion coker (D, S/K) = 0, il suffit de démontrer ceci: désignons par K_r le sous-espace de S_r formé des fonctions méromorphes en 0; alors, pour r assez petit, on a $S_r = D S_r + K_r$; or cela résulte du fait que K_r est dense dans S_r (muni de sa topologie usuelle de Fréchet) et de ce que $D S_r$ est de codimension finie dans S_r , donc fermé d'après un lemme classique.

L'assertion « dim ker (D, S/K) = i(D)» se démontre alors en utilisant les précédents et la suite exacte de cohomologie, comme l'assertion 1.4.2; d'où le théorème.

Par exemple, si $D f = x^2 \frac{df}{dx} - f$, une base de ker (D, S/K) est $f_1 = e^{-1/x}$; comme f_1 provient d'un élément de ker (D, S) l'application coker $(D, K) \to \text{coker } (D, S)$ est ici bijective.

§ 3. — Extension aux systèmes

Il sera commode ici de prendre les systèmes d'abord sous la forme $F \to x \frac{dF}{dx} - MF$, $F \in K^m$ (ou K^m , ou S^m), M matrice carrée à coefficients dans K [on écrira: $M \in \text{End}(K^m)$].

Soit $A \in Gl(m, K)$, i.e. $A \in End(K^m)$, A inversible; la transformation F = A G transforme D en D' avec $D' G = x \frac{dG}{dx} - NG$, $N = A^{-1} M A - x A^{-1} \frac{dA}{dx}$. Rappelons le résultat suivant (voir Deligne [1] lemme II.1.3).

Théorème 3.1. Il existe $A \in Gl(m, K)$ tel que N ait la forme suivante