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est exacte et ker (D,MJ)est localement isomorphe à Cm (théorème d'existence

et d'unicité usuel) ; par suite l'application *) -» (D *) a pour
indice m(l -h*), h* dim H1 (ß*, C).

D'autre part, pour chaque a e Z, soit Aa un disque ouvert centré en a,

avec Aae Q,Aan Ab <f>si ab.Comme1 0, on a

X (Q*)/# (ß) ä © M(A *)\*eavec A* Aa-{a}.
aeAa

On a x (D9j^ (A *)) 0 par le raisonnement précédent, et x (D9Jéf (Aa))

m — v(am9a) (par passage à la limite projective, à partir de 1.2.) On

conclut alors en utilisant la suite exacte

0 (ß) (ß*) (ß*)/^ (Q) -» 0.

§ 2. — Autres théorèmes de comparaison

Nous reprenons les hypothèses de la proposition 1.1.

Théorème 2.1.

a) L 'application D : K -» K est à indice et l 'on a x (d), K) — i (D).
A A A

b) L 'application D : K - K est à indice, et l'on a x (A K) 0.

c) On a coker (Z), K /K) 0 et dim ker (Z), K /K) i (D).
A A

L'assertion c) résulte de 1.4 et de l'isomorphisme naturel G/q 2» K /g.
Les assertions a) et b) vont résulter du lemme suivant :

Lemme 2.2. L'application D : Kjq -> Kjq a pour indice — sup [p — v (flp)].
Désignons en effet par K_p l'ensemble des éléments / de K, avec

v (/) > — p; un calcul analogue à celui de la proposition 1.3 fait avec les

puissances négatives de x montre qu'on a, avec n sup [p — v (ap)] :

DK_p a ZcLp_„, et que, pour p assez grand, l'application D :K/K_p
K\K_p_n est un isomorphisme. Le lemme en résulte immédiatement.
L'assertion a) résulte alors de 1.1 et 2.2 en utilisant la suite exacte
0 G K K I q 0; l'assertion b) résulte de manière analogue de

A
1.3 et 2.2, et de l'isomorphisme K/q 2> K/@.

Soit Sn l'espace des fonctions holomorphes dans la couronne
0 < | x | < r, et S — u Sr. On a le résultat suivant (cf. Deligne [1],

prop. II.6.20). r>0
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Théorème 2.3. Même énoncé que 2.1 avec K remplacé par S.

L'assertion a) coïncide avec celle de 2.1. D'autre part, il résulte de la

remarque 1.7 que r assez petit, on a x(D,5r) 0; le fait qu'on ait
X(D, S) 0 s'en déduit par passage à la limite inductive.

Pour démontrer l'assertion coker (D, S/K) 0, il suffit de démontrer
ceci: désignons par Kr le sous-espace de Sr formé des fonctions méro-

morphes en 0; alors, pour r assez petit, on a Sr D Sr + Kr; or cela

résulte du fait que Kr est dense dans Sr (muni de sa topologie usuelle de

Fréchet) et de ce que D Sr est de codimension finie dans Sn donc fermé

d'après un lemme classique.
L'assertion «dim ker (D,S/K) i(D)» se démontre alors en

utilisant les précédents et la suite exacte de cohomologie, comme l'assertion

1.4.2; d'où le théorème.

àfPar exemple, si D f =x — — /, une base de ker (D, S /K) est
dx

fx e~1/x; comme fl provient d'un élément de ker (D, S) l'application
coker (D, K) -> coker (D, S) est ici bijective.

§ 3. — Extension aux systèmes

Il sera commode ici de prendre les systèmes d'abord sous la forme
d F A

F x M F F e Km (ou Km, ou S m), M matrice carrée à coeffi-
dx

cients dans K [on écrira: M e End (Km)].
Soit A e Gl (m,K), i.e. A e End (Km), A inversible; la transformation

dG
F A G transforme D en D' avec D' G x N G, N

d A
— A'1 M A — x A"1 Rappelons le résultat suivant (voir Deligne [1]

dx
lemme IL 1.3).

Théorème 3.1. Il existe A g Gl (m,K) tel que N ait la forme suivante

0 10 .0
N

0

An lm — 2 "m- 1
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