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est exacte et ker (D, ) est localement isomorphe & C™ (théoréme d’existence
et d’unicité usuel); par suite l'application D :# (Q%*) — s (2%*) a pour
indice m (1 —b3), by = dim H'(Q*,C).

D’autre part, pour chaque a € Z , soit 4, un disque ouvert centi¢ en a,
avec 4,€Q, A, N4, = ¢ sia #b. Comme H' (Q,#) = 0,ona

#(Q¥) | #(Q) =~ @ H# (45| # (4,), avec 4 = 4, — {a}.
acdgy
On a y(D,# (47%)) = 0 par le raisonnement précédent, et x (D,# (4,))
= m —v(a,,a) (par passage a la limite projective, a partir de 1.2.) On
conclut alors en utilisant la suite exacte

0 - (Q) > (%) > (Q¥) [ (2) = 0.

§ 2. — AUTRES THEOREMES DE COMPARAISON

Nous reprenons les hypothéses de la proposition 1.1.

Théoréme 2.1.

a) L’application D : K - K est a indice et ['on a x(D K) = — i(D).
" b) L’application D : K — K est a indice, et I’ on a y (D, K) = 0.
~¢) On acoker (D, K/K) = 0 et dim ker (D, K/K) i (D).

A A

L’assertion c) résulte de 1.4 et de Iisomorphisme naturel 0/y > K /.
Les assertions a) et b) vont résulter du lemme suivant:

Lemme 2.2. L application D : K[y — K/ g a pour indice — sup [p—v (a,].

Désignons en effet par K_, ensemble des €léments [ de K, avec
v(f) > — p; un calcul analogue a celui de la proposition 1.3 fait avec les
puissances négatives de x montre qu’on a, avec n = sup [p —v(a,)]:
DK_, = K_,_,, et que, pour p assez grand, I’application D : K /K_, —
K |K_,-, est un isomorphisme. Le lemme en résulte immédiatement.
L’assertion a) résulte alors de 1.1 et 2.2 en utilisant la suite exacte
0—>0—->K - K /[g— 0; Passertion b) résulte de maniére analogue de

1.3 et 2.2, et de I'isomorphisme K /g 5 K /5.

Soit S, l'espace des fonctions holomorphes dans la couronne
O<|x|[<r,etS =u S, On a le résultat suivant (cf. Deligne [1],
prop. 11.6.20). r>0
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Théoréme 2.3. Méme énoncé que 2.1 avec K remplacé par S.

L’assertion a) coincide avec celle de 2.1. D’autre part, il résulte de la
remarque 1.7 que r assez petit, on a y (D, S,) = 0; le fait qu'on ait
x(D,S) = 0 s’en déduit par passage a la limite inductive.

Pour démontrer ’assertion coker (D, S/K) = 0, il suffit de démontrer
ceci: désignons par K, le sous-espace de S, formé des fonctions méro-
morphes en 0; alors, pour r assez petit, on a S, = D S, + K,; or cela
résulte du fait que K, est dense dans S, (muni de sa topologie usuelle de
Fréchet) et de ce que D S, est de codimension finie dans S,, donc fermé
d’apres un lemme classique.

L’assertion « dim ker (D, S/K) = i(D)» se démontre alors en uti-
lisant les précédents et la suite exacte de cohomologie, comme I’asser-
tion 1.4.2; d’ou le théoréme.

Par exemple, si D f = x? % — f, une base de ker (D, S/K) est
fi = e 1/*; comme f, provient d’un élément de ker (D, S) I'application
coker (D, K) — coker (D, S) est ici bijective.

§ 3. — EXTENSION AUX SYSTEMES

Il sera commode ici de prendre les systémes d’abord sous la forme

dF A . r bl
F 5x— —MF,FeK™(uK™ ouS™), M matrice carrée a coeffi-
X

cients dans K [on écrira: M € End (K™)].
Soit A € Gl (m, K), i.e. A€ End (K™), A inversible; la transformation

dG
F = A G transforme D en D' avec D' G = x— — NG, N
JA dx
= A 'MA —-—xA"?! e Rappelons le résultat suivant (voir Deligne [1]
X
lemme II.1.3).

Théoréme 3.1. Il existe A € Gl (m, K) tel que N ait la forme suivante

— 0 1 0 . : 0
N =
o . . . 0 1
__}uo . . . j.m_.z )Nm_l_____
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