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DES ADELES: POURQUOI ??

par Alain ROBERT

C’est en 1897 que Hensel introduit formellement pour la premiére fois
les nombres p-adiques. Il désire appliquer aux nombres algébriques les
techniques de développement en série de Laurent (ou de Puiseux dans le
cas ramifié) qui s’utilisent couramment dans la théorie des fonctions algé-
briques sur les surfaces de Riemann. Par exemple, un nombre rationnel
a € Q admet un développement en série
(D) >, ap"  (0<a,<p)

n>n,
(n’ayant qu’un nombre fini de coefficients a, # 0 d’indices n négatifs)
pour chaque nombre premier p. L’indice n, du premier coefficient non nul
(si @ # 0) est appelé ordre de a en p et dénoté par ord, (a). Cet entier
rationnel est ’exposant de p dans la décomposition de a en nombres premiers:
a =[] p>%“. Lorsque ord, (@) < 0, on dit que ¢ présente un pdle en p
D

tandis que si ord, (@) > 0, on dit au contraire que a posséde un z€ro en p.
Hensel a d’ailleurs utilisé treés tot des développements du type (1) méme s’ils
ne provenaient plus d’'un nombre rationnel (en analogie avec les développe-
ments de fonctions transcendantes sur les surfaces de Riemann), et il a
développé une algebre de ces développements formels (rappelons que la
théorie générale des anneaux et des corps est précisément née au début
du xx¢ siécle, en particulier sous 'impulsion des idées de Hensel). Mais si
Hensel avait bien senti les simplifications qu’il pouvait apporter a certaines
démonstrations de théorie des nombres a I'aide de cette localisation, il
n’avait pas encore a disposition les notions topologiques (liées a celles d’espace
métrique) qui clarifient I’étude des nombres p-adiques. Dés 1910 néanmoins,
il peut calquer la théorie de Cauchy et faire de ’analyse p-adique, en définis-
sant en particulier, exponentielle et logarithmes p-adiques.

L’utilité des nombres p-adiques apparait clairement dans la  recherche
de solutions d’équations diophantiennes. Par exemple soit F un polyndme
a n variables et & coefficients entiers. L’existence d’une solution entiére

1 Exposé présenté au groupe des mathématiciens rhodaniens le 6 mai 1973.
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(x5 ..., X,) de ’équation F (x4, ..., x,) = 0 implique I'existence de solutions
pour toutes les congruences

) F (x,....,x,) = 0 mod m (m>2).

Comme on sait bien, il suffit de considérer ces congruences modulo les
puissances p* de nombres premiers. Or il se trouve que les congruences

(3) F (x{,...,x,) = 0 mod p*
peuvent €tre résolues pour tout k > 1 si et seulement si F (x,, ..., x,) = 0
a une solution (x4, ..., x,) & coordonnées dans ’anneau des entiers p-adiques

Z, (lemme de Hensel). L’anneau des entiers p-adiques Z, apparait comme
limite des anneaux Z/p*Z : Z, = lim Z/p* Z. L’avantage est ici que Z, est
intégre (alors que Z/p* Z avait des éléments nilpotents ...) et admet un corps
de fractions

4 Q,=2Z,Q=2Z,([p ']
z

Dans une premiere ¢tape de la recherche de solutions entiéres, on pourra
essayer de résoudre F (xy, ..., x,) = 0 dans tous les corps p-adiques Q,,.
Il peut ausst €tre intéressant d’en rechercher les solutions réelles, par exemple
I’équation x? + y? 4+ 1 = 0 ne saurait avoir de solutions entiéres ! Il
arrive que I'existence de solutions Jocales pour tout p (c’est-a-dire dans Q,
pour tout p) implique I’existence d’une solution globale (dans Q). C’est par
exemple le cas si F est une forme quadratique. Plus précisément, dénotons
par P Iensemble des nombres premiers, par P la réunion de P et d’un
symbole oo, et par Q,, = R. Alors si F est une forme quadratique a coeffi-
cients rationnels en # variables, pour que F (x4, ..., x,) = 0 ait une solution
non triviale x = (x,, ..., x,) # 0a coordonnées x;entieres (ou rationnelles),
il faut et il suffit que I'on puisse en trouver des solutions non triviales a
coordonnées dans Q, : 0 # x = (xy, ..., x,) € Q}, pour tout p e P. Cest le
théoréme de Hasse-Minkowski (cf. [5] Chap. 1V, Théoréme 8). On voit ici
que les nombres p-adiques doivent étre placés sur un pied d’égalité avec les
nombres réels. En fait si on dénote par | .. .|, la valeur absolue p-adique
de Q définie par

(%) lal, = p~ %@  (0+#aeQ),

le corps Q, est le complété de Q pour la topologie définie par la métrique
p-adique d, (a, b) = Ia' — b lp. On voit ainsi mieux I’analogie entre les
corps p-adiques (pe P) et le corps des nombres réels Q. = R complété de



Q pour la distance définie par la valeur absolue usuelle ] a loo = | a ] Pour
obtenir des énoncés complets, il est souvent nécessaire de regarder simultané-
ment toutes les places p € P et d’associer & un nombre rationnel la famille
de ses développements en tous les nombres premiers p € P et sa coordonnée
réelle. Cela revient & plonger Q dans le produit de ses complétés [[1Q, 2
I’aide de I’application diagonale. P

Prenons encore un exemple tiré de I'analyse classique pour illustrer
'importance des nombres p-adiques, considérés simultanément avec des
nombres complexes. Partons d’une fonction analytique
(6) f@)= ) az (4l

n=0

dont le développement de Taylor & I'origine a tous ses coefficients entiers.
Il y a beaucoup de telles fonctions, par exemple f(z) = 1/(1—2)
ou bien le discriminant 4 de la théorie des fonctions elliptiques 4 (z) =
z [ =2z = Y t(n)z" (les coefficients 7 (1) étant par définition

n>1 n>1

les coefficients de Ramanujan). Remarquons que si le rayon de convergence
p de la série (6) est strictement plus grand que 1, la convergence en z = 1
implique que a, tend vers O (par valeurs entiéres !), donc est nul pour n
assez grand. Dans ce cas donc, f est nécessairement une fonction polyno-
miale. E. Borel a donné la variante plus intéressante suivante de cet énoncé:

(7) Si une fonction analytique f, définie par un développement (6) a coefficients
entiers se prolonge en fonction méromorphe dans un cercle de rayon
p > 1, alors f se prolonge en fonction rationnelle sur C. 1)

Comme on le prévoit facilement, ce critére n’est pas trés maniable dans
les applications et Dwork I’a grandement généralisé & P'occasion de sa
démonstration de rationalité de la fonction z€ta d’une variété algébrique
définie sur un corps fini (cf. [3] § 4, Théorémes 2 et 3). Le-critére de Dwork
s’applique aux fonctions analytiques f définies par un développement de
Taylor a ’origine ayant tous ses coefficients rationnels (et non plus seulement
entiers). Pour I’énoncer, il faut considérer les fonctions analytiques p-
adiques f, (peP) ayant méme développement que f mais ou la variable
z = X, appartient & un complété Q, d’une cloture algébrique Q, de Q,, (ces

1. Citons peut-étre a ce propos le théoréme de Nagy-Carlson: Si une fonction
analytique f admet_ un développement X a,z" a ccefficients entiers de rayon de conver-
gence 1, alors ou bien fest rationnelle, ou bien |z| = 1 est frontiére naturelle de f. Nous

ne nous intéresserons qu’au cas ou f est rationnelle, aussi laisserons-nous de coté cet
aspect de la question.
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corps 2, sont complets et algébriquement clos, et jouent un role de domaine
universel analogue au corps C des nombres complexes). Une remarque
préliminaire s'impose. Si f(z) = ) a,z" est une fonction analytique
donnée par un développement ayant tous ses coefficients rationnels, et
si f se prolonge comme fonction rationnelle, alors, elle est quotient de deux
polyndmes a coefficients rationnels (ou méme entiers). C’est un théoréme de
Fatou. Par conséquent I’algorithme de division des polyndmes suivant les
puissances croissantes montre que seuls les facteurs premiers du terme
constant du dénominateur peuvent apparaitre dans les dénominateurs des
coefficients a,. En dénotant donc par S ’ensemble fini des diviseurs premiers
de ce terme constant, on voit que les coefficients a, sont tous dans ’anneau
Z [S] ' engendré par les entiers et les inverses des nombres premiers
p € S. Le théoréme de Dwork est alors le suivant.

(8) Pour qu’une fonction analytique f définie par un développement > a, z"
a coefficients rationnels représente une fonction rationnelle, il faut et il
suffit qu’il existe une partie finie S < P avec a,€ Z [S]™ ' (n>0) et des
nombres positifs r,(peS=S u{w}) avec || r, > 1, tels que f, se pro-

S

longe comme fonction méromorphe (quotient de deux holomorphes) dans
le disque | x, [p < r, de Q, pour tout pe S (Q,=C).

La condition a, € Z [S]™! exprime simplement le fait que les nombres
rationnels a, € Z, sont des entiers p-adiques pour les nombres premiers
p ¢S, ou encore que | a,| <1 pour peP — S. Donc les fonctions analy-
tiques f, sont holomorphes dans le disque unité |x,| <1 de Q, pour
p€P — S. En choisissant r, = 1 pour pe P — S, la condition de produit

s’exprime plus symétriquement par || r, > 1. D’autre part, lorsque tous
P

les coefficients a, sont entiers, on pourra prendre pour S 'ensemble vide,
et le critére ci-dessus redonne le résultat de Borel (7). En général au contraire,
on aura avantage a prendre dans (8) r,, = p (rayon de convergence de la
série complexe de f = f), et d’aller « plus loin » dans un corps p-adique
Q, qui s’y préte ! Dwork lui-méme utilise (8) sous la forme suivante: une
série a coefficients entiers qui a un rayon de convergence complexe p # 0
et qui se prolonge comme fonction méromorphe sur un corps p-adique Q,,
représente une fonction rationnelle.

Jespére que les exemples précédents montrent 'opportunité de tenir
compte de tous les complétés p-adiques de Q et non seulement du complété
privilégié R = Q,, et d’introduire un anneau contenant Q et tous les
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Q, (peP). Malheureusement, le premier candidat qui se présente a l’esprit,

le produit | | Q,, n’est pas localement compact (un produit d’espaces locale-
P
ment compacts ne peut étre localement compact que si tous ses facteurs

sauf un nombre fini, sont compacts). L’astuce (complétement négligée par
Hensel et ses successeurs immédiats) consiste a se restreindre au sous-
anneau formé des familles (x,),.p ne présentant qu’un nombre fini de poles:
x, € Z, pour presque tous les p € P. Ce produit restreint 1

9) A ={x,)e H Q, : x, € Z, pour presque tout p € P}
P

est anneau des adeles. C'est le plus petit anneau contenant (des sous-
anneaux isomorphes &) Q, (peP) et [ [ Z,. On munit A de la topologie de
P

groupe additif qui induit sur le sous-groupe R x [] Z, la topologie produit.
P

Ce sous-groupe est a la fois ouvert et fermé dans A (et localement compact
puisque les anneaux d’entiers p-adiques sont compacts), et la multiplication
de A est continue. Puisqu’un nombre rationnel n’a qu’un nombre fini de
pOles (nombres premiers divisant son dénominateur), I'injection diagonale
canonique applique Q dans A, et il est facile de voir que la topologie induite
par A sur Q est la topologie discréte (canonique...). En effet, V' =
]— 1,4+ 1[ x [[Z, est un voisinage ouvert de 0 dans A par définition,
et les nombres rationnels qui tombent dans V' doivent primo : €tre des entiers
p-adiques pour tout p € P, donc ne pas avoir de dénominateur, c’est-a-dire
étre des entiers, secundo : avoir une image réelle dans l'intervalle ouvert
]—1,+11

Ainsi on a bien Q n V' = {0}. Une propriété fondamentale de ’'anneau
localement compact des adéles est la suivante: A est isomorphe (en tant

que groupe localement compact abélien additif) a son dual de Pontryagin.
Plus précisément, la suite exacte

(10) 0— Qdiscr. - A - A/Q — 0
admet pour duale (de Pontyagin) la suite exacte
0 A/Q« A« Q.. « 0.

Le quotient A/Q est donc compact (dual du groupe additif discret Q).
On pourra comparer la suite précédente aux suites autoduales

(11) 0-72,-Q,-Q,/Z,—-0 (peP)

1 La notion générale de produit restreint est due 4 Braconnier.
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(on a pos¢ Z, = Z). D’ailleurs, la suite (10) n’est pas sans présenter une
analogie frappante avec la suite (11)

(12) 0>Z->R->R/Z-0,

puisque Q est discret dans A comme Z I’est dans R. On a mieux puisque

A/Q est connexe comme R/Z (une petite surprise puisque dans la définition

de ’anneau des adéles par I'égalité (9), tous les facteurs sauf Q. = R sont

totalement discontinus; il se trouve que ce facteur connexe a une image

dense dans le quotient), et on peut identifier A/Q au solénoide lim R/N Z,
N

lui-méme limite projective des revétements du cercle (la relation d’ordre
filtrante sur ’ensemble des indices est fournie par la divisibilité puisqu’on
a des applications canoniques de transition R/N Z — R/M Z lorsque N
est multiple de M ). Il est aussi intéressant de considérer le groupe multipli-
catif A* des unités de A. Comme la topologie induite par A sur A* ne rend
pas continue I’application x - x~ !, on préfére munir A* de la topologie
induite par l'injection x = (x, x~ ') de A* dans A% (Ainsi A* = G L, (A)
est muni de la topologie initiale relativement aux applications x —» x et
x> x~ ! de A% dans A: on force l'inverse a étre continu). C’est ce groupe
topologique A* qui est le groupe des ideles. 11 est clair que tout nombre
rationnel non nul définit une unité de A et que par conséquent Q * s’identifie
a un sous-groupe discret de A*. Le quotient A*/Q* n’est pas compact
pour la raison suivante. Tout idele x = (x,)s a des composantes x,€Q,

satisfaisant x, € Z , presque pour tout p € P. Donc le produit infini [ | [ X
P
converge (il n’a qu'un nombre fini de facteurs # 1) et on a un morphisme

continu surjectif

oo

(13) A* - R* definipar x > | x| A = [11x%,1,.
=

Le noyau de ce morphisme contient Q> : par exemple d’apres (5)
|2/15|, = % (zéro simpleen p = 2),

| 2/15]; = 3(pdle simpleen p = 3),

| 2/15|s = 5(pdle simpleen p = 35),

|2/151, =1 si pePet p # 2,3, 5(unité p-adique),

[2/15], = 2/15,

de sorte que le produit vaut bien 1. On entrevoit bien que ce genre d’argu-
ment est général. Le module idélique définit ainsi un morphisme continu
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surjectif A*/Q* — R qui empéche le quotient A*/Q> d’étre compact. Par
contre si on se restreint au sous-groupe A'/Q* formé des classes d’idéles
de module 1 (noyau du morphisme précédent), on obtient un groupe
compact.

Le terme idéle a été introduit par Chevalley en 1936 dans une rédaction
algébrique de la théorie du corps de classes. 11 était suggéré par la fagon dont
les idéles représentent un raffinement de la notion d’idéal. Indiquons som-
mairement comment les idéles apparaissent dans ce contexte. Partons d’un
corps de nombres algébriques k :[k:Q] < co. Le groupe de Galois
G = Gal (k/k) peut étre topologisé de fagon a avoir une correspondance
biunivoque entre sous-groupes fermés et extensions intermédiaires de
k/k (topologie de Krull). Ce groupe topologique G est compact et totale-
ment discontinu, et seul son abélianisé est relativement bien connu. On
remarque que le sous-groupe fermé [G, G] engendré par les commutateurs
correspond 2 la plus grande extension k,, de k (contenue dans k) ayant un
groupe de Galois abélien sur k: |

Gal (kp/k) = GJ[G, G] = Gy -

La théorie du corps de classes a pour premier but d’établir un isomor-
phisme canonique entre ce groupe topologique G, et un groupe de classes
d’ideles de k, plus précisément le groupe totalement discontinu des compo-
santes connexes de k*/k* ou de k!/k*. On a posé k, = k ® A (ces

A A A Q
adéles de k pourraient aussi €tre définis directement a I’aide des idéaux
premiers de k et des places « a I'infini », comme produit restreint de tous les
complétés de k.) Comme par exemple le groupe des classes d’idéaux de
I’anneau des entiers de k (modulo les idéaux principaux) est un quotient de
k;; [k*, il en résulte qu’a ce groupe C (k) de classes d’idéaux fractionnaires

de k correspond une extension abélienne k,. < k,, bien déterminée de k
(de degré fini) avec

Gal (k,,/k) = C (k),

Cette extension k,, (corps de classes absolu de Hilbert) peut étre caracté-
ris€e intrinséquement (par des propriétés de non ramification sur k), d’ou
son intérét dans la recherche de la structure du groupe C (k). L’analogue
additif des idéles, les adéles, n’a été introduit qu’ultérieurement et J. Tate
utilise encore dans sa thése (1950) le terme « valuation vector » pour ce
qu’on appelle aujourd’hui « adéle ». |
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Les adeles constituent un langage (voire un outil) idéal pour la formula-
tion de tous les problémes qui traitent d’'une connexion entre local et global,
ces termes €tant bien entendu pris dans leur acception en algébre commu-
tative, inspirée par le modele géométrique Spec (4) d’un anneau commu-
tatif 4. En un certain sens, on peut comparer les adéles en arithmétique aux
faisceaux en géométrie analytique, a condition de remplacer la cohomo-
logie des faisceaux par I’analyse (analyse harmonique, transformations
intégrales, ...) Par exemple, la suite exacte (10) (et les suites analogues qu’on
en dérive) effectue une liaison entre une situation rationnelle (ou globale,
sur Q) et une situation comparable adélique (ou locale, sur A) grace a la
présence du terme « correcteur » A/Q de nature mixte. Les groupes A et
A/Q se prétent mieux a I’analyse que le groupe Q discret. Un nouvel exemple
illustrera probablement mieux que des phrases ce phénomene. Nous partirons
de la thése de Tate (publiée pour la premicre fois en 1967 dans [2]) ou le
probléme était de dériver les équations fonctionnelles de la fonction zéta
et des fonctions L d’un corps de nombres par des méthodes locales. Choisis-
sons le cas le plus simple de la fonction zéta de Q (fonction z€ta de Riemann).
On peut définir une fonction canonique @ : A — R par produit de fonctions
locales @, : Q, — R ou |

gbw (t) = C€Xp ( —ntz) s

¢, = fonction caractéristique de Z, = Q,(peP) .

En effet, x = (x,) € A implique x, € Z, pour presque tout p € P et le pro-
duit infini

P (x) = H_ D, (x,)

peP

converge (presque tous ses facteurs valent 1). Les fonctions @, sont caracté-
risées par la propriété d’étre égales a leur transformées de Fourier (pour la
mesure de Haar autoduale sur Q,) pour tout p € P. La transformée de
Mellin de cette fonction canonique

(14) Z(s)=ZQ(s) =jAXd§(x)lx|;dxx (seC),

est une fonction d’une variable complexe s, définie dans un domaine qu’on
va préciser. On doit considérer cette fonction comme un invariant attaché
a Q (invariant que 'on pourra éventuellement comparer aux autres Z,
associés a des corps de nombres k puisque toutes ces fonctions sont définies
dans le méme plan complexe C). Voyons comment on peut calculer cet
invariant (dans un domaine de convergence absolue de l'intégrale). Une
méthode locale s’impose premiérement puisque l'intégrant est un produit
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de fonctions ne dépendant chacune que d’une coordonnée p-adique. Le
produit restreint sur lequel on intégre se décompose lui aussi et une analyse
précise des définitions justifie le calcul de (14) par produit d’intégrales
locales

Z(s)=112,(s = [T ax @o(xp) 1x,] 5 d% %,
P » Qo
qui peuvent se calculer individuellement. On a
Z,(s) = ij exp (—nt?) | t]5d*t =

= 2 j: exp (—nt2) " tdt = n s3I (s/2),

etaussi  Z,(s) = jZ _leplf,dxxp =
P S
= jup"Z}‘, | %, | ,d* x, =
k0
= Y p e =>0-p)"
k>0

(en choisissant la mesure multiplicative sur Q;'normalisée par la condition
de donner volume unité & Z; et donc aussi aux classes p* Z ). Ces intégrales
locales existent pour R e (s) > 0 et leur produit

(15) Z@) =112, =a#r@s)[[A-p™H" =
P P

= T ($5){(s)
est absolument convergent pour Re(s) > 1. Cest le domaine de conver-
gence absolue de I'intégrale (14).
Il y a une méthode plus globale de traiter I'intégrale (14) qui conduit a

son prolongement analytique. Séparons Iintégrale en deux portions
Z(s)y=2Z"(s)+ Z"(s)ou

Z'(8) = flap =1 @) x5 d* x
est une fonction entiére de s, et

Z'(s) = jlxlAél gp(x)lxb;dx X.

Pour calculer cette derniére intégrale, on peut commencer a rendre son
intégrant invariant sous Q* (le module idélique est déja invariant par les
multiplications rationnelles). Il ne reste ensuite plus qu’a intégrer sur les
classes d’idéles mod QX

Z°() = fis1=1 Y () | x|°d* x.
QX
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La formule sommatoire de Poisson va nous permettre de transformer
Pintégrant. En effet, avec @, (&) = @ (¢x), elle s’écrit

VA
2 0.8 =) 2.(9)
Q Q
N
ou I'on a introduit la transformée de Fourier @, de @,. Cette transformée
de Fourier se calcule en compléte analogie avec le cas classique en intro-
duisant une exponentielle normalisée e qui permet d’identifier A a son dual
de Pontryagin
AxA-C!
(x,y) > e(xy).

Ainsi
PN

(D) =], S0 e@)dy = [d(xp)e(Ey) dy =
= [P e@ Y Ix dy =[x 1271,

En mettant hors de la somme les termes d’indice £ = 0 dans la formule
de Poisson, et en tenant compte du fait que ¢ a été choisie de fagon a étre

VN
¢gale a sa transformée de Fourier avec @ (0) = & (0) = 1 on voit que
L+ Y &(&x) =[x+ x 'Y o719,
A A
Q Q*

On a donc montré que

Z°(s) = fper {Ix 17 =1+ [x|7P Y, (71O} [ x|I°d* x.

Qx

D’abord il s’agit de calculer

v |S— X =g 13— X X
fipiz 137 hdxx = [ #71d th/led X

1 ts—l 1
=fts_1dt/t=|: ]= :
0 s — 1 s —1

Ensuite il reste une intégrale a estimer:
f iz XY o719 3 1Pd* % =
Qx
= {521 2 OOV d*y =Z" (1-y),
Qx
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et cette intégrale se prolonge en fonction entiére. En résumé, on a trouve

" 1 1 ,
Z()=Z"(s)+2Z (s) = Z'(s) +r - ;-I-Z (1-ys).
On voit ici que Z (s) se prolonge comme fonction méromorphe en se€ C
avec un pole simple en s = 1 (résidu 1) et un pdle simple en s = 0 (résidu
— 1). De plus cette fonction prolongée satisfait I’équation fonctionnelle

(16) Z(s)=Z (=9, Z(s)=n"IE)(),

qui n’est autre que I’équation fonctionnelle de Riemann.

Dans sa thése, Tate a méme montré comment on peut dériver cette
équation fonctionnelle par une méthode locale, en démontrant des équations
fonctionnelles locales pour toutes les Z, (s) (peP). Ses méthodes ont été
généralisées par Jacquet et Langlands pour le groupe Gl, (au lieu de GlI,).

Donnons une application frappante du principe de calcul de fonctions
z€ta ou une intégrale adélique (transformée de Mellin) permet de passer
de données locales 4 un résultat global. 11 s’agit du résultat de base de la
théorie du groupe de Brauer:

(17) Soient M et M ' deux algébres centrales simples de rang n* fini sur Q.
On suppose que pour tout pe P, M, = M ® Q, est isomorphe a la
Q

localisée correspondante M , de M '. Alors M et M’ sont (globalement)
isomorphes.

Le principe de démonstration est le suivant. En se plagant dans le groupe
de Brauer (ou on considére comme triviales les algébres centrales simples
isomorphes aux algeébres de matrices M (n, Q), on voit qu’on est ramené
a voir que si une algébre a division M centrale sur Q est localement triviale,
i.e. isomorphe & une algébre de matrices pour tout p € P, alors M = Q:

M corps gauche de centre Q

M, isomorphe 2 M (n, Q,) pour p e P j =M =Q{r=.

Pour cela, on compare les invariants
Z y (s) (M corps gauche de centre Q) et Z y,. Q (s).

Puisque ces invariants peuvent se calculer par une méthode locale, I’hypo-
thése implique I'égalit€ Zy = Z 4, Q- D’autre part, le calcul global
que nous avons fait pour prolonger analytiquement Z Q s’applique avec
quelques modifications pour le prolongement de Z,, et montre que cette
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fonction se prolonge en fonction méromorphe ayant deux poles simples en
s = 0 et s = n. Mais le calcul local de la fonction zéta d’une algébre de
matrices peut étre effectué complétement en utilisant le théoréme des
diviseurs élémentaires et conduit a

'ZM(,,’Q)(S) =ZZ(s—-1)-...-Z(s—(n—-1) (Z =ZQ),

et montre donc que Z ., Q possede des poles simples en s = 0 et

s = n et des poles doubles en s = 1,2,...,n1—1. Cette fonction zéta ne
peut donc étre égale a la fonction z€ta d’une algébre a division quesin = 1,
et cela prouve que M = Q est triviale. C’est cette méthode que A. Weil a
choisie dans [8] pour montrer que I’lhomomorphisme canonique de localisa-
tion Br(Q) — [ Br(Q,) est injecti.

P

En conclusion, les adéles fournissent un langage pour traiter de problémes
d’arithmétique a l'aide d’analyse (entendue au sens d’analyse harmonique
dans les groupes abéliens localement compacts par exemple). Les intégrales
adéliques globales permettent parfois une comparaison profonde entre
propriétés locales et globales d’objets algébriques, et dans ce sens, on peut
comparer leur utilisation a celle de la cohomologie des faisceaux sur les
variétés analytiques. Mais ce langage, méme s’il permet une bonne formula-
tion des problémes, ne permet pas toujours de les résoudre. Il arrive au
contraire qu’une généralisation suggérée par son utilisation défie — et de
loin — toutes les méthodes connues et initie un vaste champ de conjectures ...
D’autre part, il est probable que l'utilisation des adéles va continuer a se
répandre et a influencer d’autres domaines mathématiques, comme elle I’a
fait récemment en topologie algébrique.
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