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SUR LES POINTS SINGULIERS
DES EQUATIONS DIFFERENTIELLES

par Bernard MALGRANGE

INTRODUCTION

Le présent article reprend, a quelques modifications pres, une série
d’exposés faits au séminaire Goulaouic-Schwartz en mars 1972. Le début
est consacré a I’étude de I'indice analytique et de I'indice formel d’un opé-
rateur différentiel, et & leur comparaison; les résultats sont trés élémentaires,
et il est d’autant plus surprenant que, & la connaissance de 'auteur, ils ne
figurent pas dans la littérature classique consacrée aux équations diffé-
rentielles. Signalons & ce propos que le théoréme de I'indice analytique a
¢té démontré indépendamment par H. Komatsu [1]. La fin de I’article a
davantage un caractére d’exposition: il s’agit, au fond de reprendre les
résultats sur les développements asymptotiques de Turritin, tels qu’ils sont
exposés dans Wasow [1], en utilisant I'importante simplification apportée
par N. Katz [1] dans ce genre de questions. Pour rendre I'exposé plus
« original », nous avons préféré travailler avec les germes de fonctions C%,
plutdt qu’avec les développements asymptotiques de fonctions holomorphes
dans des angles assez petits, comme le font Turritin et Wasow 4 la suite
d’autres auteurs. La transposition de la méthode suivie ici & ce dernier cas
se fait sans difficulté, et nous nous contenterons de ’esquisser a la fin du
paragraphe 10.

§ 1. — COMPARAISON SERIES FORMELLES — SERIES CONVERGENTES
(cf. Malgrange [1])

On pose @ = C {x }, les séries convergentes d’une variable = les germes
de fonction holomorphe en 0e C; O = C [[x]] les séries formelles & une
variable; enfin K et K désignent respectivement le corps des fractions de @

A
et celui de @ (en particulier, K est le corps des germes en 0 de fonctions
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A + o0
méromorphes). Pour f €K, on peut écrire f = ) f,x?, f,€C, les f,

étant nuls pour p < p,; on note v (f) le plus grand p, possédant cette
propriéié.

m dp
Considérons un opérateur différentiel D = ) a, TP avec a, €l
0 X

(0=p=m), eta, # 0. 0n a d’abord le résultat suivant

Proposition 1.1. L’application D: O — O est a indice; son indice noté
x (D, 0) est égal a m — v (a,,).

Rappeloris qu’une application linéaire u: E — F (E, F, espaces vectoriels
sur C) est dite « & indice » si son noyau et son conoyau sont de dimension
finie; I'indice de u, qu’on notera y (u) (ou y (u, E, F) ou toute autre notation
analogue) est par définition le nombre dim ker u — dim coker w.

Démonstration. Soit 4, < C(r>0) le disque fermé: |x| <<r. Pour
pentier > 0, on note B? (4,) I’espace des fonctions sur 4, a valeurs complexes,

de classe €7, et holomorphes sur 4,; c’est un sous-espace fermé de 67 (4,),
ce dernier espace étant muni d’une quelconque des normes équivalentes
usuelles.

Choisissons r assez petit pour que les a, soient holomorphes au voisinage
de 4,, et pour que a,, ne s’annule pas dans 4, — {0}.

Lemme 1.2. L’application D: B™(4,) — B°(4,) est a indice, et son
indice est égal a m — v (a,,).

m

En effet, écrivons D = a,, o + D’; comme D’ est de degré <m — 1,
X

le théoréme d’Ascoli montre que Iapplication D’: B™(4,) — B°(4,) est
compacte. D’aprés les théorémes connus de perturbation des opérateurs a

d m
indice, il suffit donc d’établir le résultat pour D remplacé par a,, o cela
™M

se fait immédiatement en factorisant cette derniére application par

d d d
B"(4,) 2, B"1(4,) &, ... &5, B(4) I, BO(4))

et en utilisant I’additivité de I'indice par composition.

La proposition se déduit aussitdot du lemme précédent, en utilisant le
fait que O est la limite inductive des BP (4,), pour r — 0.

Passons maintenant au cas des séries formelles.
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A A

Proposition 1.3. L’application D : O — O est a indice, et [’'on a

% (D, 8) = sup[p—v(a,)].

Posons en effet n = sup [p—v(a,)]; onawv(a,) >p — n, avec cgalité
pour certaines valeurs de p, disons p € P : pour tout p, ona a, = x* " b,
avec b,e 0, et b,(0) # 0 pour p € P.

Smt k un enuer > n;ona

p

a, d—x k(k—1)...(k—p+1)b,(0)x*™" + (termes d’ordre > k —n)
dou Dx* =) k(k—1)...(k—p+1)b,(0)x*™" + (termes d’ordre > k —n);
peP

pour k assez grand, disons k > k, le coefficient de x*~" dans I’expression
précédente est # 0, puisque c’est un polyndme en k dont le terme dominant
b, (0) k% (g=sup P) est non nul.

On déduit de 13, par un calcul de récurrence sur les coefficients que pour

A

k>k, et g = O donné, avec v(g) >k — n, il existe un unique f €0

A

vérifiant v (f ) >k, Df = g; autrement dit, en désignant par m Il'idéal

maximal de (O on a un 1somorph1sme

A

D:m* =~ m"“" (k>k,) .

La proposition résulte immédiatement de la, par exemple par un argu-
ment de suite exacte.

A A

Considérons maintenant la suite exacte 0 - ¢ - 0 - 0/ 9 — 0. En
appliquant D a chacun des 3 facteurs, on trouve une suite exacte de
complexes; d’oll une suite exacte de cohomologie.

0 — ker (D, 0) - ker (D, 0) — ker D, 0/ 9) — coker (D, 0) -
coker (D, 0) — coker (D, 0/g) — 0
Le troisiéme et le sixiéme terme de cette suite exacte donnent donc les

obstructions pour que les fléches ker (D, 0) — ker (D, 0) et coker (D, 0) —

coker (D, 0) soient des isomorphismes. Le théoréme de comparaison est alors
le suivant

Théoréme 1.4. On a 1) coker (D, (9/(0) =
2) dim ker (D, (9/(0) sup[p—v(a,)]—m+v (am).




— 150 —
L’assertion 1) signifie que, pour tout f € 0, il existe g€ 0 et h € O avec
S = Dg+ h; or, la démonstration de la proposition 1.3 montre qu’il
suffit de prendre un £ tel qu’on ait v(f —h) >k, — n; par exemple il
suffit de prendre pour /4 la somme des termes de degré < k, — n de f.
L’assertion 2) résulte alors immédiatement des propositions 1.1 et 1.3;
d’ou le théoréme.

Pour qu’on ait ker (D, 0/@) 0, et par conséquent, pour que les

fleches ker (D, 0) — ker (D, (0) et coker (D, 0) — coker (D, (9) solent
toutes deux bijectives, il faut et il suffit qu'on ait m — v (a,,) = sup [p—
v(a,)], autrement dit qu’on ait, pour tout p,v(a,) >v(a,) + p — m.
Or c’est précisément la définition classique des points singuliers réguliers.
Cela nous conduit a la définition suivante

Définition 1.5. On appelle «irrégularité de D (en 0)» le nombre
i(D) = sup[p—v(a,)] —[m—v(a,].

Un exemple classique (Euler) de point singulier irrégulier est le suivant:

d
on prend D f = x? —{—f posant fo= > n!x""', onaD f =

dx n—0
on a ici i(D) =1, donc la classe de f, modulo @ est une base de

ker (D, 0/ ).

Remahque 1.6. La proposition 1.1. montre en particulier qu'on a
dim ker (D, 0) > m — v (a,,), ce qui est un théoréme classique de Perron.

m dp
Remarque 1.7. Soit Q un ouvert connexe de C, et soit D = ) a, P un
0 X

opérateur différentiel a coefficients dans # (Q2), 'espace des fonctions holo-
morphes dans Q. Supposons qu’on ait b' = dim H' (Q,C) < + oo et que
le nombre v (a,,, Q) des zéros de a,, dans Q (compté chacun avec son ordre)
soit fini. On a alors le résultat suivant: 'application D : # (Q2) — o# (Q) est
a indice, et 'on a y (D, #(2)( = m(1 -b") —v(a,,Q).

Cela peut se voir par exemple d’'une manicre analogue a la proposition 1.1
en approchant Q par une suite convenable de compacts K; a bord régulier
et en étudiant I'application D : B" (K;) —» B°(K).

On peut aussi opérer ainsi: soit Z 1’ensemble des zéros de a,,, et posons
Q* = Q — Z ; sur Q% la suite de faisceaux

0 > ker(D,#) >H ijf -0
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est exacte et ker (D, ) est localement isomorphe & C™ (théoréme d’existence
et d’unicité usuel); par suite l'application D :# (Q%*) — s (2%*) a pour
indice m (1 —b3), by = dim H'(Q*,C).

D’autre part, pour chaque a € Z , soit 4, un disque ouvert centi¢ en a,
avec 4,€Q, A, N4, = ¢ sia #b. Comme H' (Q,#) = 0,ona

#(Q¥) | #(Q) =~ @ H# (45| # (4,), avec 4 = 4, — {a}.
acdgy
On a y(D,# (47%)) = 0 par le raisonnement précédent, et x (D,# (4,))
= m —v(a,,a) (par passage a la limite projective, a partir de 1.2.) On
conclut alors en utilisant la suite exacte

0 - (Q) > (%) > (Q¥) [ (2) = 0.

§ 2. — AUTRES THEOREMES DE COMPARAISON

Nous reprenons les hypothéses de la proposition 1.1.

Théoréme 2.1.

a) L’application D : K - K est a indice et ['on a x(D K) = — i(D).
" b) L’application D : K — K est a indice, et I’ on a y (D, K) = 0.
~¢) On acoker (D, K/K) = 0 et dim ker (D, K/K) i (D).

A A

L’assertion c) résulte de 1.4 et de Iisomorphisme naturel 0/y > K /.
Les assertions a) et b) vont résulter du lemme suivant:

Lemme 2.2. L application D : K[y — K/ g a pour indice — sup [p—v (a,].

Désignons en effet par K_, ensemble des €léments [ de K, avec
v(f) > — p; un calcul analogue a celui de la proposition 1.3 fait avec les
puissances négatives de x montre qu’on a, avec n = sup [p —v(a,)]:
DK_, = K_,_,, et que, pour p assez grand, I’application D : K /K_, —
K |K_,-, est un isomorphisme. Le lemme en résulte immédiatement.
L’assertion a) résulte alors de 1.1 et 2.2 en utilisant la suite exacte
0—>0—->K - K /[g— 0; Passertion b) résulte de maniére analogue de

1.3 et 2.2, et de I'isomorphisme K /g 5 K /5.

Soit S, l'espace des fonctions holomorphes dans la couronne
O<|x|[<r,etS =u S, On a le résultat suivant (cf. Deligne [1],
prop. 11.6.20). r>0
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Théoréme 2.3. Méme énoncé que 2.1 avec K remplacé par S.

L’assertion a) coincide avec celle de 2.1. D’autre part, il résulte de la
remarque 1.7 que r assez petit, on a y (D, S,) = 0; le fait qu'on ait
x(D,S) = 0 s’en déduit par passage a la limite inductive.

Pour démontrer ’assertion coker (D, S/K) = 0, il suffit de démontrer
ceci: désignons par K, le sous-espace de S, formé des fonctions méro-
morphes en 0; alors, pour r assez petit, on a S, = D S, + K,; or cela
résulte du fait que K, est dense dans S, (muni de sa topologie usuelle de
Fréchet) et de ce que D S, est de codimension finie dans S,, donc fermé
d’apres un lemme classique.

L’assertion « dim ker (D, S/K) = i(D)» se démontre alors en uti-
lisant les précédents et la suite exacte de cohomologie, comme I’asser-
tion 1.4.2; d’ou le théoréme.

Par exemple, si D f = x? % — f, une base de ker (D, S/K) est
fi = e 1/*; comme f, provient d’un élément de ker (D, S) I'application
coker (D, K) — coker (D, S) est ici bijective.

§ 3. — EXTENSION AUX SYSTEMES

Il sera commode ici de prendre les systémes d’abord sous la forme

dF A . r bl
F 5x— —MF,FeK™(uK™ ouS™), M matrice carrée a coeffi-
X

cients dans K [on écrira: M € End (K™)].
Soit A € Gl (m, K), i.e. A€ End (K™), A inversible; la transformation

dG
F = A G transforme D en D' avec D' G = x— — NG, N
JA dx
= A 'MA —-—xA"?! e Rappelons le résultat suivant (voir Deligne [1]
X
lemme II.1.3).

Théoréme 3.1. Il existe A € Gl (m, K) tel que N ait la forme suivante

— 0 1 0 . : 0
N =
o . . . 0 1
__}uo . . . j.m_.z )Nm_l_____



— 153 —

Soit alors A I'opérateur différentiel défini par
d
dx’
il est immédiat que D’ est « équivalent » & 4 et, de fagon plus précise, qu’on
a le résultat suivant:
Considérons le diagramme

Af=0"f — A, 0™  f...—Af,avec 0 = x—

K _ 4 »K
u ‘ ]’ v
L,
I m W___)Kn
avec U (f) = (fose-v>Sfma1) (@) = (0,...,0,9); alors ce diagramme

induit un isomorphisme entre le noyau de 4 et le noyau de D’ d’une part, le
conoyau de 4 et le conoyau de D" d’autre part; le méme résultat est encore

vrai avec K remplacé par K S, etc.

Définissons alors lirrégularité de A par la formule i (4) = i (x*4),
k un entier tel que x* A4 soit & coefficients holomorphes. Cela ne dépend
visiblement pas de k, et on laisse le lecteur vérifier la formule suivante

(3.2) i(4) = sup (0,sup—v(4,))

Définissons ensuite lirrégularit¢ de D par i(D) = i(4). Les théo-
remes 2.1 et 2.3 entrainent immédiatement le résultat suivant

Théoréeme 3.3.

a) L’application D : K " — K ™ est a indice et l'on a y (D, K) = — i(D).
b) L’application D : K " K ™ est a indice et [’ on a y (D, K) = 0.
c) On a coker (D, K’"/K’") 0 et dim ker (D,K’"/K'") = i (D).

d) Mémes énoncés avec K remplacé par S.

Ce théoréme montre en particulier, que i (D) ne dépend que de D, et
non pas du choix de 4 dans 3.1; nous donnerons une démonstration algé-
brique de ce résultat dans le prochain exposé.

Rappelons maintenant que, suivant une définition classique, I’origine

est un point singulier régulier de D ¢’il existe un A e Gl (m, K) tel que

N =471 ~ 24 0 I
: = MA—-xA Ty n'ait pas de pdle. Cela est classiquement
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équivalent & la propriété suivante: n’importe quelle détermination d’une

: . , 1
(ou de toute) matrice fondamentale de P est a croissance polynomiale en —
X

au voisinage de 0; ceci équivaut encore au fait quona P = Qexp (Clog x),
avec Q a coeflicients méromorphes, i.e. Q € Gl (m, K).

Proposition 3.4. Pour que O soit un point singulier régulier de D il faut
et il suffit qu’on ait i (D) = 0.

Supposons qu’on ait i (D) = 0, et soit A comme au théoréme 3.1; alors
i (4) = 0, donc, d’apres la formule 3.2, les 4, n’ont pas de pdle; donc N
n’a pas de pole.

Pour démontrer la réciproque, nous utiliserons le lemme suivant.

Lemme 3.5. Supposons que M n’ait pas de pole; alors [’application

D : (9'" — (9’" est d’indice nul.

La démonstration est analogue a celle de la proposmon 1. 3 Soit F, un
vecteur de C"; on a D (F\x*) = [kI — M (0)] x* + (termes de degré > k);
pour k assez grand, disons k > k,, kI — M (0) est inversible; de 1a, il
résulte que Papplication D : m* (0™) — m* (0™) est bijective pour k > k,.
Le lemme en résulte immédiatement.

Sous la méme hypothése que M n’ait pas de pole, la proposition 3.6,
cl- dessous montre que D: 0™ — O™ est encore d’indice nul; donc 1’1ndlce

deD : (9'"/ 0" — (9'"/ O™ est nul; en vertu de 'isomorphisme (0/ 0> K/ K,
le théoréme 3.3 ¢) nous montre alors qu’on a i (D) = 0; d’ou la proposition.

Par la suite, il sera nécessaire aussi d’envisager des systémes sous la
forme un peu plus générale suivante: H <¢tant une matrice diagonale a

coefficients entiers (hy,...,h,) on pose DF = xH % MF, avec
X

M e End (K ™). Par définition, on prendra i (D) = i (x'"#D), moyennant
quoi le théoréme 3.3 est encore vrai pour D.
On a aussi la proposition suivante.

Proposition 3.6. Si M est sans pdle, et les h; positifs, alors D : O™ — O™
a pour indice (hy+...+h,—m) et D:0™ > 0" a pour indice
i(D) + (hy +... +h, —m).

La premiére assertion se démontre comme la proposition 1.1. La seconde
résulte de 1a, du fait que le théoréme 3.3 s’applique a D, et de I'isomor-
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phisme 0/0 — K /K . A noter aussi que, d’aprés la premicre assertion, on
a dim ker (D,0™ >hy + ... + h, — m (théoréme de Perron pour les
systémes).

§ 4. — REMARQUES DIVERSES

a) Equations dépendant d’un paramétre

La théorie des équations différentielles dépendant d’un paramétre
présente de nombreuses difficultés. Nous donnerons seulement ici un
énoncé simple, qui « relativise » la proposition 1.1, et cela sans chercher les
hypothéses minimum nécessaires. Soit Z une variété analytique complexe

connexe, et soit D opérateur différentiel « dépendant du parameétre z e Z »:
p

D = Z():ap Tk a,e¥ (AxZ), 4 le disque unité ouvert; supposons

a, # 0;s0it Ve 4 x Z I'ensemble des zéros de a,, et supposons que
la projection V' — Z induite par la projection naturelle 7: 4 X Z — Z soit
propre. Soit A" le complexe 0 = # 4«7 = H 4z = 0, avec # 4, désignant
le faisceau des fonctions holomorphes sur 4 x Z.

Proposition 4.1. Le complexe w,A est a cohomologie A ,-cohérente.

Autrement dit, les faisceaux associés aux préfaisceaux U —
ker (D,# (4 x U)) et U — coker (D,# (4 x U)), U ouvert de Z, sont
H ,-cohérents. Esquissons la démonstration: on peut, en restreignant Z,
supposer que ¥ est contenu dans 4, X Z, avec 0 <r < 1, 4, le disque
fermé de rayon r; prenons r’ vérifiant r < r’ < 1. On démontre facilement,
a I'aide du théoréme d’existence, d’unicité, et de dépendance d’un para-
meétre pour les équations différentielles que le préfaisceau associé au faisceau
U — (kerD,# (4 x U)) [resp. U > (coker D,# (4 x U))] est isomorphe
au noyau (resp. ou conoyau) du morphisme de faisceaux # , (B™(4 )2,
o 7(B°(4,)), ici, E étant un Banach, on note # ,(E) le faisceau des
fonctions holomorphes sur Z a valeurs dans E. Nous sommes alors ramenés
a la situation classique de perturbation analytique d’un opérateur & indice
dans des espaces de Banach; d’ou le résultat.

On a aussi des énoncés analogues avec par exemple Z espace analytique
ou espace topologique séparé, ou variété différentielle (dans ces deux
derniers cas, il faudrait remplacer I’énoncé, comme d’habitude en géo-
métrie analytique relative, par un énoncé de pseudo-cohérence pour
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Rm, (A ); voir divers articles consacrés aux images directes en géométrie
analytique: Kiehl, ou Forster-Knorr, a paraitre aux Inventiones, ou la
thése de Houzel a paraitre quelque part; nous n’entrerons pas dans les
détails).

b) Equations non-linéaires

Soit @ une fonction holomorphe sur 4 x U, 4 le disque unité
ouvert, U un ouvert de C™"!; une solution de [Iéquation (E):
&(x,f, f,....f™) = 0 dans 4 est une fonction f holomorphe sur 4,
telle que Iapplication x — (f(x),..., f™ (x)) soit & valeurs dans U,
et telle qu'on ait identiquement & (x, f(x),..., f™ (x)) = 0. Nous
nous proposons d’examiner trés rapidement des questions du type
suivant: dans quelle mesure peut-on « paramétrer naturellement » les
solutions de (E) par les points d’un espace analytique (la notion de « para-
métrage naturel » se définit ici, comme d’habitude dans ce genre de pro-
blémes, par la représentabilité d’un foncteur facile a définir; nous laisserons
le lecteur expliciter).

Nous examinerons seulement la possibilit¢ de « paramétrer » les solu-
tions voisines d’une solution f, donnée; par définition, les points singuliers
(E) en f, sont les points singuliers de I’équation linéarisée en f,, i.e. les

points x vérifiant P (x, fo(x), ..., fG’(x)) = 0. Nous supposerons que

m
fo n'est pas une «intégrale singuliére », c’est-a-dire qu’il existe des points
non singuliers.

Soit d’abord r, avec 0 <r <1, tel que le cercle {|x| =r} ne
contienne pas de points singuliers. L’application qui a f fait correspondre
d(x, f, ..., ™), quon notera f — ¥Y(f) est alors une application
analytique définie sur un voisinage de f, dans B™(4,), a valeurs dans

ovY
B°(4,); comme ’application a_f( fo) est a indice, d’apres une variante de

la proposition 1.1, des raisonnements connus montrent que ’espace ana-
lytique banachique ¥~ ' (0) est, au voisinage de f,, de dimension finie
(cf. Douady [1]); cela paramétre I’ensemble des solutions de (E) dans
B™(4,), voisines de f,. 1l est facile aussi de voir que la dimension f, du
germe de cet ensemble est comprise entre #2 et I'indice de I’équation linéarisée

or : B™ (4 B° (4
57 U0 Brd) ~ B°(4)
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et que ce dernier indice est égal & m — v, v le nombre des zéros dans

0P

4, de - (X, fo,ees fo ™).

m

Soit maintenant r quelconque, avec 0 <{ r < 1. Pour #’ > r, assez voisin
de r, le cercle | x | = r’ ne contiendra pas de points singuliers de (E) en fo.
On pourra alors faire la construction précédente, et obtenir un germe d’espace
analytique; pour tous les r’ assez voisins de r, ces germes coincident, en
vertu du résultat suivant; il existe r, > r possédant la propriété suivante:
pour tout r’, avec r < r’ < r,, on peut trouver ¢(r’) > 0 tel que toute f

[e]

solution de (F) dans 4,., et vérifiant l sup | f(x) = fo ()] <e(') se
X| =r

prolonge en une solution de (E) dans AO,D (Cela se déduit facilement des

résultats sur la « dépendance des conditions initiales ». dans le théoréme

d’existence et d’unicité). Cela nous définit un germe d’espace analytique

paramétrant les solutions voisines de f, dans J# (4,); en particulier, cele

vaut pour r, = 0, i.e. pour les solutions voisines de f, dans 0.

Il faut noter cependant que le résultat précédent n’est guére satisfaisant,
d’une part, les solutions d’une équation différentielle non-linéaire ont en
général des domaines d’existences variables, et non univalents, ce qui rend
le probléme considéré un peu artificiel. D’autre part, le germe qui vient
d’étre construit, est bien universel en f; mais il peut ne pas étre universel
aux points voisins, a cause de ’existence des singularités mobiles (par contre,
s’il n’y a que des singularité fixes, on peut voir que ce canular ne se produit

pas).

§ 5. — IRREGULARITE D’UN SYSTEME DIFFERENTIEL FORMEL

. d A
Soit D = x"+1d~— — M, avec M €End(K™), ke;Z on va définir
% |

Iirrégularité de D par une adaptation des calculs des § 1-3. Tout d’abord
on se raméne a k = 0 en posant pour [e€Z: i(x'D) = i(D). Dans toute
la suite du paragraphe, on supposera donc k = 0.

Rappelons qu’on appelle réseau dans K™ un sous O-module E de type

A A A

fini tel qu'on ait E @ K = K™; il est connu qu'un tel £ est libre sur 0,
(9 A A

donc est de la forme 4 0™, avec A e Gl(m, K) et réciproquement. Si I’on




— 158 —

a deux réseaux E c— E,, il existe k € N vérifiant x* E; = E ; on en déduit
immédiatement que E,/E est de dimension finie sur C.

Proposition 5.1. Soient E et E, deux réseaux verifiant DE < E,. Alors
Papplication D : E — E, est a indice.

Dans la suite, cet indice sera noté y (D; E, E,).

Démonstration. Supposons d’abord la proposition démontrée pour un
couple particulier (E,E;), et démontrons-la pour un autre couple
(E',E}). Prenons un troisiéme couple (E",E}) vérifiant E" > E UE’,
E|.>E,UE|,DE"c E].

Considérons la suite exacte de morphismes

0O—-E -E"SE’JE -0

|

D D'D

v ¥ ¥
0->E, -E{—>E[E, >0
La premicre fléche verticale est & indice par hypotheése, et la troisiéme

Pest aussi puisqu’elle va d’un espace de dimension finie dans un autre. Par
suite la seconde est a indice; de plus, on a

(5.2) ¥(D;E",E}) = x(D;E,E,) + dimE"|JE — dim E{/E,

On opére ensuite de méme avec les couples (E',Ej)et (E",E ).
Reste a trouver un couple particulier (E, E,) tel que D: E — E; soit

a indice; pour cela, en utilisant le théoréme (3.1) (qui est vrai aussi pour K
au lieu de K), on se raméne au cas ou M a la forme suivante

— 0 1

0
(5.3) M =
0...0 1
Ay o Amea Ay 7 ]
Posons comme au paragraphe 3, 4 = o™ — A,_; 0™ ' — ... — 4,, avec
0 = Xx dj;; posons encore i = i(4) = sup (O, sup —v(4,)) et prenons

E

A A
= 0" E, = 0™ 1 ®x~! 0; les raisonnements des § 1-3 montrent que
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’application D: E — E; a un noyau (resp. un conoyau) isomorphe au
A A

noyau (resp. du conoyau) de I’application 4: ¢ —x~10, et que cette
derniére application est d’indice nul. D’ou la proposition.

Considérons maintenant tous les couples de réseaux (E,E;) avec
E c E,,DE < E;; je dis que le nombre y(D;E, E,;) + dim E/E est
indépendant du couple (E, E,). Pour établir ce résultat, il suffit de raisonner
comme 2 la proposition précédente, et d’utiliser 5.2. Cela justifie la défini-
tion suivante:

Définition 5.3. On appelle irrégularité de D le nombre y(D:E,E ) +
dim E,/E, E et E, étant deux réseaux vérifiant E < E{, DE < E;.

Le calcul fait & la fin de la proposition précédente, montre immédiate-
ment que si M est de la forme 5.3, on g, comme en 3.2.

(5.4) i(D) = sup (0,sup —v(4,))

Par conséquent, notre définition coincide dans le cas analytique avec
celle du § 3; et 'on a encore i (D) > 0. ’
On définit encore les points singuliers réguliers comme au § 3, avec

K au lieu de K (il est équivalent de dire qu’il existe un réseau E tel qu’on
ait D E < E). La proposition suivante se démontre alors comme 3.4.

Proposition 5.5. Pour que O soit un point singulier régulier, il faut et il
suffit qu’on ait i (D) = 0.

+
Proposition 5.6. Si I'on a M =), M,x?(k>1), on a i (D) < k m;
-k

- pour qu’on ait i (D) < k m, il faut et il suffit que M _, soit inversible.
i Pour démontrer cette proposition, nous allons appliquer la définition 5.3,

A

: A
~avecE = 0™ E; = x~*0™; en remplagant D par x* D, il revient au méme
AN

\ de démontrer P'assertion suivante: I’indice de Papplication x* D : /(\0’" — O™

- est < 0; cet indice est nul si et seulement si M_, est inversible.

Supposons d’abord M _, inversible; pour tout mondme A4 x?, 4 e C™,

- on a (x*D)(AxP) = M _, Ax? + (termes d’ordre > p+1); donc, de
A A

proche en proche, on voit que x*D : 0™ — O™ est bijectif, donc d’indice nul.
: Dans le cas général, prenons un p entier > 0; les arguments de suite
| exacte déja utilisés en 5.1 montrent que I’application précédente a méme
- indice que

A

x*D:mP(0™) - m? (O™ (m, 'idéal maximal de 0).
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Cette derniére application est injective pour p assez grand, puisque

A
ker (x*D, O™) est de dimension finie sur C. Donc son indice est << 0, et il
est nul si et seulement si I’application est surjective. Dans ce dernier cas,

A A A

A
par passage au quotient, I'application x* D de m?(0™)/ m?*! (0™) dans
lui-méme sera encore surjective; or dans la base évidente, la matrice de
cette application est précisément M _,; donc M _, doit étre surjective, donc
inversible. D’ol la proposition.

Signalons pour terminer, sans démonstration, une autre maniére de
définir 7 (D), due a Gérard et Levelt [1]. On prend un réseau E et on forme
la suite de réseaux E, définie par E, = E,...,E, = E,_; ®DE,_, (le
fait qu’on obtienne bien ainsi deux réseaux résulte facilement de la formule

A
D(pF) = ¢ DF + (0p)F, p € 0); posons ensuite E, = E,/E,_;. L’ap-
plication D induit une application surjective D:E, - E, .4, donc
dim ¢ E, est décroissante, et indépendante de p pour p assez grand. On
démontre que cette dimension ne dépend pas non plus de E, et qu’elle est
précisément-égale a i (D).

Supposons en particulier que 0 soit un point singulier régulier: on aura
alors E, = 0 pour p assez grand; en fait, on démontre méme qu’on a
nécessairement, quel que soit E: E, =0, donc DE,,_; < E,,_4; ceci
donne un critére simple pour reconnaitre effectivement si ’on est dans le
cas d’un point singulier régulier (ce critére se trouve déja, au moins impli-

citement, dans Manin [1]. Un critére différent se trouve dans Moser [1]).

§ 6. — POINTS SINGULIERS REGULIERS

Ce paragraphe est en grande partie composé de rappels, empruntés a
Wasow [1]. On pourra trouver un expos¢ plus systématique dans Manin [1].

d A
Traitons d’abord le cas formel;soitD = x i M, avec, M €End (0™)
X

(i.e. M € End (K™), sans pole).
Proposition 6.1. Supposons que deux valeurs propres distinctes de M (0)

ne différent jamais d’un entier. 1l existe alors un et un seul A €End(0O™),
avec A(0) =1 tel que la transformation F = A G ftransforme D en

d
D' = x — — M (0).
dx
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Posons en effet M = Y M, x?, A = ) A,x?, avec 4, = I; on doit
0 0 ‘

résoudre ’équation
dA
x—=MA—-AM,
dx
en égalant les coefficients de x? dans les deux membres, on trouve d’abord

M, A, — Ay M, = 0 qui est vérifié, et ensuite, pour p > 1
(pI —'MO) Ap + Ap MO = @(Ao, ceey Ap—l; Mo, ceey Mp)

On pourra résoudre ces équations par récurrence, d’'une maniere et
d’une seule, en vertu du lemme suivant, qu’on laisse au lecteur a titre
d’exercice.

Lemme 6.2. Soient P e End C? et Q e End C? donnés ; pour que l’équation
PX — X Q = Y, avec X, Y € End (C4, C?) ait une solution X et une
seule quel que soit Y il faut et il suffit que P et Q n’aient pas de valeur propre
commune.

La proposition résulte immédiatement de 13. Remarquons aussi que
I'opérateur différentiel A4 |- x % — M A+ AM, a un point singulier
régulier en O; par suite, en vertu des théorémes de comparaison (ou d’un
résultat classique, dans ce cas particulier), si M est convergente, A sera
aussi convergente.

Montrons ensuite comment on peut ramener le cas général au cas ol
M (0) satisfait les hypothéses de la proposition 6.1; soient 4;,..., 4, les
valeurs propres distinctes de M ; il suffit de montrer qu’on peut faire une
dA

‘ dx
soit sans pole et ait comme valeurs propres (4;—1), 4,,...,4,: en
‘appliquant par récurrence ce procédé, on ameénera les valeurs propres de
M (0) qui différent d’un entier a étre égales.

Par un changement linéaire de coordonnées, on peut supposer qu’on a

M () =<P0

transformation AeGl(m, K) telle que N = A" 'M 4 —x A1

00
propres A,,...,4,, et Q ayant 'unique valeur propre 1,; soient p et g
irespectivement P'ordre de P et 'ordre de Q; on prend avec des notations
iévidentes

i

| 7.0
A =17 .

z KO qu>

-

. xrwr o~ - o~

>, avec P et Q triangulaires inférieures, P ayant pour valeurs
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| P 0 .
En posant M, = ( % P ), on trouve N (0) = ( >; cette matrice est

encore triangulaire inférieure, et a visiblement les valeurs propres cherchées;
d’ou le résultat.

Passons maintenant au cas €% ; nous emploierons les notations suivantes,
dans la fin de ces exposés: & désigne I’espace des germes de fonctions €% en
0 e R, & valeurs complexes (ou a valeurs réelles, dans quelques cas ou ce

A

sera explicitement mentionné); ’application & — @ qui a f associe sa série
A

de Taylor en O sera notée f > f. On pose encore K& = K ® &, espace

0 A

des germes en 0 de « fonctions semi-méromorphes »; ’application & — 0
A

s’étend alors en une application K& — K, et il est bien connu que ces

A A
applications sont surjectives. Si f € K&, f €0, on a f e§ a cause du

lemme élémentaire suivant: soit g €&, avec g (0) = 0; alors J €&. Les
X .

A
f €& qui vérifient f = O seront dites « plates ».

'

Si'onaD =x +1—d—— — M, M a coefficients dans K &, on posera
A A X

D =xk+13—— M,i(D) = i(D); sii(D) = 0, on dira que 0 est un point
x

singulier régulier de D.
La proposition suivante est un cas particulier d’un théoréme qui sera
démontré par la suite.

d
Proposition 6.3. Soit D = x**! i M, avec M € End (K™ keZ
x .

et i(D) = 0; soit Ge K &™ donné; supposons qu’il existe H e K™, avec
A

DH G Alors il existe F € K &™ vérifiant DF = G, F = H, et un
tel F est unique.

I

A

Prenons F, € K&™ tel qu’on ait F;, = H, et cherchons F sous la forme
F, + F,, avec F, plat; on doit aussi avoir DF, = G — D Fy, et le second
membre est plat par hypothése. Par conséquent, on peut supposer qu’on
est dans le cas suivant: G est plat et H = 0 (i.e. on cherche F plat).

Comme une fonction plate le reste aprés multiplication par x'(/eZ),
on peut d’abord se ramener a k = 1; on peut ensuite, au moyen d’une
transformation ¥ = AF ', Ae Gl (m, K &) (ensemble des matrices d’ordre
m inversibles a coefficients dans K &), et en utilisant les transformations
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formelles qui précédent, se ramener au cas o 'ona M = M, + M, M,
constante et M plate.

Enfin, il suffit de trouver F a dr01te de O et tendant vers O ainsi que
toutes ses dérivées en 0 (nous dirons qu’une telle F est « plate a droite en
0 »); on fera ensuite la méme opération a gauche, en changeant x en — x.

Posons alors F = exp (Mylog x) F,;, G = exp (M, log x) G;; il est
clair par I’expression explicite de exp (M, log x) pour M, triangulaire, que
F et F, seront simultanément plates a droite en 0, et de méme pour G et
G,. On est ramené a I’équation

XT —~ N_F, = G,,avec N, = exp (—M,logx) M , exp (M,logx),
X

donc N, est plate a droite en O; en divisant par x, on est ramené au théoréme
d’existence et d’unicité usuel. D’ou la proposition.

d
Corollaire 6.4. Soit D = x P M, avec M € End (K &™), et suppo-
X

sons que O soit un point singulier régulier. Il existe alors A € Gl (m, K &)

d

tel que la transformation F = AF ' transforme D en D' = x T N,
X
avec N constant.
Comme ci-dessus, on peut supposer M = M, + M_, avec M,
constant, M , plat. Considérons alors I’équation
d A
d = M A — AM,, avec 4 a coeflicients dans &, 4(0) = I.
%

Cette ¢quation admet pour solution formelle 7; d’aprés 6.3, elle admet

A

donc une solution A4, avec 4 = [; d’ou le résultat.
On déduit immédiatement de ce corollaire, 'expression générale d’une

‘matrice fondamentale d’un systéme a points singuliers réguliers, et & coeffi-
‘cients €~ au voisinage de 0.

i

§ 7. — LE CAS ¥* : ENONCE DU THEOREME PRINCIPAL

Soit k un entier; soit d’autre part & une fonction de classe €* des
m + 1 variables x et Y = (yy, ..., y,,), définie au voisinage de (0, Y°), et
ey

a valeurs dans R™; notons ¢ son développement de Taylor en (0, Y9).
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A

Théoréme 7.1. Supposons qu’il existe H € O™, a coefficients réels, avec
d A
H(0) = Y°, qui vérifie 1’équation x**1! = @ (x, H). Alors il existe
R X
F €&™, a valeurs réelles vérifiant F = H, x**1 e = @ (x, F).
X

Nous allons d’abord indiquer comme ce théoréme peut €tre déduit d’un
lemme sur les équations linéaires, lemme qui sera démontré dans les para-
graphes suivants. Soient a > 0, et p entier >0; nous désignerons
par B(p;a) Vespace des fonctions f continues sur [0,a] a valeurs
complexes, et telles que x~? f (x) soit bornée sur cet intervalle; on posera

[ f 1 = sup [ x™? f (x)|. Pour feB(p;a)", F = (f1,....fn) on
posera par exemple | F |, = sup | f;|,.
d
Lemme fondamental 7.2. Soit D = x**1 — M, avec M €End (&™)
X

et keZ; on peut trouver leZ,p,eN,eta, >0, possédant les pro-
priétés suivantes: Pour 0 < a < a,, il existe une application linéaire
K : B(py,a)" = B(p,—1,a)™ inverse a droite de D (ie. DK G = G),
et telle que, pour tout p > p,, la restriction de K a B(p, a)™ soit une appli-
cation linéaire continue B (p,a)™ — B(p—1,a)".

Remarquons que I’on peut aussi supposer la norme de K : B(p; a)" —
B(p —1I; a)™ majorée par une quantité indépendante de a (mais non de p),
pourvu qu’on ait supposé p, — [ > 0, ce qu’on fera par la suite; en effet,
supposons K obtenu pour a = a,, €t notons le K, ; pour obtenir un K,

on peut opérer ainsi: soit G le prolongement a ]0, ay] d’'une fonction G
continue sur ]0, a] obtenu en posant G(x) = G(a),a <x <a,; on a
évidemment | G|, = | G|,, et I'on posera simplement K, G = (restriction

a10,a]de K, G).
Montrons comment ce théoréme 7.1 résulte du lemme précédent
(appliqué aux fonctions a valeurs réelles). Comme au § 6, on se raméne

d’aboid au cas ou Y° = 0, H = 0; onaalors ¢ (x,0) = 0, et on cherche
F plat; il suffit de trouver F a droite de O (on le trouvera ensuite a
gauche de la méme manicre, en changeant x en — x); écrivons alors
P(x,Y) =d(x,0) + M(x) Y + ¥Y(x,Y)(Y,Y) avec M € End (&™), ¥
une forme quadratique a coefficients € “(x, Y); on applique le lemme
précédent, et 'on cherche F € B(p,a)™ (p et a a déterminer), solution de
Péquation F = K [®(x,0)+ ¥ (x, F) (F, F)].
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Notons L (F) le second membre de 'équation précédente, et choisissons
p > p,, et vérifiant p — /> 1. Supposons a < 1; on a alors, puisque
@ (x,0) est plat | (x,0)|,+; < C (a), avec C (a) = 0 si a = 0; d’autre
part, si |F |,<<1,ona |F |, <1 donc Y (X, F) est borné, et par suite
on a, avec C indépendant de a:

| (¥ (x, F) (F,F) |, < C|F |3, donc | ¥ (x, F)(F,F) |+, < CalF |

il résulte de 13, et de la remarque qui suit 'énoncé du lemme que, pour a
assez petit, L envoie la boule unité ~ de B” (p, a) dans clle-méme.
Un calcul analogue montre que pour |F |, <1,|G]|, <1, on a

| ¥ (x,F)(F,F) = ¥(x,0)(G,0) |,, <C|F - G|,
d’ou
IT(X,F)(F,F) - lP(xa G)(G5 G) lp+l< Ca IF - Glp

on en déduit que, pour a assez petit, L est contractante sur X; alors I’équa-
tion F = L(F) a une solution et une seule dans X; comme F vérifie

k+1 dF !
X T = @ (x,F) dans ]0,a], F est de classe ¥ sur ]0, a]. Reste a
| X

montrer que F est plate en 0.

Tout d’abord, montrons que x 24 F est borné sur ]0, a], quel que soit
g > p; ceci est vrai pour p, donc par récurrence, il suffit de le montrer pour
g + 1, en supposant le résultat établi pour ¢; or, on a alors F € B(q; a)",
donc ¥ (x, F)(F,F)eB(2q;a)™; a fortiori Y (x,F)eB(qg+!+1,a)™ et,
par hypothése x, @ (x,0)eB(g+/+1,a)"; donc L(F)eB(q+1,a)", ce
qui démontre le résultat; en utilisant ’équation différentielle x**?! - =

X

D(x,0) + M (x)F + ¥ (x,F)(F, F), et le résultat précédent, on voit que

dF
x 8 T est encore born€ pour tout g; en dérivant I’équation, on voit que
X
_, d*F . . :
x ¥ e est encore borné pour tout g, et ainsi de suite. Par conséquent
X

modulo le lemme 7.2, le théoréme 7.1 est complétement démontré.

Proposition 7.3. Si D a un point singulier régulier en 0, le lemme 7.2. est
vrai.

Il est clair que, si le lemme garde un sens lorsqu’on suppose
M € End (K &™), et que d’autre part, on ne change rien (sauf les valeurs
eventuelles de p, et 1) en multipliant D par x? (peZ) et en faisant une
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transformation du type F = AF,, G = AG,, avec AeGl (m, K &).
D’apres le corollaire (6.4), on peut donc supposer k = 1, et M constant;
on peut méme supposer que M est triangulaire inférieure; alors en rai-
sonnant par récurrence, on est ramené a démontrer le résultat lorsque D

est Popérateur différentiel scalaire x P A, A eC; ce cas peut étre laissé
X

au lecteur, (ici, on pourra méme prendre / = 0, mais peu importe).

§ 8. — LE CAS FAVORABLE

La proposition suivante est classique:

Proposition 8.1. Avec les notations du lemme 7.2, supposons k > 1, et
supposons que les valeurs propres 1; de M (0) vérifient Re (4;) # 0. Alors
le lemme 7.2 est vrai avec | = 0.

Démonstration

1) 11 suffit de démontrer la proposition pour M = M (0); en effet,
supposons le résultat établi dans ce cas; soit K° : B(p;a)™ - B(p; a)"

I'inverse a droite de x**! P M (0) (K° dépend de a, mais non de
X

P = Po); on pose alors M (x) = M (0) + x N (x), N € End (™), et on
note L lapplication F— x N K ° F; il suffit de trouver K ', inverse de
I — L, car alors K ° K! = K sera un inverse a droite de D.

Or, pour a < 4, on a |K,F|,<C|F|, (cf. remarque suivant
I'énoncé du lemme 7.2), d’ou, par un calcul analogue a ceux du §7:
|LF|pO < C'a | Fipo; en choisissant a pour qu’on ait C’'a < 1, on voit
que la série K ' = X L" converge dans P'espace des applications linéaires
continues de B (p,; @)™ dans lui-méme.

Montrons par récurrence sur p > p, que K' envoie continusment
B(p; a)™ dans lui-méme; supposons donc le résultat acquis pour p — 1;
I’équation H = K G équivaut & H = G + L H; si G parcourt un borné
de B(p, @)", H parcourt un borné de B(p—1; a)” par hypothése de récur-
rence; donc L H = x NK°® H parcourt un borné de B(p;a)"; donc
H = C + L H parcourt un borné de B (p; a)", ce qui démontre le résultat.

Il est alors clair que K = K ° K ! répond a la question; d’ou la propo-
sition.
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ii) Démontrons maintenant le résultat pour M constant; on peut

supposer M triangulaire inférieure; alors par récurrence sur m, on est

d

r\ o r . , , ey r . . k+1
ramené 2 établir le résultat pour I’opérateur différentiel scalaire x P A,

avec A€C, Rel # 0; posons A = k (u+1iv); la transformation f =
exp (—ivx~¥) f, nous raméne au cas ou v = 0; alors la solution générale

d :
de I’équation x**1 i kuf = g sécrit
X

FO) = i exp [0 —xH]g (d .

Pour u > 0, on choisira x, = a (par exemple x, = 1), et pour u < 0,
on choisira x, = 0; dans les deux cas, on doit démontrer que pour p € N,
et x tendant vers 0, on a

X

[, P Vexp [(u@E ™ =x"9]g®dt = 0(xP)

Faisons la démonstration pour u > 0 (le cas p < 0 est analogue et un
peu plus simple); par le changement de variables s = t7%, y = x7%

plk = g, on est ramené a démontrer qu’on a, pour y = + 0.
v

J sT%exp p(s—y)dy =00y
1
En intégrant par parties, on trouve que le terme tout intégré est de

y
lordre voulu, et il reste a évaluer f s 971 exp p(s—y)dy; supposant

1 y/2 y y/2
¥y > 2, on coupe la derniére intégrale en f et f ; on majore f en y
y 1 y/2 1
remplagant 597! par 1, et _f en y remplagant exp u(s—y) par 1; nous

vz
laissons les détails au lecteur (en fait, en continuant les intégrations par

parties, on obtiendrait un développement asymptotique de lintégrale
envisagée; cela correspond en fait & démontrer le théoréme 7.1 pour I’équa-

tion x**! i kuf = xP, et la solution formelle évidente de cette
équation!). La proposition est donc démontrée.

Corollaire 8.2 (cf. Wasow [1]). Dans les hypothéses du théoréme 7.1,
supposons en outre qu’on ait k > 1, et que la matrice —37; (0, Y®) ait toutes

ses valeurs propres de partie réelle non nulle. Alors le théoréme (7.1) est vrai.
Cela résulte de la démonstration de implication (7.2) = (7.1).
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Remarque 8.3. Dans les hypothéses précédents, et méme dans I’hypothése
. 0P . : : :
plus faible « @ (0, Y°) = 0, 37 (0, Y?) inversible », il exsite une et une

. : d H A
seule série formelle H vérifiant H (0) = Y° et x**! -5 = @ (x, H). Cela
| x

se voit par le méme calcul que le théoréme des fonctions implicites pour

dH )
—— augmente stricte-
dx

les séries formelles (puisque lapplication H — x**1

ment le degré des monOmes).
Donnons maintenant une application des résultats précédents qui
jouera un rdle essentiel dans la suite. '

d
Proposition 8.4. (Sibuya; cf. Wasow [1]). Soit D = x**! i M, avec
b

M e End (™). Supposons qu’on ait une décomposition de M (0) en deux
blocs M (0) = (g 8
par A; (resp p;) les valeurs propres de P (resp de Q) et supposons que, pour
tout (i,j), on ait Re(A;) # Re(u;). Alors il existe A e Gl(m, &), avec

), P € End (C?), Q € End (C9, p + q = m; désignons

d
A (0) = Itel que la transformation F = A F, transforme D en x**1 i N,
x

avec N =<g] ]8 ,,>, N’ e End (67), N" € End (&9).
Posons M =<M“ M12> avec M,, € End (&7), etc.; on cherche a
M21 M22
priori A sous la forme 4 = I +<?4 13 ) , A" (0) = 0, 4" (0) = 0; on doit
. dA , L
avoir x**1 = M A — AN; en égalant les blocs d’indice (11) et (21)
X

dans cette équation, on trouve

”

My + My A =N’

” r” ’ k+ 1 d A”
M21 + M22 A = A N + X _—
dx
En tirant N’ de la premiére équation, on trouve 1’équation suivante
” k+ 1 d A ' r” " ” "
pourA:x T=M21+M22A —A Mll_A M12A.
X

Nous allons appliquer a cette équation la remarque 8.3 et le corol-
laire 8.2 (le fait que notre équation soit a coefficients complexes n’est pas
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génant, il suffirait de séparer les parties réelles et imaginaires); on prend
ici ®(x,A") = My + My, A” — A" My — A" M, A”; on a bien

0P .
®(0,0) = M,;(0) = 0;et W (0, 0) est I'application o> M22 ©0) a —

eM{i;(0)=Qa—aP, ae Hom (C4, C?); le lemme (6.2) montre que
les valeurs propres de cette application sont les u; — 4;, donc ont leur

partie réelle non nulle; la remarque 8.3 donne alors I'existence d’une
A

solution formelle 4”, et le corollaire 8.2 I’existence de A”; on opere de
méme avec les blocs (1 2) et (2 2) pour trouver A’.

Remarque 8.5. Si I'on affaiblit les hypothéses de la proposition 8.4 en
supposant seulement qu’on a, pour tout (;,j) A; # u;, la partie formelle
du raisonnement précédent montre qu’on peut trouver 4, avec 4 (0) = 1,

tel que N soit de la forme N =<N 9 ) . Cela jouera un role important
: 0 N’

dans la suite (en fait, le théoréme (7.1) montrera finalement que la propo-
sition 8.4 reste vraie sous cette hypothése affaiblie; mais, au point ol nous
en sommes, nous n’avons pas encore le droit d’utiliser ce résultat; comme
on va le voir, cela va nous obliger & quelques contorsions!).

§ 9. — DEMONSTRATION DU LEMME FONDAMENTAL

d
A. Démontrons d’abord le résultat pourm = 1;soitD = x**1 y i m,
X

med&; si Rem(0) # 0, cela résulte de 8.1; si k > 1, et m(0) = ik A,
A # 0, la transformation f = exp (—iAx~*) f; nous raméne a m (0) = 0,
donc on est ramené de k a k — 1; par récurrence, on est ramené a k = 0,
1.e. au cas d’un point singulier régulier.

Dans la suite, nous procéderons par récurrence sur m, et supposerons
donc le résultat établi pour 1,..., m — 1.

B. Stk = 0, le résultat est établi par la proposition 7.3. Supposons donc
k > 1, etsoient A4, ..., 4,les valeurs propres distinctes de M (0); supposons
qu’on ait, pour un i au moins Re (4;) # 0; alors le lemme fondamental
résulte de ’hypothése de récurrence; en effet, si pour toutiona Re A; # 0,
~on est dans le cas favorable 8.1; si, pour un j, on a Re A; = 0, on peut

décomposer M (0) par une transformation linéaire en deux blocs (g g)’ les
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valeurs propres de P (resp de Q) étant toutes de partie réelle # 0 (resp = 0);
le lemme fondamental résulte alors de 8.4 et de ’hypothése de récurrence.

C. Supposons maintenant k > 1, et supposons que les valeurs propres
de M (0) vérifient toutes Re A; = 0. On appelera « systéme standard » un
tel systeme, muni d’une décomposition du type suivant: on suppose donnée

une partition de {I,...,m} en sous-ensembles {I,...m;}, {m; + 1,

cea Mg+ Myl my + oo my_q,o + my + L+ my, = m}

avec my,...,m, # 0, tel que, dans cette décomposition, les termes non
A

diagonaux de M soient nuls («les termes de couplage entre les différents
blocs sont plats »). A un tel «systéme standard », on associe les deux
entiers C (D) = m — p (son « couplage ») et i (D), son irrégularité; on a
0 << C(D)<m—1,et C(D)= 0 signifie que tous les m; sont égaux a 1;
d’autre part, en posant :

M,. 0
M = - Dot 4y
: dx 2

J
A

0 M
A
on a facilement i (D) = 2 i(D)).
On ordonne les couples (C,i) lexicographiquement, i.e. on pose
(C,H<(CLiYsiC<C'ouC = C',i<i. Pour démontrer le lemme
fondamental, nous allons faire une seconde récurrence sur (C, i), et plus
précisément démontrer le résultat suivant.

p

Lemme (C,i). (On suppose toujours m fixé, et le résultat démontré pour
m < m).

Soit i > 0, et supposons le résultat déemontré pour les systémes standard
D avec (C (D), i (D)) < (C,i). Alors, le résultat est vrai pour les systémes
standard D vérifiant (C (D), i (D)) = (C, i).

Par récurrence, on sera ramené au cas ou i (D) = 0, c’est-a-dire au cas
des points singuliers réguliers, cas réglé par la proposition 7.3.

D. Restons dans la situation précédente, et supposons qu’une des
valeurs propres 4, d’un des M; (0), disons de M, (0) soit # 0. Deux cas

sont alors possibles. 1) Si M, (0) a deux valeurs propres distinctes d’aprés

la remarque (8.5) on peut décomposer le systéme D, ; par ce procédé, on
a diminué C (D).

2) Si toutes les valeurs propres de A, (0) sont égales a Ay = ik p,
(ueR—{0}), on fait la transformation F; = exp (—iux™*) Fj, F, =
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F5 ..,F,=F, (enposant F; = (f3,..., '2'1) etc.); alors on ne change
A A A

. , i A
pas D,, ..., D,, et on a remplacé D, par D; = x**! e (M, —A);

on n’a donc pas changé C (D) et, d’aprés la proposition (5.6), on a diminué

A A
i(D,), donc i (D) = X i(D;). Dans les deux cas, on a démontré (C, ).
Notons que ce procédé permet, en particulier en raisonnant comme en
A et B de démontrer (0, i) par récurrence descendante sur i (formellement,
cette remarque n’est pas indispensable pour la suite).

E. Reste a régler le cas ol les M (0) sont tous nilpotents. Nous allons
faire une transformation (« transformation de Turrittin-Katz », voir
Deligne [1] ou Katz [1]) qui élimine ce cas. Pour plus de clarté, expliquons
d’abord en quoi consiste cette transformation lorsqu’on a p = 1. Comme
on I’a déja observé en démontrant la proposition 7.3 on peut multiplier D
par une puissance de x, et faire sur D une transformation du type F =
A F,, avec 4 € Gl(m, K¢&); en particulier, en utilisant le théoréme (3.1)

(avec K au lieu de K), on peut supposer que 'on a D = x T M, M
b
ayant la forme suivante
0 1 | 0
M =]~ ' ‘ avec ;e K &
0 . 0 1
——;“1 ﬂvm—l A‘m—
Faisons alors la transformation suivante
f1=x""gy, fo=x"""gs .o fu=x""g,. r>04a déterminer;
le systéme devient G > x"*! i N G, avec N donné par la formule
X
suivante
—r x' 1 0 ]
N =
0 . :
(m—1rx" 1

A
— A X™ Ay X7 (A +mr) x" —
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Si les A; n’ont pas de podle, on est dans le cas régulier et ’on prend
r = 0; sinon, en choisissant r satisfaisant aux inégalités qui suivent, on
¢limine les poles:
—v(A)<mr,..., —v(d,) <r.

Pour obtenir une partie principale d’ordre O non nilpotente, il faudra

- v (4; : : o
alors choisir ¥ = sup | — ——(—’—)—— ; si r est entier, cela va bien, sinon,
m—j+1
on pose r = —, et on fait le changement de variable x = »? (ce qui ne géne

pas pour démontrer le lemme fondamental); combiné avec la transformation

précédente, on arrive finalement & une équation G - y'*? T P, avec
v ,

P € End (&™), et P (0) ayant la forme suivante
— 0 1 0

P(O) =| . . .
0 ...0 1
o d, .. .d,, d,

avec d; = lim A; (x) x’*; donc certains d; sont # 0; comme I’équation
r—0

caractéristique de P(0) est A" = d, A" ! + ... + dy, P(0) est non nil-
potente.

Observons enfin ceci: si toutes les valeurs propres de P (0) sont confon-
dues, leur somme d,, est # O; par suite onar = — v (4,,), donc r est entier
et I’on peut prendre g = 1.

A A

Revenons maintenant a la situation générale: a D,,..., D, corres-
pondent respectivement des rationnels ry,...,r,, 'un au moins étant
> 0, (sinon on est dans le cas régulier); on prend alors r = sup (ry, ..., ),

et on fait simultanément la transformation de Turrittin-Katz avec cette

A A
valeur de r sur Dy, ..., D,, joint au changement de variabley = x?(r = —);
d A
A N, O
on a alors remplacé D par D’ = y'*!'— — N,avecN =("' . },l'une
) dy 0 N,

au moins des matrices N; (0) étant non nilpotente.
On est alors dans le cas B, le cas D, ou le cas D,; dans le cas B, le
résultat suit par récurrence sur m; dans le cas D,, on diminue C (D); dans
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le cas D,, d’aprés la remarque précédente, r est entier, donc le procédé
donné en D, diminue i (D).

Le lemme (C, i) et donc aussi le lemme fondamental, est ainsi compléte-
ment établi. |

Remarque. Au lieu de faire une récurrence sur lirrégularité i (D), il
aurait été tout aussi naturel (et méme encore plus) d’utiliser a priori « lir-
régularité de Katz », i.e. le nombre r qui vient d’€tre introduit et qui mesure
I’ordre minimum des pOles a considérer (voir a ce sujet Gérard-Levelt [1],
et un article a paraitre de Levelt).

§ 10. — APPLICATIONS

A. Le théoréme 7.1 entraine le théoréme suivant, en apparence plus
général :

Théoréme 10.1. Soit ® une fonction de classe € des 2 m + 1 variables

b

X, Y = (Pis eoes V), € Z = (24, ..., 2,) au voisinage de 0,Y° Z° a

~valeurs dans R™; supposons qu’il existe une série formelle H € O™ (& coeffi-

dH A dH
cients réels) vérifiant H (0) = YO, T (0) = Z° et & (x, H, T) = 0;
X X

0P dH _ A
supposons enfin que la matrice 57 (x, H (x), T) soit inversible sur K

(i.e. appartienne a Gl (m, K)); alors, il existe F € &™, a valeurs réelles véri-
A dH
fiant F = H,®(x, H, d—) == .
X

La réduction de ce résultat au cas (7.1) se fait suivant une méthode
habituelle dans des questions voisines.

a) On traite d’abord le cas ou I'on a ¢ (x, Y, Z) = ¥ (x, Y)Z —
x (x, Y), ¥ une matrice d’ordre m a coefficients ¥* ; pour cela, on se raméne
aucas ol H = 0,donc Y° = Z° = 0; on a alors la situation suivante:
x (x, 0) est plat, et ¥ (x, 0) est inversible dans K &; il existe donc M e
End (6™) et k e N tel qu’on ait M ¥ (x, 0) = x* I; posons alors F = x* G;
on a M ¥ (x,xG) = x*¥, (x,G), avec ¥, (x,0) = I, donc ¥, (x, Y)
inversible au voisinage de (0, 0) dans les matrices & coefficients €* ; on a

aussi M y (x, X*G) = x* y, (x, G), avec y, de classe ¥*; on est alors
ramené a ’équation




174 —

¢ —kx*"1G + P71 (x, G) gy (x, G)

|

b) On rameéne le cas général au précédent, par dérivation, en remplagant
I’équation initiale par le systéme

dF G =0
dx B

al}’( FG)+6'P( F,G)G 8‘!’( FG)dG 0
— \X, I’ — X, I, Py s & s - =
3 x PR% Tz dx -

B. Dans le cas linéaire, on a le théoréme suivant

dF
Théoréeme 10.2. Soit D = x* = M F, avec ke N, M € End (6™);
X

soit @' I’espace des germes de distributions en O dans R ; alors,ona D &' = &’

Soit a > 0, assez petit, et soit I I'intervalle [ —a, a]; par dualité, il suffit
de démontrer que l'application D’ : 97 — 27 est d’image fermée (Z;
désignant I'espace des fonctions de classe ¥* a support dans I); d’apres
un lemme classique puisque 2, est un espace de Fréchet, il suffit de démontrer
que D’ 97 est de codimension finie dans &7 ; soit E I’espace des F € €* (I)™
telles qu’on ait D' F < 27 ; d’aprés le théoréme d’existence et d’unicité
usuel, 9" est le sous-espace de E formé des F telles qu’on ait F (-a) =
F (a) = 0, donc 27 est de codimension finie dans E, et il suffit de démontrer
que D’ E est de codimension finie dans &;; or, le théoréme 7.1, joint au
théoréme usuel de prolongement des solutions d’une équation différentielle

A A A

montre que D’ E est ’ensemble des F € &7 tels qu'on ait F € D' 0™; ceci

A A

joint au fait que D’ : 0™ — (O™ est a indice (proposition 3.6) et a la surjec-
A

A

tivité de I'application  : &, — 0, entraine le résultat cherché.

C. Le théoréme 7.1 a été démontré indépendamment par Kouznetsov [1]
qui en a donné une intéressante application a I’étude des « formes normales »

des systémes différentiels. Disons qu'un systétme D = x Pl M,
X
-1
M € End (K ™) est «élémentaire» si 'on a M = X A,xP1 + M,,
=k
avec M, € End (C") et 4, e C; on a alors le résultat suivant:
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d m
Théoréme 10.3 — (Kouznetsov). Soit D = x rri M, M €End (K&™)

un systéme différentiel. Par un changement de variables x = y* (q entier
> 0) suivi d’une transformation F = A F;, AeGl (m, K &), on peut
réduire D a la forme « diagonale »

D, O

0 D

p

~ les D; étant élémentaires.

Indiquons rapidement comment ce résultat peut se démontrer; tout

- d’abord, le théoréme 7.1 permet de se réduire a démontrer le résultat
~ analogue dans le cas formel, c’est-a-dire dans le cas ou ’on remplace dans

A A

- Iénoncé précédent & par 0, et K& par K. Dans ce dernier cas, le résultat
. d0 & Turrittin, peut se démontrer par les mémes arguments que ceux employés
. au§ 9; d’ailleurs, ici, les choses se simplifient; il suffit d’une double récurrence

!

B ST L s AR a5 i DT T B TR B S e

~ sur m d’une part, i (D) (ou mieux encore, l'irrégularité¢ de Katz) d’autre

part; nous n’entrerons pas dans les détails.

Soit enfin 4 un secteur angulaire fermé de sommet 0 dans C, de mesuer
angulaire u (4); désignons par o7 (4) I’espace des germes en 0 de fonction
%> sur A, et holomorphes dans I'intérieur de 4. D’apres Turritin et Wasow,
les théorémes 7.1 et 10.3 sont encore vrais lorsqu’on y remplace & par
o (4), et K& par K ® o (4) pourvu que u (4) soit assez petit (pour le

0

. : T s 1. .
théoréme 7.1, il suffit qu’on ait p(4) < T ); & vrai dire, ces auteurs travaillent

avec des « fonctions holomorphes dans un secteur ouvert, admettant un
développement asymptotique en 0 », et non avec .« (4), mais le lecteur
vérifiera facilement qu’il s’agit 1a d’une modification inoffensive.

La démonstration, sous ces nouvelles hypothéses, est presque la méme
que la précédente, et méme plus simple: en effet, on démontre directement
8.2 sous T'’hypotheése « A; # 0» (voir Wasow [1]); pour établir 7.1, on n’a
alors plus besoin de « systémes standard », et il suffit d’'une double récur-
rence sur (m, i (D)). La démonstration ainsi esquissée est d’ailleurs celle
que donne Wasow a la simplification prés qu’apporte la transformation de
Katz. Quant aux énoncés relatifs au développement asymptotique des
solutions d’une équation différentielle, ils sont une conséquence facile de
cette version du théoréme 10.3; nous laissons cette question au lecteur.
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