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SUR LES POINTS SINGULIERS
DES EQUATIONS DIFFERENTIELLES

par Bernard MALGRANGE

INTRODUCTION

Le présent article reprend, a quelques modifications pres, une série
d’exposés faits au séminaire Goulaouic-Schwartz en mars 1972. Le début
est consacré a I’étude de I'indice analytique et de I'indice formel d’un opé-
rateur différentiel, et & leur comparaison; les résultats sont trés élémentaires,
et il est d’autant plus surprenant que, & la connaissance de 'auteur, ils ne
figurent pas dans la littérature classique consacrée aux équations diffé-
rentielles. Signalons & ce propos que le théoréme de I'indice analytique a
¢té démontré indépendamment par H. Komatsu [1]. La fin de I’article a
davantage un caractére d’exposition: il s’agit, au fond de reprendre les
résultats sur les développements asymptotiques de Turritin, tels qu’ils sont
exposés dans Wasow [1], en utilisant I'importante simplification apportée
par N. Katz [1] dans ce genre de questions. Pour rendre I'exposé plus
« original », nous avons préféré travailler avec les germes de fonctions C%,
plutdt qu’avec les développements asymptotiques de fonctions holomorphes
dans des angles assez petits, comme le font Turritin et Wasow 4 la suite
d’autres auteurs. La transposition de la méthode suivie ici & ce dernier cas
se fait sans difficulté, et nous nous contenterons de ’esquisser a la fin du
paragraphe 10.

§ 1. — COMPARAISON SERIES FORMELLES — SERIES CONVERGENTES
(cf. Malgrange [1])

On pose @ = C {x }, les séries convergentes d’une variable = les germes
de fonction holomorphe en 0e C; O = C [[x]] les séries formelles & une
variable; enfin K et K désignent respectivement le corps des fractions de @

A
et celui de @ (en particulier, K est le corps des germes en 0 de fonctions
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A + o0
méromorphes). Pour f €K, on peut écrire f = ) f,x?, f,€C, les f,

étant nuls pour p < p,; on note v (f) le plus grand p, possédant cette
propriéié.

m dp
Considérons un opérateur différentiel D = ) a, TP avec a, €l
0 X

(0=p=m), eta, # 0. 0n a d’abord le résultat suivant

Proposition 1.1. L’application D: O — O est a indice; son indice noté
x (D, 0) est égal a m — v (a,,).

Rappeloris qu’une application linéaire u: E — F (E, F, espaces vectoriels
sur C) est dite « & indice » si son noyau et son conoyau sont de dimension
finie; I'indice de u, qu’on notera y (u) (ou y (u, E, F) ou toute autre notation
analogue) est par définition le nombre dim ker u — dim coker w.

Démonstration. Soit 4, < C(r>0) le disque fermé: |x| <<r. Pour
pentier > 0, on note B? (4,) I’espace des fonctions sur 4, a valeurs complexes,

de classe €7, et holomorphes sur 4,; c’est un sous-espace fermé de 67 (4,),
ce dernier espace étant muni d’une quelconque des normes équivalentes
usuelles.

Choisissons r assez petit pour que les a, soient holomorphes au voisinage
de 4,, et pour que a,, ne s’annule pas dans 4, — {0}.

Lemme 1.2. L’application D: B™(4,) — B°(4,) est a indice, et son
indice est égal a m — v (a,,).

m

En effet, écrivons D = a,, o + D’; comme D’ est de degré <m — 1,
X

le théoréme d’Ascoli montre que Iapplication D’: B™(4,) — B°(4,) est
compacte. D’aprés les théorémes connus de perturbation des opérateurs a

d m
indice, il suffit donc d’établir le résultat pour D remplacé par a,, o cela
™M

se fait immédiatement en factorisant cette derniére application par

d d d
B"(4,) 2, B"1(4,) &, ... &5, B(4) I, BO(4))

et en utilisant I’additivité de I'indice par composition.

La proposition se déduit aussitdot du lemme précédent, en utilisant le
fait que O est la limite inductive des BP (4,), pour r — 0.

Passons maintenant au cas des séries formelles.
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A A

Proposition 1.3. L’application D : O — O est a indice, et [’'on a

% (D, 8) = sup[p—v(a,)].

Posons en effet n = sup [p—v(a,)]; onawv(a,) >p — n, avec cgalité
pour certaines valeurs de p, disons p € P : pour tout p, ona a, = x* " b,
avec b,e 0, et b,(0) # 0 pour p € P.

Smt k un enuer > n;ona

p

a, d—x k(k—1)...(k—p+1)b,(0)x*™" + (termes d’ordre > k —n)
dou Dx* =) k(k—1)...(k—p+1)b,(0)x*™" + (termes d’ordre > k —n);
peP

pour k assez grand, disons k > k, le coefficient de x*~" dans I’expression
précédente est # 0, puisque c’est un polyndme en k dont le terme dominant
b, (0) k% (g=sup P) est non nul.

On déduit de 13, par un calcul de récurrence sur les coefficients que pour

A

k>k, et g = O donné, avec v(g) >k — n, il existe un unique f €0

A

vérifiant v (f ) >k, Df = g; autrement dit, en désignant par m Il'idéal

maximal de (O on a un 1somorph1sme

A

D:m* =~ m"“" (k>k,) .

La proposition résulte immédiatement de la, par exemple par un argu-
ment de suite exacte.

A A

Considérons maintenant la suite exacte 0 - ¢ - 0 - 0/ 9 — 0. En
appliquant D a chacun des 3 facteurs, on trouve une suite exacte de
complexes; d’oll une suite exacte de cohomologie.

0 — ker (D, 0) - ker (D, 0) — ker D, 0/ 9) — coker (D, 0) -
coker (D, 0) — coker (D, 0/g) — 0
Le troisiéme et le sixiéme terme de cette suite exacte donnent donc les

obstructions pour que les fléches ker (D, 0) — ker (D, 0) et coker (D, 0) —

coker (D, 0) soient des isomorphismes. Le théoréme de comparaison est alors
le suivant

Théoréme 1.4. On a 1) coker (D, (9/(0) =
2) dim ker (D, (9/(0) sup[p—v(a,)]—m+v (am).
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L’assertion 1) signifie que, pour tout f € 0, il existe g€ 0 et h € O avec
S = Dg+ h; or, la démonstration de la proposition 1.3 montre qu’il
suffit de prendre un £ tel qu’on ait v(f —h) >k, — n; par exemple il
suffit de prendre pour /4 la somme des termes de degré < k, — n de f.
L’assertion 2) résulte alors immédiatement des propositions 1.1 et 1.3;
d’ou le théoréme.

Pour qu’on ait ker (D, 0/@) 0, et par conséquent, pour que les

fleches ker (D, 0) — ker (D, (0) et coker (D, 0) — coker (D, (9) solent
toutes deux bijectives, il faut et il suffit qu'on ait m — v (a,,) = sup [p—
v(a,)], autrement dit qu’on ait, pour tout p,v(a,) >v(a,) + p — m.
Or c’est précisément la définition classique des points singuliers réguliers.
Cela nous conduit a la définition suivante

Définition 1.5. On appelle «irrégularité de D (en 0)» le nombre
i(D) = sup[p—v(a,)] —[m—v(a,].

Un exemple classique (Euler) de point singulier irrégulier est le suivant:

d
on prend D f = x? —{—f posant fo= > n!x""', onaD f =

dx n—0
on a ici i(D) =1, donc la classe de f, modulo @ est une base de

ker (D, 0/ ).

Remahque 1.6. La proposition 1.1. montre en particulier qu'on a
dim ker (D, 0) > m — v (a,,), ce qui est un théoréme classique de Perron.

m dp
Remarque 1.7. Soit Q un ouvert connexe de C, et soit D = ) a, P un
0 X

opérateur différentiel a coefficients dans # (Q2), 'espace des fonctions holo-
morphes dans Q. Supposons qu’on ait b' = dim H' (Q,C) < + oo et que
le nombre v (a,,, Q) des zéros de a,, dans Q (compté chacun avec son ordre)
soit fini. On a alors le résultat suivant: 'application D : # (Q2) — o# (Q) est
a indice, et 'on a y (D, #(2)( = m(1 -b") —v(a,,Q).

Cela peut se voir par exemple d’'une manicre analogue a la proposition 1.1
en approchant Q par une suite convenable de compacts K; a bord régulier
et en étudiant I'application D : B" (K;) —» B°(K).

On peut aussi opérer ainsi: soit Z 1’ensemble des zéros de a,,, et posons
Q* = Q — Z ; sur Q% la suite de faisceaux

0 > ker(D,#) >H ijf -0
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est exacte et ker (D, ) est localement isomorphe & C™ (théoréme d’existence
et d’unicité usuel); par suite l'application D :# (Q%*) — s (2%*) a pour
indice m (1 —b3), by = dim H'(Q*,C).

D’autre part, pour chaque a € Z , soit 4, un disque ouvert centi¢ en a,
avec 4,€Q, A, N4, = ¢ sia #b. Comme H' (Q,#) = 0,ona

#(Q¥) | #(Q) =~ @ H# (45| # (4,), avec 4 = 4, — {a}.
acdgy
On a y(D,# (47%)) = 0 par le raisonnement précédent, et x (D,# (4,))
= m —v(a,,a) (par passage a la limite projective, a partir de 1.2.) On
conclut alors en utilisant la suite exacte

0 - (Q) > (%) > (Q¥) [ (2) = 0.

§ 2. — AUTRES THEOREMES DE COMPARAISON

Nous reprenons les hypothéses de la proposition 1.1.

Théoréme 2.1.

a) L’application D : K - K est a indice et ['on a x(D K) = — i(D).
" b) L’application D : K — K est a indice, et I’ on a y (D, K) = 0.
~¢) On acoker (D, K/K) = 0 et dim ker (D, K/K) i (D).

A A

L’assertion c) résulte de 1.4 et de Iisomorphisme naturel 0/y > K /.
Les assertions a) et b) vont résulter du lemme suivant:

Lemme 2.2. L application D : K[y — K/ g a pour indice — sup [p—v (a,].

Désignons en effet par K_, ensemble des €léments [ de K, avec
v(f) > — p; un calcul analogue a celui de la proposition 1.3 fait avec les
puissances négatives de x montre qu’on a, avec n = sup [p —v(a,)]:
DK_, = K_,_,, et que, pour p assez grand, I’application D : K /K_, —
K |K_,-, est un isomorphisme. Le lemme en résulte immédiatement.
L’assertion a) résulte alors de 1.1 et 2.2 en utilisant la suite exacte
0—>0—->K - K /[g— 0; Passertion b) résulte de maniére analogue de

1.3 et 2.2, et de I'isomorphisme K /g 5 K /5.

Soit S, l'espace des fonctions holomorphes dans la couronne
O<|x|[<r,etS =u S, On a le résultat suivant (cf. Deligne [1],
prop. 11.6.20). r>0
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