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SUR LES POINTS SINGULIERS
DES ÉQUATIONS DIFFÉRENTIELLES

par Bernard Malgrange

Introduction

Le présent article reprend, à quelques modifications près, une série

d'exposés faits au séminaire Goulaouic-Schwartz en mars 1972. Le début

est consacré à l'étude de l'indice analytique et de l'indice formel d'un
opérateur différentiel, et à leur comparaison; les résultats sont très élémentaires,

et il est d'autant plus surprenant que, à la connaissance de l'auteur, ils ne

figurent pas dans la littérature classique consacrée aux équations
différentielles. Signalons à ce propos que le théorème de l'indice analytique a

été démontré indépendamment par H. Komatsu [1]. La fin de l'article a

davantage un caractère d'exposition: il s'agit, au fond de reprendre les

résultats sur les développements asymptotiques de Turritin, tels qu'ils sont
exposés dans Wasow [1], en utilisant l'importante simplification apportée

par N. Katz [1] dans ce genre de questions. Pour rendre l'exposé plus
« original », nous avons préféré travailler avec les germes de fonctions C00,

plutôt qu'avec les développements asymptotiques de fonctions holomorphes
dans des angles assez petits, comme le font Turritin et Wasow à la suite
d'autres auteurs. La transposition de la méthode suivie ici à ce dernier cas
se fait sans difficulté, et nous nous contenterons de l'esquisser à la fin du
paragraphe 10.

§ 1. — Comparaison séries formelles — séries convergentes
(cf. Malgrange [1])

On pose 0 C { x }, les séries convergentes d'une variable les germes
A

de fonction holomorphe en 0 e C ; GC [[x]] les séries formelles à une
A

variable ; enfin KetKdésignentrespectivement le corps des fractions de
A

et celui de & (en particulier, K est le corps des germes en 0 de fonctions



A +00

méromorphes). Pour f eK, on peut écrire f — YafpxP> fpe^-> les fp
— oo

étant nuls pour p < p0; on note v (/) le plus grand p0 possédant cette

propriété.

£ dP
Considérons un opérateur différentiel D ^ a p ^ avec a p e G

(Q ^p^m), et am =# 0. On a d'abord le résultat suivant

Proposition 1.1. L'application D : (9-+ (9 est à indice; son indice noté

X (D, (9) est égal à m — v (am).

Rappelons qu'une application linéaire u: E -> F {E, F, espaces vectoriels

sur C) est dite « à indice » si son noyau et son conoyau sont de dimension

finie; l'indice de u, qu'on notera x (u) (ou X E, F) ou toute autre notation
analogue) est par définition le nombre dim ker u — dim coker u.

Démonstration. Soit Ar c C(r>0) le disque fermé: | x | < r. Pour

p entier > 0, on note Bp (Ar) l'espace des fonctions sur Ar à valeurs complexes,

de classe et holomorphes sur Ar \ c'est un sous-espace fermé de #p (Ar),

ce dernier espace étant muni d'une quelconque des normes équivalentes
usuelles.

Choisissons r assez petit pour que les ap soient holomorphes au voisinage
de Ar, et pour que am ne s'annule pas dans Ar — {0}.

Lemme 1.2. L'application D: Bm (Ar) -> B° (Ar) est à indice, et son

indice est égal à m — v (am).
dm

En effet, écrivons D am h D ; comme Dr est de degré < m — 1,
mdxm

le théorème d'Ascoli montre que l'application D': Bm{Ar) ->B°(Ar) est

compacte. D'après les théorèmes connus de perturbation des opérateurs à

dm
indice, il suffit donc d'établir le résultat pour D remplacé par am cela

dxm

se fait immédiatement en factorisant cette dernière application par
d d d

Bm (Ar)Jr, Bm-1 (Ar) Lu •• Lu B° (Ar) —^ B° (4)
et en utilisant l'additivité de l'indice par composition.

La proposition se déduit aussitôt du lemme précédent, en utilisant le

fait que (9 est la limite inductive des Bp (Jr), pour r -> 0.

Passons maintenant au cas des séries formelles.
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A A

Proposition 1.3. L'application D : G — G est à indice, et l'on a

X(D, G) sup [p-v(apy]

Posons en effet n sup [p — v (ap)]; onav (ap) > p — n, avec égalité

pour certaines valeurs dep, disonsp eP : pour toutp, ona^ — bp,

avec bp e (P, et bp (0) # 0 pour peP.
Soit k un entier > n ; on a

xk k (k -1). (k —p + 1) b (0) xk n + (termes d'ordre > k — n)
dxp

d'où D xk Yjk(k — 1)... (k —p +1) bp(0) xk~n + (termesd'ordre > k — n);
peP

pour k assez grand, disons k > k0 le coefficient de xk~n dans l'expression
précédente est ^ 0, puisque c'est un polynôme en k dont le terme dominant
bq (0) kq (q sup P) est non nul.

On déduit de là, par un calcul de récurrence sur les coefficients que pour
A A

k > k0 et g c G donné, avec v (g) > k — n, il existe un unique / e G

A
vérifiant v(f) > fc, Df g; autrement dit, en désignant par rrt l'idéal

A
maximal de G, on a un isomorphisme

D:mk mk~n (k>k0).

La proposition résulte immédiatement de là, par exemple par un argument

de suite exacte.
A A

Considérons maintenant la suite exacte En
appliquant D à chacun des 3 facteurs, on trouve une suite exacte de

complexes ; d'où une suite exacte de cohomologie.

0 ker (D, G) ker (D, G) kerD, G/g) -> coker(D, G) ->

coker(D, G) -> coker(D, G/q) -> 0

Le troisième et le sixième terme de cette suite exacte donnent donc les
A

obstructions pour que les flèches ker (D,-+ ker (£>, 0) et coker ->
A

coker (D, &)soientdes isomorphismes. Le théorème de comparaison est alors
le suivant

A
Théorème 1.4. On a 1) coker (D, G/q) 0,

A
2) dim ker (D, &l&) sup [p-v (ap)] (am).
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L'assertion 1) signifie que, pour tout / e&, il existe g e G et h e 0 avec

f — D g + h; or, la démonstration de la proposition 1.3 montre qu'il
suffit de prendre un h tel qu'on ait v(f — h)^k0 — n; par exemple il
suffit de prendre pour h la somme des termes de degré < k0 — n de /.

L'assertion 2) résulte alors immédiatement des propositions 1.1 et 1.3;
d'où le théorème.

A
Pour qu'on ait ker (D,0/(p) 0, et par conséquent, pour que les

A A
flèches ker (D, 6) -» ker (D, G) et coker (D, G) -> colter (D, G) soient
toutes deux bijectives, il faut et il suffit qu'on ait m — v(am) sup [p —

^(ap)], autrement dit qu'on ait, pour tout p, v (ap) ^ v (am) + p — m.
Or c'est précisément la définition classique des points singuliers réguliers.
Cela nous conduit à la définition suivante

Définition 1.5. On appelle « irrégularité de D (en 0) » le nombre

i(D) sup [p-v(ap)] - [m-v(aj].Un exemple classique (Euler) de point singulier irrégulier est le suivant:
d f

on prend D f x2 /; posant f0= Y n xn+1, on a D / x;d x
on a ici i (D) 1, donc la classe de f0 modulo (9 est une base de

ker (D, O/gj).

Remarque 1.6. La proposition 1.1. montre en particulier qu'on a

dim ker (D, G) > m — v (um), ce qui est un théorème classique de Perron.

Remarque 1.7. Soit Q un ouvert connexe de C, et soit D > a un
o d xp

opérateur différentiel à coefficients dans,?f (£2), l'espace des fonctions
holomorphes dans Q. Supposons qu'on ait b1 dim H1 (0,C) < + oo et que
le nombre v (<am, Q) des zéros de am dans Q (compté chacun avec son ordre)
soit fini. On a alors le résultat suivant: l'application D (Q) (Q) est

à indice, et l'on a (£2)( m(l— b1) —v(am,Q).
Cela peut se voir par exemple d'une manière analogue à la proposition 1.1

en approchant Q par une suite convenable de compacts Kt à bord régulier
et en étudiant l'application D : Bm (iQ -> B° (Kfi

On peut aussi opérer ainsi : soit Z l'ensemble des zéros de am, et posons
Q* Q — Z ; sur £2*, la suite de faisceaux

0->ker(D,jr)-> 0
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est exacte et ker (D,MJ)est localement isomorphe à Cm (théorème d'existence

et d'unicité usuel) ; par suite l'application *) -» (D *) a pour
indice m(l -h*), h* dim H1 (ß*, C).

D'autre part, pour chaque a e Z, soit Aa un disque ouvert centré en a,

avec Aae Q,Aan Ab <f>si ab.Comme1 0, on a

X (Q*)/# (ß) ä © M(A *)\*eavec A* Aa-{a}.
aeAa

On a x (D9j^ (A *)) 0 par le raisonnement précédent, et x (D9Jéf (Aa))

m — v(am9a) (par passage à la limite projective, à partir de 1.2.) On

conclut alors en utilisant la suite exacte

0 (ß) (ß*) (ß*)/^ (Q) -» 0.

§ 2. — Autres théorèmes de comparaison

Nous reprenons les hypothèses de la proposition 1.1.

Théorème 2.1.

a) L 'application D : K -» K est à indice et l 'on a x (d), K) — i (D).
A A A

b) L 'application D : K - K est à indice, et l'on a x (A K) 0.

c) On a coker (Z), K /K) 0 et dim ker (Z), K /K) i (D).
A A

L'assertion c) résulte de 1.4 et de l'isomorphisme naturel G/q 2» K /g.
Les assertions a) et b) vont résulter du lemme suivant :

Lemme 2.2. L'application D : Kjq -> Kjq a pour indice — sup [p — v (flp)].
Désignons en effet par K_p l'ensemble des éléments / de K, avec

v (/) > — p; un calcul analogue à celui de la proposition 1.3 fait avec les

puissances négatives de x montre qu'on a, avec n sup [p — v (ap)] :

DK_p a ZcLp_„, et que, pour p assez grand, l'application D :K/K_p
K\K_p_n est un isomorphisme. Le lemme en résulte immédiatement.
L'assertion a) résulte alors de 1.1 et 2.2 en utilisant la suite exacte
0 G K K I q 0; l'assertion b) résulte de manière analogue de

A
1.3 et 2.2, et de l'isomorphisme K/q 2> K/@.

Soit Sn l'espace des fonctions holomorphes dans la couronne
0 < | x | < r, et S — u Sr. On a le résultat suivant (cf. Deligne [1],

prop. II.6.20). r>0
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Théorème 2.3. Même énoncé que 2.1 avec K remplacé par S.

L'assertion a) coïncide avec celle de 2.1. D'autre part, il résulte de la

remarque 1.7 que r assez petit, on a x(D,5r) 0; le fait qu'on ait
X(D, S) 0 s'en déduit par passage à la limite inductive.

Pour démontrer l'assertion coker (D, S/K) 0, il suffit de démontrer
ceci: désignons par Kr le sous-espace de Sr formé des fonctions méro-

morphes en 0; alors, pour r assez petit, on a Sr D Sr + Kr; or cela

résulte du fait que Kr est dense dans Sr (muni de sa topologie usuelle de

Fréchet) et de ce que D Sr est de codimension finie dans Sn donc fermé

d'après un lemme classique.
L'assertion «dim ker (D,S/K) i(D)» se démontre alors en

utilisant les précédents et la suite exacte de cohomologie, comme l'assertion

1.4.2; d'où le théorème.

àfPar exemple, si D f =x — — /, une base de ker (D, S /K) est
dx

fx e~1/x; comme fl provient d'un élément de ker (D, S) l'application
coker (D, K) -> coker (D, S) est ici bijective.

§ 3. — Extension aux systèmes

Il sera commode ici de prendre les systèmes d'abord sous la forme
d F A

F x M F F e Km (ou Km, ou S m), M matrice carrée à coeffi-
dx

cients dans K [on écrira: M e End (Km)].
Soit A e Gl (m,K), i.e. A e End (Km), A inversible; la transformation

dG
F A G transforme D en D' avec D' G x N G, N

d A
— A'1 M A — x A"1 Rappelons le résultat suivant (voir Deligne [1]

dx
lemme IL 1.3).

Théorème 3.1. Il existe A g Gl (m,K) tel que N ait la forme suivante

0 10 .0
N

0

An lm — 2 "m- 1
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Soit alors Al'opérateur différentiel défini par

A f ôm f-Am_i 5m_1 f - X0f, avec
d

d x
il est immédiat que D' est « équivalent » h A et, de façon plus précise, qu'on
a le résultat suivant :

Considérons le diagramme

d

avec u (/) « (/0,. /m_i), v(g) (0, 09g); alors ce diagramme
induit un isomorphisme entre le noyau de A et le noyau de D' d'une part, le

conoyau de A et le conoyau de D' d'autre part; le même résultat est encore
A

vrai avec K remplacé par K, S, etc.

Définissons alors l'irrégularité de A par la formule i (A) i (xkA),
k un entier tel que xk A soit à coefficients holomorphes. Cela ne dépend
visiblement pas de k, et on laisse le lecteur vérifier la formule suivante

(3.2) i(A) sup (0, sup (Ap))

Définissons ensuite l'irrégularité de D par i(D) i(A). Les
théorèmes 2.1 et 2.3 entraînent immédiatement le résultat suivant

Théorème 3.3.

a) L'application D : Km -» Km est à indice et l'on a K) — i (D).
A A A

b) L'application D : Km -> Km est à indice et l'on a x (D, K 0.
A A

c) On a coker (D,K'"I Km) 0 et dim ker (D, K m/K m) i(D).
A

d) Mêmes énoncés avec K remplacé par S.

Ce théorème montre en particulier, que i (D) ne dépend que de D, et
non pas du choix de A dans 3.1 ; nous donnerons une démonstration
algébrique de ce résultat dans le prochain exposé.

Rappelons maintenant que, suivant une définition classique, l'origine
est un point singulier régulier de D s'il existe un A e Gl (m, K) tel que

d A
N A 1 M A — x A 1 n'ait pas de pôle. Cela est classiquement
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équivalent à la propriété suivante: n'importe quelle détermination d'une

(ou de toute) matrice fondamentale de P est à croissance polynomiale en -x
au voisinage de 0; ceci équivaut encore au fait qu'on a P Q exp (Clog x),
avec Q à coefficients méromorphes, i.e. Q e Gl (m, K).

Proposition 3.4. Pour que 0 soit un point singulier régulier de D il faut
et il suffit qu 'on ait i (D) 0.

Supposons qu'on ait i (D) 0, et soit A comme au théorème 3.1 ; alors

i(A) 0, donc, d'après la formule 3.2, les Xp n'ont pas de pôle; donc N
n'a pas de pôle.

Pour démontrer la réciproque, nous utiliserons le lemme suivant.

Lemme 3.5. Supposons que M n \ait pas de pôle ; alors l 'application
A A

D : (9m (9m est d \indice nul.

La démonstration est analogue à celle de la proposition 1.3. Soit Fk un
vecteur de Cm; on a D (Fkxk) [kl — M (0)] xk + (termes de degré > k);
pour k assez grand, disons k > fc0, kl — M (0) est inversible; de là, il
résulte que l'application D : mk((9m) ->mk((9m) est bijective pour k > k0.
Le lemme en résulte immédiatement.

Sous la même hypothèse que M n'ait pas de pôle, la proposition 3.6,

ci-dessous, montre que D : (9m -> (9m est encore d'indice nul; donc, l'indice

de D : (9m / (9m -> (9m / (9m est nul; en vertu de l'isomorphisme (9 / (9 K / K,
le théorème 3.3 c) nous montre alors qu'on a i (D) 0; d'où la proposition.

Par la suite, il sera nécessaire aussi d'envisager des systèmes sous la
forme un peu plus générale suivante: H étant une matrice diagonale à

„ dF
coefficients entiers (/2A, ^zm) on pose DF =x MF, avec

d x
M g End(Km). Par définition, on prendra i(D) i(xT~HD), moyennant
quoi le théorème 3.3 est encore vrai pour D.

On a aussi la proposition suivante.

Proposition 3.6. Si M est sans pôle, et les h{ positifs, alors D : (9m (9m

A A

a pour indice (h1 + + hm — m) et D : (9m -» (9m a pour indice

i(D) + (h1 + +hm-m).
La première assertion se démontre comme la proposition 1.1. La seconde

résulte de là, du fait que le théorème 3.3 s'applique à D, et de l'isomor-
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phisme (9/(9 -> K /K. A noter aussi que, d'après la première assertion, on

a dim ker (D, (9m) > + + hm - m (théorème de Perron pour les

systèmes).

§ 4. — Remarques diverses

a) Equations dépendant d'un paramètre

La théorie des équations différentielles dépendant d'un paramètre

présente de nombreuses difficultés. Nous donnerons seulement ici un
énoncé simple, qui « relativise » la proposition 1.1, et cela sans chercher les

hypothèses minimum nécessaires. Soit Z une variété analytique complexe

connexe, et soit D l'opérateur différentiel « dépendant du paramètre z e Z » :

m dp
D 2>p TZipejf(AxZ), A le disque unité ouvert; supposons

o d xp

am A 0; soit V cz A x Z l'ensemble des zéros de am9 et supposons que
la projection V -» Z induite par la projection naturelle n : A x Z -» Z soit

propre. Soit le complexe 0-»^fJxZ->jfjxZ-»0, avec j^ZxZ désignant
le faisceau des fonctions holomorphes sur A x Z.

Proposition 4.1. Le complexe est à cohomologie z-cohérente.
Autrement dit, les faisceaux associés aux préfaisceaux U -»

ker x U)) et U -» coker (A x 17)), U ouvert de Z, sont

^fz-cohérents. Esquissons la démonstration: on peut, en restreignant Z,
supposer que V est contenu dans Ar x Z, avec 0 < r < 1, Ar le disque
fermé de rayon r; prenons r' vérifiant r < r' < 1. On démontre facilement,
à l'aide du théorème d'existence, d'unicité, et de dépendance d'un
paramètre pour les équations différentielles que le préfaisceau associé au faisceau
U (ker D,jf(A x U)) [resp. U K (coker D,j4?(A x l/))] est isomorphe
au noyau (resp. ou conoyau) du morphisme de faisceaux z (Bm(A rd) D

>

z(ß%dr/)), ici, E étant un Banach, on note J^Z(E) le faisceau des

fonctions holomorphes sur Z à valeurs dans E. Nous sommes alors ramenés
à la situation classique de perturbation analytique d'un opérateur à indice
dans des espaces de Banach; d'où le résultat.

On a aussi des énoncés analogues avec par exemple Z espace analytique
ou espace topologique séparé, ou variété différentielle (dans ces deux
derniers cas, il faudrait remplacer l'énoncé, comme d'habitude en
géométrie analytique relative, par un énoncé de pseudo-cohérence pour
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R 7i% (jf); voir divers articles consacrés aux images directes en géométrie
analytique: Kiehl, ou Forster-Knorr, à paraître aux ïnventiones, ou la
thèse de Houzel à paraître quelque part; nous n'entrerons pas dans les

détails).

b) Equations non-linéaires

Soit <P une fonction holomorphe sur A x U, A le disque unité

ouvert, U un ouvert de Cm+1; une solution de l'équation (.E):

#(x,/, /', ...,/(m)) 0 dans A est une fonction / holomorphe sur A,
telle que l'application x -> (/(x), /(m) (x)) soit à valeurs dans U,

et telle qu'on ait identiquement $ (x, /(x), /(m) (x)) 0. Nous

nous proposons d'examiner très rapidement des questions du type
suivant: dans quelle mesure peut-on «paramétrer naturellement» les

solutions de (E) par les points d'un espace analytique (la notion de «

paramétrage naturel » se définit ici, comme d'habitude dans ce genre de

problèmes, par la représentabilité d'un foncteur facile à définir; nous laisserons

le lecteur expliciter).
Nous examinerons seulement la possibilité de « paramétrer » les solutions

voisines d'une solution f0 donnée; par définition, les points singuliers

(E) en f0 sont les points singuliers de l'équation linéarisée en /0, i.e. les

d $
points x vérifiant (x, /0(x),...,/(oKx)) 0- Nous supposerons que

8ym
" /

/0 n'est pas une « intégrale singulière », c'est-à-dire qu'il existe des points
non singuliers.

Soit d'abord r, avec 0 < r < 1, tel que le cercle { | x | r} ne
contienne pas de points singuliers. L'application qui à / fait correspondre

(x,/,...,/(m)), qu'on notera / W (f) est alors une application
analytique définie sur un voisinage de f0 dans Bm (Ar), à valeurs dans

d V
B° (Ar); comme l'application (/0) est à indice, d'après une variante de

Ô f
la proposition 1.1, des raisonnements connus montrent que l'espace
analytique banachique iF~1 (0) est, au voisinage de /0, de dimension finie

(cf. Douady [1]); cela paramètre l'ensemble des solutions de (E) dans

Bm(Ar), voisines de /0. Il est facile aussi de voir que la dimension f0 du

germe de cet ensemble est comprise entre m et l'indice de l'équation linéarisée

^(/o): Bm(Ar)->B°(Ar)
o f
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et que ce dernier indice est égal à mle nombre des zéros dans

4 de T~(x>/o,->/o(m))-
oym

Soit maintenant r quelconque, avec 0 < r < 1. Pour r' > r, assez voisin
de r, le cercle | x \ — r' ne contiendra pas de points singuliers de (E) en /0.
On pourra alors faire la construction précédente, et obtenir un germe d'espace

analytique; pour tous les r' assez voisins de r, ces germes coïncident, en

vertu du résultat suivant; il existe r0 > r possédant la propriété suivante:

pour tout r\ avec r < r' < r0, on peut trouver g(r') > 0 tel que toute /
o

solution de (E)dans Ar-, et vérifiant sup | / (x) — /0 (x) | < e (r') se
I X 1 ^ I"

o

prolonge en une solution de (E) dans Aro (Cela se déduit facilement des

résultats sur la « dépendance des conditions initiales ». dans le théorème
d'existence et d'unicité). Cela nous définit un germe d'espace analytique
paramétrant les solutions voisines de f0 dans 2/d (dr); en particulier, cek

vaut pour r, 0, i.e. pour les solutions voisines de f0 dans 0.

Il faut noter cependant que le résultat précédent n'est guère satisfaisant,
d'une part, les solutions d'une équation différentielle non-linéaire ont en

général des domaines d'existences variables, et non univalents, ce qui rend
le problème considéré un peu artificiel. D'autre part, le germe qui vient
d'être construit, est bien universel en f0 ; mais il peut ne pas être universel
aux points voisins, à cause de l'existence des singularités mobiles (par contre,
s'il n'y a que des singularité fixes, on peut voir que ce canular ne se produit
pas).

§ 5. — Irrégularité d'un système différentiel formel

d A
Soit D xk+1 M, avec M eEnd(Km), ke;Z on va définir

dx
l'irrégularité de D par une adaptation des calculs des § 1-3. Tout d'abord
on se ramène h k 0 en posant pour le Z : i(xlD) i(D). Dans toute
la suite du paragraphe, on supposera donc k 0.

A A
Rappelons qu'on appelle réseau dans Km un sous 0-module E de type

A A A
fini tel qu'on ait E ® K K m; il est connu qu'un tel E est libre sur 0,

A
&

AA A
donc est de la forme A (9m, avec A eG\(m, K et réciproquement. Si l'on
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a deux réseaux E c= Eu il existe k e N vérifiant xkEx c E ; on en déduit
immédiatement que EJE est de dimension finie sur C.

Proposition 5.1. Soient E et Ex deux réseaux vérifiant DE c- Ex. Alors
Vapplication D : E -> E1 est à indice.

Dans la suite, cet indice sera noté % (D; E, Et).

Démonstration. Supposons d'abord la proposition démontrée pour un
couple particulier (E,E1), et démontrons-là pour un autre couple

(E\E[). Prenons un troisième couple (E" ,E{) vérifiant E" zd E kjE',
E\ d£1u£;,D£"C E[.

Considérons la suite exacte de morphismes

0 • E "/E 0

D D D

0 —y Ei —> E ^ —y E i/E^_ —y 0

La première flèche verticale est à indice par hypothèse, et la troisième
l'est aussi puisqu'elle va d'un espace de dimension finie dans un autre. Par
suite la seconde est à indice; de plus, on a

(5.2) x (D; E ", É[) x (D; E, Et) + dim E "fE - dim É'fiE^

On opère ensuite de même avec les couples (E \E [) et (E ",E '[).

Reste à trouver un couple particulier (E, Et) tel que D : E -> E± soit
A

à indice; pour cela, en utilisant le théorème (3.1) (qui est vrai aussi pour K
au lieu de K), on se ramène au cas où M a la forme suivante

0 1 0

(5.3) M

—

0

^m-2

1

Am_ ]

Posons comme au paragraphe 3, A ôm — Am_x ôm 1
— — A0, avec

d
d x — ; posons encore i i (A) sup (0, sup —v(l et prenons

dx

Et nm-1 ® x 0; les raisonnements des § 1-3 montrent que
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l'application D :E->E± a un noyau (resp. un conoyau) isomorphe au
A A

noyau (resp. du conoyau) de l'application A : (9 -» x'1 (9, et que cette

dernière application est d'indice nul. D'où la proposition.
Considérons maintenant tous les couples de réseaux (£, Ef) avec

E œ EUDE a JE±; je dis que le nombre %(D;£,£],) + dim E1/E est

indépendant du couple (E, Ex). Pour établir ce résultat, il suffit de raisonner

comme à la proposition précédente, et d'utiliser 5.2. Cela justifie la définition

suivante:

Définition 5.3. On appelle irrégularité de D le nombre x(D: E, E±) +
dim EJE, E et E1 étant deux réseaux vérifiant E cz Eu D E a E1.

Le calcul fait à la fin de la proposition précédente, montre immédiatement

que si M est de la forme 5.3, on a, comme en 3.2.

(5.4) i(D) sup (0, sup — v (Xp))

Par conséquent, notre définition coïncide dans le cas analytique avec
celle du § 3 ; et l'on a encore i (D) > 0.

On définit encore les points singuliers réguliers comme au § 3, avec
A

K au lieu de K (il est équivalent de dire qu'il existe un réseau E tel qu'on
ait DE a E). La proposition suivante se démontre alors comme 3.4.

Proposition 5.5. Pour que 0 soit un point singulier régulier, il faut et il
suffit qu 'on ait i (D) 0.

+ 00

Proposition 5.6. Si l'on a M Mp xp (fc> 1), on a i (D) < k m;
-k

pour qu 'on ait i (D) < k m, il faut et il sujfit que M_k soit inversible.
Pour démontrer cette proposition, nous allons appliquer la définition 5.3,

A A
avec E &mEt x~k&m;enremplaçant D par xk D, il revient au même

A /\
de démontrer l'assertion suivante: l'indice de l'application xkD : (9m -> (9m

est <0; cet indice est nul si et seulement si M_k est inversible.
Supposons d'abord M_k inversible; pour tout monôme Axp, Ae Cm,

on a (xkD)(Axp) M_kAxp + (termes d'ordre >p + l); donc, de
A A

proche en proche, on voit que xkD :&m-»(9mestbijectif, donc d'indice nul.
Dans le cas général, prenons un p entier >0; les arguments de suite

exacte déjà utilisés en 5.1 montrent que l'application précédente a même
indice que

xk D : -+ (m, l'idéal maximal de (9).
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Cette dernière application est injective pour assez grand, puisque
A

ker (,xkD, (9m) est de dimension finie sur C. Donc son indice est < 0, et il
est nul si et seulement si l'application est surjective. Dans ce dernier cas,AAA A

par passage au quotient, l'application xk D de mp {(9m) / mp+i dans

lui-même sera encore surjective; or dans la base évidente, la matrice de

cette application est précisément M_fc; donc M_fc doit être surjective, donc
inversible. D'où la proposition.

Signalons pour terminer, sans démonstration, une autre manière de

définir i (D), due à Gérard et Levelt [1]. On prend un réseau E et on forme
la suite de réseaux Ep définie par E0 E, $ Ep © D Ep_1 (le
fait qu'on obtienne bien ainsi deux réseaux résulte facilement de la formule

A
D(cpF) cpD F + (dcp) F, (p e (9); posons ensuite Ep Ep\Ep_x.
L'application D induit une application surjective D:Ep-+Ep+1, donc
dim q Ep est décroissante, et indépendante de p pour p assez grand. On
démontre que cette dimension ne dépend pas non plus de E, et qu'elle est

précisément égale à / (D).
Supposons en particulier que 0 soit un point singulier régulier: on aura

alors Ep — 0 pour p assez grand; en fait, on démontre même qu'on a

nécessairement, quel que soit E : Em 0, donc D£m_1 c Em_1; ceci

donne un critère simple pour reconnaître effectivement si l'on est dans le

cas d'un point singulier régulier (ce critère se trouve déjà, au moins
implicitement, dans Manin [1]. Un critère différent se trouve dans Moser [1]).

§ 6. — Points singuliers réguliers

Ce paragraphe est en grande partie composé de rappels, empruntés à

Wasow [1]. On pourra trouver un exposé plus systématique dans Manin [1].
d A

Traitons d'abord le cas formel; soit D x—- — M, avec, M eEnd($m)
a dx

(i.e. M e End (Km), sans pôle).

Proposition 6.1. Supposons que deux valeurs propres distinctes de M (0)
A

ne diffèrent jamais d'un entier. Il existe alors un et un seul A e End ($m),

avec A (0) — I tel que la transformation F AG transforme D en

d
D' x M (0).

d x
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Posons en effet M Mpxp, A YjApxp, avec A0 — I ; on doit
o o

résoudre l'équation
dA

x M A — A M0
d x

en égalant les coefficients de xp dans les deux membres, on trouve d'abord

M0 A0 — A0 M0 0 qui est vérifié, et ensuite, pour p > 1

(pi — M0) Ap + Ap M0 0 (A0f..., Ap-i\ JVf0,..., Mp)

On pourra résoudre ces équations par récurrence, d'une manière et

d'une seule, en vertu du lemme suivant, qu'on laisse au lecteur à titre
d'exercice.

Lemme 6.2. Soient P e End Cp et Qe End Cq donnés ; pour que l 'équation
P X — X Q Y, avec X, Y e End (Cq, Cp) ait une solution X et une

seule quel que soit Y ilfaut et il suffit que P et Qn 'aientpas de valeur propre
commune.

La proposition résulte immédiatement de là. Remarquons aussi que
d A

l'opérateur différentiel A\-+x M A + A M0 a un point singulier
dx

régulier en 0; par suite, en vertu des théorèmes de comparaison (ou d'un
résultat classique, dans ce cas particulier), si M est convergente, A sera
aussi convergente.

Montrons ensuite comment on peut ramener le cas général au cas où
M (0) satisfait les hypothèses de la proposition 6.1; soient A1?. Xp les

valeurs propres distinctes de M0 ; il suffit de montrer qu'on peut faire une
a dA

transformation A eGl (m, K) telle que N — A~x M A — x A~1
d x

soit sans pôle et ait comme valeurs propres (X1 — 1), A2, 5 : en
appliquant par récurrence ce procédé, on amènera les valeurs propres de

M (0) qui diffèrent d'un entier à être égales.
| Par un changement linéaire de coordonnées, on peut supposer qu'on a

M (0) ^oq)' aVCC P Ct ^ triangulaires inférieures, P ayant pour valeurs

jpropres À2,... ,AP, et Q ayant l'unique valeur propre soient p et q
jrespectivement l'ordre de P et l'ordre de g; on prend avec des notations
| évidentes

A
\

'h 0

0 xL
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En posant Mi on trouve N (0) ^ rY cette matrice est
\y à) \y Q-IJ

encore triangulaire inférieure, et a visiblement les valeurs propres cherchées ;

d'où le résultat.
Passons maintenant au cas ^°° ; nous emploierons les notations suivantes,

dans la fin de ces exposés : ë désigne l'espace des germes de fonctions ^°° en
0 e R, à valeurs complexes (ou à valeurs réelles, dans quelques cas où ce

A
sera explicitement mentionné) ; l'application S 6 qui à / associe sa série

A
de Taylor en 0 sera notée / |-> /. On pose encore Kë — K ® ë, espace

0
des germes en 0 de «fonctions semi-méromorphes » ; l'application ë -* 0

A
s'étend alors en une application Kë - K, et il est bien connu que ces

A A
applications sont surjectives. Si f e Kë, / e(9, on a f eë à cause du

g
lemme élémentaire suivant: soit geë, avec g (0) 0; alors -eë. Les

*
f eë qui vérifient / 0 seront dites « plates ».

à
Si l'on a D x M, M k coefficients dans Kë, on poserad- -dx

D xk+1 M, i (D) i (D); si i (D) 0, on dira que 0 est un point
d x

singulier régulier de D.
La proposition suivante est un cas particulier d'un théorème qui sera

démontré par la suite.

Proposition 6.3. Soit D xk+i — — M, avec M e End (Këm)ke Z
d x A

et i(D) — 0; soit G e K ëm donné; supposons qu'il existe H eKm, avec
A A A

DH G. Alors il existe F e K ëm vérifiant DF — G, F — H, et un

tel F est unique.
A

Prenons F1e Këm tel qu'on ait Ft H, et cherchons F sous la forme

Fi + F2, avec F2 plat; on doit aussi avoir D F2 G — D F1, et le second

membre est plat par hypothèse. Par conséquent, on peut supposer qu'on
est dans le cas suivant: G est plat et H 0 (i.e. on cherche F plat).

Comme une fonction plate le reste après multiplication par xl(leZ),
on peut d'abord se ramener k k — 1 ; on peut ensuite, au moyen d'une

transformation F A F ', A e Gl (m, K ë) (ensemble des matrices d'ordre

m inversibles à coefficients dans K ë), et en utilisant les transformations
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formelles qui précèdent, se ramener au cas où l'on a M M0 + M^, M0
constante et M m plate.

Enfin, il suffit de trouver F à droite de 0 et tendant vers 0 ainsi que

toutes ses dérivées en 0 (nous dirons qu'une telle F est « plate à droite en

0 »); on fera ensuite la même opération à gauche, en changeant i en - x.
Posons alors F exp (M0log x)Fi, G exp (M0logx)G1; il est

clair par l'expression explicite de exp (M0log x) pour M0 triangulaire, que
F et F1 seront simultanément plates à droite en 0, et de même pour G et

G1. On est ramené à l'équation

d F
X—- - No0F1Gu avec Nxexp (-M0logx)M0O exp (M0logx),

a x

donc Noo est plate à droite en 0 ; en divisant par x, on est ramené au théorème

d'existence et d'unicité usuel. D'où la proposition.

d
Corollaire 6.4. Soit D x M, avec M g End (KSm), et suppo-dx

sons que 0 soit un point singulier régulier. Il existe alors A g Gl (m, KS')
d

tel que la transformation F A F ' transforme D en D' — x N,
d x

avec N constant.
Comme ci-dessus, on peut supposer M M0 + Mœ, avec M0

constant, M ^ plat. Considérons alors l'équation

d A
x -— M A — A M0, avec A à coefficients dans S, ^4 (0) I.

d x

Cette équation admet pour solution formelle /; d'après 6.3, elle admetf'AIdonc une solution A, avec A /; d'où le résultat.
| On déduit immédiatement de ce corollaire, l'expression générale d'une
; matrice fondamentale d'un système à points singuliers réguliers, et à coeffi-
jcients ^°° au voisinage de 0.

J § 7. — Le cas ^°° : énoncé du teiéorème principal
j

Soit k un entier; soit d'autre part <t> une fonction de classe (gœ des
m + 1 variables x et Y— ...,3 définie au voisinage de (0, 7°), et

A
à valeurs dans Rm; notons <f> son développement de Taylor en (0, 7°).
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Théorème 7.1. Supposons qu'il existe H e(9m, à coefficients réels, avec
à H A

0) Y0, qui vérifie l'équation xk+1 <P(x,H). Alors il existe
a dx dp

F e à valeurs réelles vérifiant F H, xk+1— $(x, F).
d x

Nous allons d'abord indiquer comme ce théorème peut être déduit d'un
lemme sur les équations linéaires, lemme qui sera démontré dans les

paragraphes suivants. Soient a > 0, et p entier > 0; nous désignerons

par B(p;a) l'espace des fonctions / continues sur [0, a] à valeurs

complexes, et telles que x~p f (x) soit bornée sur cet intervalle; on posera

\f\p= sup \x~p f {x)\.Pour feB(p;a)m,F on
xe]0,a]

posera par exemple | F \p sup | fi \p.

Lemme fondamental 7.2. Soit D xk+1 M, avec M eEnd(<fm)
dx

et keZ; on peut trouver le Z, p0 g IV, et a0 >0, possédant les

propriétés suivantes: Pour 0 < a < a0, il existe une application linéaire

K : B(p0,a)m -> B (p0 — /, a)m inverse à droite de D (i.e. DKG G),
et telle que, pour tout p > p0, la restriction de K à B (p, a)m soit une
application linéaire continue B (p, a)m -> B(p—l, a)m.

Remarquons que l'on peut aussi supposer la norme de K : B(p; a)m-+

B(p—l; a)m majorée par une quantité indépendante de a (mais non de p),

pourvu qu'on ait supposé p0 — / > 0, ce qu'on fera par la suite; en effet,

supposons K obtenu pour a a0, et notons le Kao\ pour obtenir un Ka,

on peut opérer ainsi: soit G le prolongement à ]0, a0] d'une fonction G

continue sur ]0, a] obtenu en posant G(x) G (a), a<x<a0; on a

évidemment \ G \p \ G \p, et l'on posera simplement KaG (restriction

à]0,fl]de Kao G).
Montrons comment ce théorème 7.1 résulte du lemme précédent

(appliqué aux fonctions à valeurs réelles). Comme au § 6, on se ramène
A

d'aboid au cas où 7° 0, H 0; on a alors #(x, 0) 0, et on cherche

F plat; il suffit de trouver F à droite de 0 (on le trouvera ensuite à

gauche de la même manière, en changeant x en — x); écrivons alors

<2)(x5 Y) $(x, 0) + M (x) Y + îP(x, Y) (Y, Y) avec M g End(0, ¥
une forme quadratique à coefficients #00(x, 7); on applique le lemme

précédent, et l'on cherche F eB (p,a)m (p et a à déterminer), solution de

l'équation F K [# (x, 0) + W (x, F) (F, F)].
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Notons LF)le second membre de l'équation précédente, et choisissons

p > p0,et vérifiant p— /> 1. Supposons < 1; on a alors, puisque

$ (x, 0) est plat | <2> (x, 0) |p+1 < C (a), avec C (a) -+ 0 si -+ 0; d'autre

part, si \F\p< 1, on a |F |0 < 1 donc «P (JSf, P") est borné, et par suite

on a, avec C indépendant de a:

| (Y (x, F) (F, F) \2p <C\F \2p, donc | Y (x, F) (F, F) \p+l <Ca\F \2p

il résulte de là, et de la remarque qui suit l'énoncé du lemme que, pour a

assez petit, L envoie la boule unité 1 de Bm (p, a) dans elle-même.

Un calcul analogue montre que pour |F|P<1,|G|P<1, on a

| Y(x,F)(F,F) - Y(x,G)(G,G)\2p<C\F - G \p

d'où
| Y(x,F)(F,F) - W(x,G)(G,G)\p+l<Ca\F - G \p

on en déduit que, pour a assez petit, L est contractante sur I ; alors l'équation

F — L (F) a une solution et une seule dans I ; comme F vérifie
d F

xk+1 — <P(x,F) dans ]0, a], F est de classe ^°° sur ]0, a\. Reste à
à x

montrer que F est plate en 0.

Tout d'abord, montrons que x~qF est borné sur ]0, a], quel que soit

q > p\ ceci est vrai pour p, donc par récurrence, il suffit de le montrer pour
q + 1, en supposant le résultat établi pour q; or, on a alors F eB(q; a)m,

donc W (x, F) (F, F) eB (2q; a)m\ a fortiori W (x, F) eB (q +/+ 1, à)m et,

par hypothèse x, $ (x, 0) eB (q +/ +1, a)m; donc L (F) e B (q + 1, a)m, ce

d F
qui démontre le résultat; en utilisant l'équation différentielle xk+1 —d x
<P (x, 0) + M (x) F + Y (x, F) (F, F), et le résultat précédent, on voit que

dF
x q — est encore borné pour tout q\ en dérivant l'équation, on voit qued x

d2 F
x q -—- est encore borné pour tout q, et ainsi de suite. Par conséquent

modulo le lemme 7.2, le théorème 7.1 est complètement démontré.

Proposition 7.3. Si D a un point singulier régulier en 0, le lemme 7.2. est
vrai.

Il est clair que, si le lemme garde un sens lorsqu'on suppose
M e End(J£é?m), et que d'autre part, on ne change rien (sauf les valeurs
éventuelles de p0 et 1) en multipliant D par xp (jpeZ) et en faisant une
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transformation du type F A Fl9 G AGl9 avec ,4 e Gl {m, KS).
D'après le corollaire (6.4), on peut donc supposer k 1, et M constant;
on peut même supposer que M est triangulaire inférieure; alors en
raisonnant par récurrence, on est ramené à démontrer le résultat lorsque D

à
est l'opérateur différentiel scalaire x 2, k eC; ce cas peut être laissé

dx
au lecteur, (ici, on pourra même prendre / 0, mais peu importe).

§ 8. — Le cas favorable

La proposition suivante est classique :

Proposition 8.1. Avec les notations du lemme 7.2, supposons k > 1, et

supposons que les valeurs propres Àj de M (0) vérifient R e (Ifi ^ 0. Alors
le lemme 7.2 est vrai avec l 0.

Démonstration

i) Il suffit de démontrer la proposition pour M M (0) ; en effet,

supposons le résultat établi dans ce cas; soit K° : B(p; a)m -» B(p; a)m

l'inverse à droite de xk+1 M (0) (K° dépend de a, mais non de
dx

P^>Po)l on Pose al°rs M (x) M (0) + x N (x), iVeEnd (<Sm), et on
note L l'application F |-> x NK 0 F; il suffit de trouver K1, inverse de

I — L, car alors K° K1 K sera un inverse à droite de D.
Or, pour a < a09 on a | K0 F | Po< C | F\Po (cf. remarque suivant

l'énoncé du lemme 7.2), d'où, par un calcul analogue à ceux du § 7 :

| L F \Po < C ' a | F \Po; en choisissant a pour qu'on ait C' a < 1, on voit
que la série K 1 I Ln converge dans l'espace des applications linéaires
continues de B(p0; a)m dans lui-même.

Montrons par récurrence sur p > p0 que K 1 envoie continuement

B(p;a)m dans lui-même; supposons donc le résultat acquis pour p — 1;

l'équation H K1 G équivaut à/7 G+ L77;siG parcourt un borné
de B (p, a)m, H parcourt un borné de B {p — 1 ; a)m par hypothèse de

récurrence; donc LH xNK° H parcourt un borné de B(p;a)m; donc

H C + L H parcourt un borné de B (p ; a)m, ce qui démontre le résultat.

Il est alors clair que K K° K1 répond à la question; d'où la proposition.



ii) Démontrons maintenant le résultat pour M constant; on peut

supposer M triangulaire inférieure; alors par récurrence sur m, on est

fc+i ^
ramené à établir le résultat pour l'opérateur différentiel scalaire x — — /,

avec ÀeC, ReÀ ^ 0; posons X k (g + iv); la transformation /
exp (—ivx~k)f1 nous ramène au cas où v 0; alors la solution générale

d fde l'équation xfe+1 kgf — g s'écrit
d x

/(x) J rfc_1 exp [g(rk-x~k)~]g(t)dt.
x0

Pour g > 0, on choisira x0 a (par exemple x0 1), et pour g < 0,

on choisira x0 0; dans les deux cas, on doit démontrer que pour p e N,
et x tendant vers 0, on a

jXotp~k~1 exp [(g(rk-x-k)]g(t)dt 0(xp)

Faisons la démonstration pour g > 0 (le cas g < 0 est analogue et un

peu plus simple); par le changement de variables s — t~k, y — x~k,

pjk q, on est ramené à démontrer qu'on a, pour y -» + oo.

V

j s~q exp n(s—y) d y0
1

En intégrant par parties, on trouve que le terme tout intégré est de
y

l'ordre voulu, et il reste à évaluer J s~q~1 exp g(s—y)dy; supposant
1 y/2 y y/2

y > 2, on coupe la dernière intégrale en J et J ; on majore J en y
y - i y/2 1

remplaçant s~q~1 par 1, et J en y remplaçant exp g {s—y) par 1; nous
y/2

laissons les détails au lecteur (en fait, en continuant les intégrations par
parties, on obtiendrait un développement asymptotique de l'intégrale
envisagée; cela correspond en fait à démontrer le théorème 7.1 pour l'équa-

k+1 d ftion x kg f xp, et la solution formelle évidente de cette
d x

équation!). La proposition est donc démontrée.

Corollaire 8.2 (cf. Wasow [1]). Dans les hypothèses du théorème 7.1,
d $

supposons en outre qu'on ait k > 1, et que la matrice (0, Y0) ait toutes

ses valeurs propres de partie réelle non nulle. Alors le théorème (7.1) est vrai.
Cela résulte de la démonstration de l'implication (7.2) => (7.1).



— 168 —

Remarque 8.3. Dans les hypothèses précédents, et même dans l'hypothèse
d 0

plus faible « #(0, 7°) 0, (0, 7°) inversible », il exsite une et une
^ Y

d H A
seule série formelle H vérifiant H (0) 7° et xk+i 0 (x, H). Cela

dx
se voit par le même calcul que le théorème des fonctions implicites pour

d H
les séries formelles (puisque l'application H -> xk+1 augmente stricte¬

st x
ment le degré des monômes).

Donnons maintenant une application des résultats précédents qui
jouera un rôle essentiel dans la suite.

Proposition 8.4. (Sibuya; cf. Wasow [1]). Soit D xk+1 — — M, avec
d x

M g End ($m). Supposons qu 'on ait une décomposition de M (0) en deux

blocs M (0) ^ ^j P g End (Cp), Q g End (C*), p + q m; désignons

par X i (resp les valeurs propres de P (resp de Q) et supposons que, pour
tout (/, /), on ait Re(Xt) # Re(pij). Alors il existe A e Gl (m, S*), avec

A (0) I tel que la transformation F A F, transforme D en xk+1 N,
/N' 0 \

avec N À TV' g End {êp\ N " g End (Sq).

Posons M avec ^ii e End (Sp), etc.; on cherche a
\M 2 1 TVZ22/

/0 A'\
priori A sous la forme A I +( j, A' (0) 0, A" (0) 0; on doit

d Al
avoir xfc+1 M A — A N; en égalant les blocs d'indice (11) et (21)

d x
dans cette équation, on trouve

Mu + M12A" N '

M21 + M22A" A" N' + xk+ld^~
d x

En tirant TV' de la première équation, on trouve l'équation suivante
d A "

pour A : x M21 + M22 A — A MX1 — A M12 A
dx

Nous allons appliquer à cette équation la remarque 8.3 et le corollaire

8.2 (le fait que notre équation soit à coefficients complexes n'est pas
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gênant, il suffirait de séparer les parties réelles et imaginaires); on prend

ici $(x, A") M21 +M22A"A" Mtl - A" A"; on a bien

d 0
$ (0, 0) M,i (0) 0; et r,(0,0) est l'application a H- M22 (0) a —

ô A
a Mtl(0) Qa — aP, a e Horn (C, C); le lemme (6.2) montre que
les valeurs propres de cette application sont les /q- — donc ont leur

partie réelle non nulle; la remarque 8.3 donne alors l'existence d'une
A

solution formelle A\ et le corollaire 8.2 l'existence de A"\ on opère de

même avec les blocs (1 2) et (2 2) pour trouver A'.

Remarque 8.5. Si l'on affaiblit les hypothèses de la proposition 8.4 en

supposant seulement qu'on a, pour tout (i,j) At / fip la partie formelle
du raisonnement précédent montre qu'on peut trouver A, avec A (0) /,

A (N ' 0 \
tel que N soit de la forme N I a 1. Cela jouera un rôle important

\0 N7
dans la suite (en fait, le théorème (7.1) montrera finalement que la propos
sition 8.4 reste vraie sous cette hypothèse affaiblie; mais, au point où nous
en sommes, nous n'avons pas encore le droit d'utiliser ce résultat; comme
on va le voir, cela va nous obliger à quelques contorsions!).

§ 9. — Démonstration du lemme eondamental

d
A. Démontrons d'abord le résultat pour m l;soitD x — m,dx

me S; si Rem(0) ^ 0, cela résulte de 8.1; si k > 1, et m (0) ikX,
À =£ 0, la transformation / exp — iXx~k) fx nous ramène à m (0) 0,
donc on est ramené de k à k — 1 ; par récurrence, on est ramené à k 0,
i.e. au cas d'un point singulier régulier.

Dans la suite, nous procéderons par récurrence sur m, et supposerons
donc le résultat établi pour 1,. .m — 1.

B. Si k 0, le résultat est établi par la proposition 7.3. Supposons donc
fc > 1, et soient Xu Àp les valeurs propres distinctes de M (0); supposons
qu'on ait, pour un i au moins Re (Xt) # 0; alors le lemme fondamental
résulte de l'hypothèse de récurrence; en effet, si pour tout i on a R e At # 0,
on est dans le cas favorable 8.1; si, pour un j, on a ReAj =0, on peut

décomposer M (0) par une transformation linéaire en deux blocs les
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valeurs propres de P (resp de Q) étant toutes de partie réelle A 0 (resp 0) ;

le lemme fondamental résulte alors de 8.4 et de l'hypothèse de récurrence.

C. Supposons maintenant k > 1, et supposons que les valeurs propres
de M (0) vérifient toutes Re X} 0. On appelera « système standard » un
tel système, muni d'une décomposition du type suivant: on suppose donnée

une partition de {1, m) en sous-ensembles {1,. ,ym1}, {m1 + 1,

m1 + m2}, {ml + + mp_1,. + m1 + + mp m}
avec m1, mp / 0, tel que, dans cette décomposition, les termes non

A
diagonaux de M soient nuls (« les termes de couplage entre les différents
blocs sont plats »). A un tel « système standard », on associe les deux
entiers C (D) m — p (son « couplage ») et i (D), son irrégularité ; on a

0 < C (D) < m — 1, et C (D) 0 signifie que tous les mt sont égaux à 1 ;

d'autre part, en posant
A

on a facilement i (D) — I i (Dj).
On ordonne les couples (C, i) lexicographiquement, i.e. on pose

(c, 0 (C ', z") si C < C ' ou C C ', i < Pour démontrer le lemme

fondamental, nous allons faire une seconde récurrence sur (C, z), et plus
précisément démontrer le résultat suivant.

Lemme (C, i). On suppose toujours m fixé, et le résultat démontré pour
m' < m).

Soit i > 0, et supposons le résultat démontré pour les systèmes standard

D avec (C (D), i (D)) < (C, i). Alors, le résultat est vrai pour les systèmes

standard D vérifiant (C (D), i (Z>)) (C, i).
Par récurrence, on sera ramené au cas où i (D) 0, c'est-à-dire au cas

des points singuliers réguliers, cas réglé par la proposition 7.3.

D. Restons dans la situation précédente, et supposons qu'une des

valeurs propres Xt d'un des Mj(0), disons de (0) soit A 0. Deux cas

sont alors possibles. 1) Si (0) a deux valeurs propres distinctes d'après
A

la remarque (8.5) on peut décomposer le système D± \ par ce procédé, on

a diminué C (D).

2) Si toutes les valeurs propres de M1 (0) sont égales à X1 — ik\x,
OueR — {0}), on fait la transformation F1 exp — ij2X~k) F'u F2
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F'2,...,Fp F'p(en posant (/),. etc.); alors on ne change

pas D2,.. -, Dp,et on a remplacé D1 par D[ .k+ 1

p, 1 A dx
on n'a donc pas changé C (2)) et, d'après la proposition (5.6), on a diminué

A A
i donc z (D) I i (Dj). Dans les deux cas, on a démontré (C, z).

Notons que ce procédé permet, en particulier en raisonnant comme en

A et B de démontrer (0, z) par récurrence descendante sur z (formellement,
cette remarque n'est pas indispensable pour la suite).

E. Reste à régler le cas où les Mj (0) sont tous nilpotents. Nous allons
faire une transformation (« transformation de Turrittin-Katz », voir
Deligne [1] ou Katz [1]) qui élimine ce cas. Pour plus de clarté, expliquons
d'abord en quoi consiste cette transformation lorsqu'on a p — 1. Comme

on l'a déjà observé en démontrant la proposition 7.3 on peut multiplier D
par une puissance de x, et faire sur D une transformation du type F
AFU avec A e Gl (m, KS); en particulier, en utilisant le théorème (3.1)

A d A
(avec K au lieu de K), on peut supposer que l'on a D x M, M

d x
ayant la forme suivante

M

0

M
o
A
^m-1

1

avec Xj e K

Faisons alors la transformation suivante

/i x~r ii, f2x~2r i2, -,fmx~mr gm, 0 à déterminer ;

d G*
le système devient Ghx'+1- N G, avec N donné par la formule

suivante

N

r x

d x

1

(m — 1) rxr

L-A1xmr...A„ -2r

1

A
(A„, + m



Si les )H n'ont pas de pôle, on est dans le cas régulier et l'on prend
r 0; sinon, en choisissant r satisfaisant aux inégalités qui suivent, on
élimine les pôles :

-v (Ax) < m r, -v (km) < r.

Pour obtenir une partie principale d'ordre 0 non nilpotente, il faudra

i u-- /alors choisir r — sup — ; si r est entier, cela va bien, sinon,
/ \ m - J + V

on pose r - et on fait le changement de variable x yq (ce qui ne gêne
q

pas pour démontrer le lemme fondamental); combiné avec la transformation

1
d G

precedente, on arrive finalement à une équation G |-> y1 q P, avec
d y

P g End et P (0) ayant la forme suivante

P(0)

0 1 0

10 0

d\ • • • dm_i

avec dj — lim kj (x) xJr ; donc certains dj sont ^ 0 ; comme l'équation
r —> 0

caractéristique de P (0) est km dm km~1 + + du P(0) est non nil-
potente.

Observons enfin ceci : si toutes les valeurs propres de P (0) sont confondues,

leur somme dm est # 0; par suite on a r — — v (Am), donc r est entier
et l'on peut prendre q 1.

A A
Revenons maintenant à la situation générale: à Z>l5,.Dp

correspondent respectivement des rationnels ru rp, l'un au moins étant

> 0, (sinon on est dans le cas régulier); on prend alors r sup (rx,..., rp),
et on fait simultanément la transformation de Turrittin-Katz avec cette

A A J

valeur de r sur Z)l5. Dp, joint au changement de variable y xq (r - );

on a alors remplacé D par D* yl+1 N, avec N =(^ ),l'une
\o NJ

au moins des matrices Nj (0) étant non nilpotente.
On est alors dans le cas B, le cas Dx ou le cas D2 \ dans le cas R, le

résultat suit par récurrence sur m ; dans le cas Du on diminue C (D); dans
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le cas D2, d'après la remarque précédente, r est entier, donc le procédé

donné en D2 diminue i {D).
Le lemme (C, i) et donc aussi le lemme fondamental, est ainsi complètement

établi.

Remarque. Au lieu de faire une récurrence sur l'irrégularité i (D), il
aurait été tout aussi naturel (et même encore plus) d'utiliser a priori «

l'irrégularité de Katz », i.e. le nombre r qui vient d'être introduit et qui mesure
l'ordre minimum des pôles à considérer (voir à ce sujet Gérard-Levelt [1],

et un article à paraître de Levelt).

§ 10. — Applications

A. Le théorème 7.1 entraîne le théorème suivant, en apparence plus
général :

Théorème 10.1. Soit une fonction de classe ^°° des 2 m + 1 variables

x, Y (yl9 ym), et Z (zl9 zm) au voisinage de 0, 7°, Z°, à
A

valeurs dans Rm ; supposons qu 'il existe une série formelle H e(9m (à coejfi-
d H A d H

cients réels) vérifiant H (0) Y0, (0) Z°, et <P (x, if, 0;
dx dx

dH
x, H (x), —— soit inversible sur K

A u jl, dx
(i.e. appartienne à Gl (m, K)); alors, il existe F e à valeurs réelles véri-

dH
fiant F ü, #(x, Ü, =0.

d x
La réduction de ce résultat au cas (7.1) se fait suivant une méthode

habituelle dans des questions voisines.

a) On traite d'abord le cas où l'on a $ (x, Y, Z) W (x, Y) Z —

X (x, Y), W une matrice d'ordre m à coefficients ^°° ; pour cela, on se ramène
au cas où H 0, donc Y0 Z° 0; on a alors la situation suivante:
X (x, 0) est plat, et F (x, 0) est inversible dans KS ; il existe donc M e
End (êm) et k e N tel qu'on ait M W (x, 0) x/c /; posons alors F xk G ;

on a MF (x, xkG) xk Wt (x, G), avec (x, 0) /, donc Wx (x, Y)
inversible au voisinage de (0, 0) dans les matrices à coefficients ^°° ; on a
aussi M x (x, xkG) xk Xi (x9 G), avec Xi de classe ^°° ; on est alors
ramené à l'équation

supposons enfin que la matrice
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X^= -kxk~YG+
dx

b) On ramène le cas général au précédent, par dérivation, en remplaçant
l'équation initiale par le système

dF
— -G 0
d x

dF dF dF dG
— (x, F, G) + — (x, F, G) G + — (x, F, G) — =0

d x öY <7 Z dx

B. Dans le cas linéaire, on a le théorème suivant

*dF
Théorème 10.2. Soit D x — — MF, avec k e N, Me End (Sm)\

dx
soit & l 'espace des germes de distributions en 0 dans R ; alors, on a D Q)' Çè'

Soit a > 0, assez petit, et soit / l'intervalle \ — a,d\ \ par dualité, il suffit
de démontrer que l'application D' : ^7 ^7 es* d'image fermée {ßi
désignant l'espace des fonctions de classe ^°° à support dans /); d'après

un lemme classique puisque $)l est un espace de Fréchet, il suffit de démontrer

que D' est de codimension finie dans ; soit F l'espace des F e ^°° (7)m

telles qu'on ait D' F c d'après le théorème d'existence et d'unicité
usuel, ^7 est le sous-espace de F formé des F telles qu'on ait F (-a)

F Ça) 0, donc est de codimension finie dans F, et il suffit de démontrer

que D'E est de codimension finie dans \ or, le théorème 7.1, joint au
théorème usuel de prolongement des solutions d'une équation différentielle

A A A

montre que D'E est l'ensemble des F e S) tels qu'on ait F e Df 0m; ceci
A A

joint au fait que D' : Gm -» (Dm est à indice (proposition 3.6) et à la surjec-
A A

tivité de l'application : -+ (9, entraîne le résultat cherché.

C. Le théorème 7.1 a été démontré indépendamment par Kouznetsov [1]

qui en a donné une intéressante application à l'étude des « formes normales »

d
des systèmes différentiels. Disons qu'un système D x M,

dx
-î

M e End (K êm) est « élémentaire » si l'on a M I Xp xp I + M0,
-k

avec M0 e End (Cm) et Ap e C ; on a alors le résultat suivant :
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Théorème 10.3 — (Kouznetsov).SoitD x- e End
dx

un système différentiel. Par un changement de variables x yq (q entier

> 0J suivi d'une transformation F A Fl9 A e Gl (m, KS), on peut

réduire D à la forme « diagonale »

; les Dj étant élémentaires.

Indiquons rapidement comment ce résultat peut se démontrer; tout
d'abord, le théorème 7.1 permet de se réduire à démontrer le résultat

analogue dans le cas formel, c'est-à-dire dans le cas où l'on remplace dans
i A A

; l'énoncé précédent S par @9 et K S par K. Dans ce dernier cas, le résultat

dû à Turrittin, peut se démontrer par les mêmes arguments que ceux employés
; au § 9 ; d'ailleurs, ici, les choses se simplifient ; il suffit d'une double récurrence
'

sur m d'une part, i (D) (ou mieux encore, l'irrégularité de Katz) d'autre
î part ; nous n'entrerons pas dans les détails.

Soit enfin d un secteur angulaire fermé de sommet 0 dans C, de mesuer
j angulaire fi (d); désignons par sé (d) l'espace des germes en 0 de fonction

^°° sur d, et holomorphes dans l'intérieur de d. D'après Turritin et Wasow,
| les théorèmes 7.1 et 10.3 sont encore vrais lorsqu'on y remplace S par
j sé (d), et Kê par K (g) sé (d) pourvu que p (d). soit assez petit (pour le
i 0 ^i 71

l théorème 7.1, il suffit qu'on ait p (d) < -); à vrai dire, ces auteurs travaillent
k

i avec des « fonctions holomorphes dans un secteur ouvert, admettant un
i développement asymptotique en 0 >>, et non avec sé (d), mais le lecteur
\ vérifiera facilement qu'il s'agit là d'une modification inoffensive.
\ La démonstration, sous ces nouvelles hypothèses, est presque la même

i que la précédente, et même plus simple: en effet, on démontre directement
8.2 sous l'hypothèse « ^ 0 » (voir Wasow [1]); pour établir 7.1, on n'a
alors plus besoin de « systèmes standard », et il suffit d'une double récurrence

sur (m, i (D)). La démonstration ainsi esquissée est d'ailleurs celle

que donne Wasow à la simplification près qu'apporte la transformation de

Katz. Quant aux énoncés relatifs au développement asymptotique des

solutions d'une équation différentielle, ils sont une conséquence facile de

cette version du théorème 10.3; nous laissons cette question au lecteur.
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