
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1974)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: DES ADÈLES: POURQUOI?

Autor: Robert, Alain

DOI: https://doi.org/10.5169/seals-46899

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-46899
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


DES ADÈLES: POURQUOI? 1

par Alain Robert

C'est en 1897 que Hensel introduit formellement pour la première fois

les nombres p-adiques. Il désire appliquer aux nombres algébriques les

techniques de développement en série de Laurent (ou de Puiseux dans le

cas ramifié) qui s'utilisent couramment dans la théorie des fonctions
algébriques sur les surfaces de Riemann. Par exemple, un nombre rationnel

a e Q admet un développement en série

(1) X anPn (0<a„<p)
n^nQ

(n'ayant qu'un nombre fini de coefficients an # 0 d'indices n négatifs)

pour chaque nombre premier p. L'indice n0 du premier coefficient non nul
(si a 7^ 0) est appelé ordre de a en p et dénoté par ordp (a). Cet entier
rationnel est l'exposant dep dans la décomposition de a en nombres premiers :

a fi pordp(a). Lorsque ordp (a) < 0, on dit que a présente un pôle en p
p

tandis que si ordp (à) > 0, on dit au contraire que a possède un zéro en p.
Hensel a d'ailleurs utilisé très tôt des développements du type (1) même s'ils

ne provenaient plus d'un nombre rationnel (en analogie avec les développements

de fonctions transcendantes sur les surfaces de Riemann), et il a

développé une algèbre de ces développements formels (rappelons que la
théorie générale des anneaux et des corps est précisément née au début
du xxe siècle, en particulier sous l'impulsion des idées de Hensel). Mais si

Hensel avait bien senti les simplifications qu'il pouvait apporter à certaines
démonstrations de théorie des nombres à l'aide de cette localisation, il
n'avait pas encore à disposition les notions topologiques (liées à celles d'espace
métrique) qui clarifient l'étude des nombres p-adiques. Dès 1910 néanmoins,
il peut calquer la théorie de Cauchy et faire de l'analyse p-adique, en définissant

en particulier, exponentielle et logarithmes p-adiques.
L'utilité des nombres ^-adiques apparaît clairement dans la recherche

de solutions d'équations diophantiennes. Par exemple soit F un polynôme
à n variables et à coefficients entiers. L'existence d'une solution entière

1 Exposé présenté au groupe des mathématiciens rhodaniens le 6 mai 1973.
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(xl9 xn) de l'équation F (xl9 xn) 0 implique l'existence de solutions

pour toutes les congruences

(2) F (x1,...,xn) 0 mod m (m>2).

Comme on sait bien, il suffit de considérer ces congruences modulo les

puissances pk de nombres premiers. Or il se trouve que les congruences

(3) F (x1, ...,xn) 0 mod pk

peuvent être résolues pour tout k > 1 si et seulement si F (xl9 xn) 0

a une solution (xl9 xn) à coordonnées dans l'anneau des entiers p-adiques
Zp (lemme de Hensel). L'anneau des entiers p-adiques Zp apparaît comme
limite des anneaux Z/pk Z : Zp lim Z/pk Z. L'avantage est ici que Zp est

intègre (alors que Zjpk Z avait des éléments nilpotents et admet un corps
de fractions

(4) Q, Zp® Q Zpip'1].
Z

Dans une première étape de la recherche de solutions entières, on pourra
essayer de résoudre F (xl9 xn) 0 dans tous les corps /sadiques Qp.
Il peut aussi être intéressant d'en rechercher les solutions réelles, par exemple

l'équation x2+y2 + l= 0ne saurait avoir de solutions entières Il
arrive que l'existence de solutions locales pour tout p (c'est-à-dire dans Qp

pour tout p) implique l'existence d'une solution globale (dans Q). C'est par
exemple le cas si F est une forme quadratique. Plus précisément, dénotons

par P l'ensemble des nombres premiers, par P la réunion de P et d'un
symbole oo, et par Qaj R. Alors si .Fest une forme quadratique à coefficients

rationnels en n variables, pour que F (xl9 xn) 0 ait une solution

non triviale x (x1? xn) A 0 à coordonnées xt entières (ou rationnelles),
il faut et il suffit que l'on puisse en trouver des solutions non triviales à

coordonnées dans Qp : 0 A x (xu xn) e Qnp pour tout p e P. C'est le

théorème de Hasse-Minkowski (cf. [5] Chap. IV, Théorème 8). On voit ici

que les nombres p-adiques doivent être placés sur un pied d'égalité avec les

nombres réels. En fait si on dénote par | |p la valeur absolue p-adique
de Q définie par

(5) \a\p=p-oripW (O^aeQ),

le corps Qp est le complété de Q pour la topologie définie par la métrique
p-adique dp (a, b) — | a — b \p. On voit ainsi mieux l'analogie entre les

corps p-adiques (peP) et le corps des nombres réels QM R complété de
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Q pour la distance définie par la valeur absolue usuelle \a\o0 \a\. Pour

obtenir des énoncés complets, il est souvent nécessaire de regarder simultanément

toutes les places p e P et d'associer à un nombre rationnel la famille

de ses développements en tous les nombres premiers p e P et sa coordonnée

réelle. Cela revient à plonger Q dans le produit de ses complétés H Qp à

l'aide de l'application diagonale. p

Prenons encore un exemple tiré de l'analyse classique pour illustrer

l'importance des nombres /sadiques, considérés simultanément avec des

nombres complexes. Partons d'une fonction analytique

(6) /(z) X anzn <AeZ)

dont le développement de Taylor à l'origine a tous ses coefficients entiers.

Il y a beaucoup de telles fonctions, par exemple / (z) 1/(1—z)

ou bien le discriminant A de la théorie des fonctions elliptiques A (z)

z Y\ (1—2")24 £ t (n) zn (les coefficients t (n) étant par définition
n^l

les coefficients de Ramanujan). Remarquons que si le rayon de convergence

p de la série (6) est strictement plus grand que 1, la convergence en z 1

implique que an tend vers 0 (par valeurs entières donc est nul pour n

assez grand. Dans ce cas donc, / est nécessairement une fonction polynomial.

E. Borel a donné la variante plus intéressante suivante de cet énoncé :

(7) Si une fonction analytique fi définie par un développement (6) à coefficients
entiers se prolonge en fonction méromorphe dans un cercle de rayon
p > 1, alors f se prolonge en fonction rationnelle sur C. 1)

Comme on le prévoit facilement, ce critère n'est pas très maniable dans
les applications et Dwork l'a grandement généralisé à l'occasion de sa

démonstration de rationalité de la fonction zêta d'une variété algébrique
définie sur un corps fini (cf. [3] § 4, Théorèmes 2 et 3). Le-critère de Dwork
s'applique aux fonctions analytiques / définies par un développement de

Taylor à l'origine ayant tous ses coefficients rationnels (et non plus seulement

entiers). Pour l'énoncer, il faut considérer les fonctions analytiques p-
adiques fp(peP) ayant même développement que / mais où la variable
z xp appartient à un complété Qp d'une clôture algébrique Qp de Qp (ces

1 Citons peut-être à ce propos le théorème de Nagy-Carlson: Si une fonction
analytique / admet un développement S anzn à coefficients entiers de rayon de convergence

1, alors ou bien /est rationnelle, ou bien |z| 1 est frontière naturelle de /. Nous
ne nous intéresserons qu'au cas ou / est rationnelle, aussi laisserons-nous de côté cet
aspect de la question.
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corps Qp sont complets et algébriquement clos, et jouent un rôle de domaine
universel analogue au corps C des nombres complexes). Une remarque
préliminaire s'impose. Si / (z) £ an zn est une fonction analytique
donnée par un développement ayant tous ses coefficients rationnels, et
si / se prolonge comme fonction rationnelle, alors, elle est quotient de deux

polynômes à coefficients rationnels (ou même entiers). C'est un théorème de

Fatou. Par conséquent l'algorithme de division des polynômes suivant les

puissances croissantes montre que seuls les facteurs premiers du terme
constant du dénominateur peuvent apparaître dans les dénominateurs des

coefficients an. En dénotant donc par S l'ensemble fini des diviseurs premiers
de ce terme constant, on voit que les coefficients an sont tous dans l'anneau
Z [S ] ~1 engendré par les entiers et les inverses des nombres premiers

p e S. Le théorème de Dworlc est alors le suivant.

(8) Pour qu une fonction analytique f définie par un développement ^ an zn

à coefficients rationnels représente une fonction rationnelle, il faut et il
suffit qu 'il existe une partie finie S c P avec ane Z [5]~1 (w>0) et des

nombres positifs rp(peS S u{co}) avec rp > 1, tels que fp se pro-
s

longe comme fonction méromorphe (quotient de deux holomorphes) dans

le disque | xp | < rp de Qppour tout p e S (Qo0 C).

La condition an g Z [S]-1 exprime simplement le fait que les nombres
rationnels an e TLp sont des entiers /?-adiques pour les nombres premiers

p$S, ou encore que | an | < 1 pour p eP — S. Donc les fonctions analytiques

fp sont holomorphes dans le disque unité | xp < 1 de Qp pour
p e P — S. En choisissant rp 1 pour p e P — S, la condition de produit
s'exprime plus symétriquement par n rP > 1- D'autre part, lorsque tous

p

les coefficients an sont entiers, on pourra prendre pour S l'ensemble vide,
et le critère ci-dessus redonne le résultat de Borel (7). En général au contraire,
on aura avantage à prendre dans (8)rœ p (rayon de convergence de la
série complexe de / ff), et d'aller « plus loin » dans un corps />-adique

Qp qui s'y prête Dwork lui-même utilise (8) sous la forme suivante: une
série à coefficients entiers qui a un rayon de convergence complexe p / 0

et qui se prolonge comme fonction méromorphe sur un corps p-adique Qp,

représente une fonction rationnelle.

J'espère que les exemples précédents montrent l'opportunité de tenir

compte de tous les complétés ^-adiques de Q et non seulement du complété

privilégié R Q^, et d'introduire un anneau contenant Q et tous les
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Qp (peP). Malheureusement, le premier candidat qui se présente à l'esprit,
le produit riQP> n'est pas localement compact (un produit d'espaces locale-

p

ment compacts ne peut être localement compact que si tous ses facteurs

sauf un nombre fini, sont compacts). L'astuce (complètement négligée par
Hensel et ses successeurs immédiats) consiste à se restreindre au sous-

anneau formé des familles (xp)pep ne présentant qu'un nombre fini de pôles :

xp e Jjp pour presque tous les peP. Ce produit restreint *)

(9) A {(xp) e Qp : e pour presque tout p eP}
p

est l'anneau des adèles. C'est le plus petit anneau contenant (des sous-

anneaux isomorphes à) Qp (peP) et Yl Zp. On munit A de la topologie de
p

groupe additif qui induit sur le sous-groupe R x Zp la topologie produit.
p

Ce sous-groupe est à la fois ouvert et fermé dans A (et localement compact
puisque les anneaux d'entiers /?-adiques sont compacts), et la multiplication
de A est continue. Puisqu'un nombre rationnel n'a qu'un nombre fini de

pôles (nombres premiers divisant son dénominateur), l'injection diagonale
canonique applique Q dans A, et il est facile de voir que la topologie induite

par A sur Q est la topologie discrète (canonique...). En effet, V
] — 1, + 1 [ x Yl Zp est un voisinage ouvert de 0 dans A par définition,
et les nombres rationnels qui tombent dans V doiventprimo : être des entiers

/7-adiques pour tout p eP, donc ne pas avoir de dénominateur, c'est-à-dire
être des entiers, secundo : avoir une image réelle dans l'intervalle ouvert
] - 1, + 1 [.

Ainsi on a bien Q n V {0}. Une propriété fondamentale de l'anneau
localement compact des adèles est la suivante: A est isomorphe (en tant
que groupe localement compact abélien additif) à son dual de Pontryagin.
Plus précisément, la suite exacte

(10) O-Q^.-A-A/Q-^O
admet pour duale (de Pontyagin) la suite exacte

0 <- A/Q <- A <- Qdîscr. <- 0.

Le quotient A/Q est donc compact (dual du groupe additif discret Q).
On pourra comparer la suite précédente aux suites autoduales

(11) 0 -> Zp -> Qp -> Qp/Zp -» 0 (peP)

1 La notion générale de produit restreint est due à Braconnier.
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(on a posé Zœ Z). D'ailleurs, la suite (10) n'est pas sans présenter une
analogie frappante avec la suite (11)^

(12) 0 —> Z —> R —> RJZj —> 0

puisque Q est discret dans A comme Z l'est dans R. On a mieux puisque
A/Q est connexe comme R/Z (une petite surprise puisque dans la définition
de l'anneau des adèles par l'égalité (9), tous les facteurs sauf R sont
totalement discontinus; il se trouve que ce facteur connexe a une image
dense dans le quotient), et on peut identifier A/Q au solénoïde lim R/N Z,

*~N

lui-même limite projective des revêtements du cercle (la relation d'ordre
filtrante sur l'ensemble des indices est fournie par la divisibilité puisqu'on
a des applications canoniques de transition R/iVZ->R/MZ lorsque N
est multiple de M Il est aussi intéressant de considérer le groupe multiplicatif

Ax des unités de A. Comme la topologie induite par A sur Ax ne rend

pas continue l'application x h» x-1, on préfère munir Ax de la topologie
induite par l'injection x [-> (x, x-1) de Ax dans A2. (Ainsi Ax G (A)
est muni de la topologie initiale relativement aux applications x |-> x et

x I—> x~1 de Ax dans A: on force l'inverse à être continu). C'est ce groupe
topologique Ax qui est le groupe des idèles. Il est clair que tout nombre
rationnel non nul définit une unité de A et que par conséquent Q x s'identifie
à un sous-groupe discret de Ax. Le quotient Ax/Qx n'est pas compact

pour la raison suivante. Tout idèle x (.xp)p a des composantes xpeQ *

satisfaisant xpe Z *
presque pour tout p e P. Donc le produit infini fj | xp \p

p

converge (il n'a qu'un nombre fini de facteurs # 1) et on a un morphisme
continu surjectif

(13) Ax -> Rx défini par x |-> | x | A ]J | xp \p

p

Le noyau de ce morphisme contient Q x : par exemple d'après (5)

1 2/15 \2 |(zéro simple en p 2),
| 2/15 |3 3 (pôle simple en p 3),
| 2/15 |5 5 (pôle simple en p 5),
| 2/15 |p =1 si p eP et p # 2,3,5 (unité />-adique),

I 2/15 U 2/15,

de sorte que le produit vaut bien 1. On entrevoit bien que ce genre d'argument

est général. Le module idèlique définit ainsi un morphisme continu
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surjectif Ax/Qx -> R qui empêche le quotient Ax/Qx d'être compact. Par

contre si on se restreint au sous-groupe A1/Qx formé des classes d'idèles

de module 1 (noyau du morphisme précédent), on obtient un groupe

compact.
Le terme idèle a été introduit par Chevalley en 1936 dans une rédaction

algébrique de la théorie du corps de classes. Il était suggéré par la façon dont
les idèles représentent un raffinement de la notion d'idéal. Indiquons
sommairement comment les idèles apparaissent dans ce contexte. Partons d'un

corps de nombres algébriques fc : [fc: Q] < oo. Le groupe de Galois

G Gai (k/k) peut être topologisé de façon à avoir une correspondance

biunivoque entre sous-groupes fermés et extensions intermédiaires de

kjk (topologie de Krull). Ce groupe topologique G est compact et totalement

discontinu, et seul son abélianisé est relativement bien connu. On

remarque que le sous-groupe fermé [G, G] engendré par les commutateurs

correspond à la plus grande extension kab de k (contenue dans k) ayant un

groupe de Galois abélien sur k:

Gal(fcjfc) G/[G~GI Gab.

La théorie du corps de classes a pour premier but d'établir un isomor-
phisme canonique entre ce groupe topologique Gab et un groupe de classes

d'idèles de k, plus précisément le groupe totalement discontinu des composantes

connexes de kxJkx ou de k\lkx. On a posé k. — k ® A (ces
A A A q

adèles de k pourraient aussi être définis directement à l'aide des idéaux
premiers de k et des places « à l'infini », comme produit restreint de tous les

complétés de k.) Comme par exemple le groupe des classes d'idéaux de

l'anneau des entiers de k (modulo les idéaux principaux) est un quotient de

k^/kx, il en résulte qu'à ce groupe C (k) de classes d'idéaux fractionnaires

de k correspond une extension abélienne knr c kab bien déterminée de k
(de degré fini) avec

Gai (kjk) C (k),

Cette extension knr (corps de classes absolu de Hilbert) peut être caractérisée

intrinsèquement (par des propriétés de non ramification sur k), d'où
son intérêt dans la recherche de la structure du groupe C (k). L'analogue
additif des idèles, les adèles, n'a été introduit qu'ultérieurement et'J. Täte
utilise encore dans sa thèse (1950) le terme «valuation vector» pour ce
qu'on appelle aujourd'hui « adèle ».
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Les adèles constituent un langage (voire un outil) idéal pour la formulation

de tous les problèmes qui traitent d'une connexion entre local et global,
ces termes étant bien entendu pris dans leur acception en algèbre commutative,

inspirée par le modèle géométrique Spec (A) d'un anneau commu-
tatif A. En un certain sens, on peut comparer les adèles en arithmétique aux
faisceaux en géométrie analytique, à condition de remplacer la cohomo-
logie des faisceaux par l'analyse (analyse harmonique, transformations
intégrales, Par exemple, la suite exacte (10) (et les suites analogues qu'on
en dérive) effectue une liaison entre une situation rationnelle (ou globale,
sur Q) et une situation comparable adélique (ou locale, sur A) grâce à la

présence du terme « correcteur » A/Q de nature mixte. Les groupes A et

A/'Q se prêtent mieux à l'analyse que le groupe Q discret. Un nouvel exemple
illustrera probablement mieux que des phrases ce phénomène. Nous partirons
de la thèse de Täte (publiée pour la première fois en 1967 dans [2]) où le

problème était de dériver les équations fonctionnelles de la fonction zêta

et des fonctions L d'un corps de nombres par des méthodes locales. Choisissons

le cas le plus simple de la fonction zêta de Q (fonction zêta de Riemann).
On peut définir une fonction canonique <P : A -> R par produit de fonctions
locales <Pp :QP-R où

#00 (0 exp —nt2),
@p fonction caractéristique de Zp a Qp (peP).

En effet, x (xp) e A implique xp e Zp pour presque tout p e P et le produit

infini
*(*) n

peP

converge (presque tous ses facteurs valent 1). Les fonctions <Pp sont caractérisées

par la propriété d'être égales à leur transformées de Fourier (pour la

mesure de Haar autoduale sur Qp) pour tout p e P. La transformée de

Mellin de cette fonction canonique

(14) Z (s) Z (s) îAx<P(x)\x\sAd*x(seC),

est une fonction d'une variable complexe s, définie dans un domaine qu'on
va préciser. On doit considérer cette fonction comme un invariant attaché
à Q (invariant que l'on pourra éventuellement comparer aux autres Zk
associés à des corps de nombres k puisque toutes ces fonctions sont définies

dans le même plan complexe C). Voyons comment on peut calculer cet

invariant (dans un domaine de convergence absolue de l'intégrale). Une
méthode locale s'impose premièrement puisque l'intégrant est un produit
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de fonctions ne dépendant chacune que d'une coordonnée /7-adique. Le

produit restreint sur lequel on intègre se décompose lui aussi et une analyse

précise des définitions justifie le calcul de (14) par produit d'intégrales
locales

Z (s) nzp(s)
p p Vp

qui peuvent se calculer individuellement. On a

Zco (s) J
Rx exp (-nt2) I Is

2 Jo exp (—nt2) f'1 d t 7i-s'2 f (s/2),

et aussi Zp(s) Jz _q
| xp | sp dxxp=

E p-ks a-
k^O

(en choisissant la mesure multiplicative sur Q * normalisée par la condition
de donner volume unité à Z* et donc aussi aux classespk Z*). Ces intégrales
locales existent pour R e (s) > 0 et leur produit

as) z (s) n Zp(s) nnan-*sr(is)C(s)
est absolument convergent pour R e (s) > 1. C'est le domaine de convergence

absolue de l'intégrale (14).

Il y a une méthode plus globale de traiter l'intégrale (14) qui conduit à

son prolongement analytique. Séparons l'intégrale en deux portions
Z (s) Z'(s) + Z " (s) où

Z' (s) $(x) \ x \ sAdx x

est une fonction entière de s, et

Z "(s) ^(x) I* lArfx * •

Pour calculer cette dernière intégrale, on peut commencer à rendre son
intégrant invariant sous Qx (le module idélique est déjà invariant par les

multiplications rationnelles). Il ne reste ensuite plus qu'à intégrer sur les
classes d'idèles mod Qx

z» Jûl-1 E $(tx)\x\
Qx



La formule sommatoire de Poisson va nous permettre de transformer
l'intégrant. En effet, avec $x (£) # (£.*), elle s'écrit

£*,(5)
Q Q

où l'on a introduit la transformée de Fourier <&x de <frx. Cette transformée
de Fourier se calcule en complète analogie avec le cas classique en
introduisant une exponentielle normalisée e qui permet d'identifier A à son dual
de Pontryagin

A x A -> C1

(x,y)e (xy).
Ainsi

lA <f>x 0) <È (çv) d y $<P(xy)e(£y)dy

^(y)e(^-1y)\xrAldy|x I"1 «(x"1©

En mettant hors de la somme les termes d'indice £, 0 dans la formule
de Poisson, et en tenant compte du fait que <£ a été choisie de façon à être

/s
égale à sa transformée de Fourier avec $ (0) # (0) 1 on voit que

1 M"1 + |X|
Qx Qx

On a donc montré que

2 "oo {i* r1 -1 +1* r1 E i* is^x * •

Q*

D'abord il s'agit de calculer

fV-'d" *JA/iQxdx*

Ensuite il reste une intégrale à estimer :

j lii^i i* r1 E r^x *
Qx

J|fei£<W)l>-rsdxj; z'(l-s),
Qx
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et cette intégrale se prolonge en fonction entière. En résumé, on a trouvé

Z (s) Z ' (s) + Z "(s) Z ' (s) + —î— - - + Z ' (1
s — 1 s

On voit ici que Z (s) se prolonge comme fonction méromorphe en 5gC
avec un pôle simple en s 1 (résidu 1) et un pôle simple en s 0 (résidu

— 1). De plus cette fonction prolongée satisfait l'équation fonctionnelle

(16) Z (s) Z (1 - s), Z (5) =7t~isr (£s) C (s),

qui n'est autre que l'équation fonctionnelle de Riemann.

Dans sa thèse, Täte a même montré comment on peut dériver cette

équation fonctionnelle par une méthode locale, en démontrant des équations
fonctionnelles locales pour toutes les Zp (s) (peP). Ses méthodes ont été

généralisées par Jacquet et Langlands pour le groupe Gl2 (au lieu de G^).
Donnons une application frappante du principe de calcul de fonctions

zêta où une intégrale adélique (transformée de Mellin) permet de passer
de données locales à un résultat global. Il s'agit du résultat de base de la
théorie du groupe de Brauer :

(17) Soient M et M' deux algèbres centrales simples de rang n2 fini sur Q.
On suppose que pour tout peP, Mp M ® Qp est isomorphe à la

Q
localisée correspondante M p

de M '. Alors M et M' sont (globalement)
isomorphes.

Le principe de démonstration est le suivant. En se plaçant dans le groupe
de Brauer (où on considère comme triviales les algèbres centrales simples
isomorphes aux algèbres de matrices M (n, Q), on voit qu'on est ramené
à voir que si une algèbre à division M centrale sur Q est localement triviale,
i.e. isomorphe à une algèbre de matrices pour tout peP, alors M — Q:

M corps gauche de centre Q
Mp isomorphe à M («, Qp) pour p e P

Pour cela, on compare les invariants

Z M (s) (M corps gauche de centre Q) et Z M(n> q} (j)

Puisque ces invariants peuvent se calculer par une méthode locale, l'hypothèse

implique l'égalité ZM Z M(n> q} D'autre part, le calcul global
que nous avons fait pour prolonger analytiquement Zq s'applique avec

quelques modifications pour le prolongement de ZM et montre que cette

=> M Q (n=ï).
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fonction se prolonge en fonction méromorphe ayant deux pôles simples en

^ 0 et s n. Mais le calcul local de la fonction zêta d'une algèbre de

matrices peut être effectué complètement en utilisant le théorème des

diviseurs élémentaires et conduit à

Zm(„,Q)(s) - Z (s)Z (s-l)-...-Z (s-(n-1)) (Z ZQ),
et montre donc que Z M(n q} possède des pôles simples en 51 0 et

s — n et des pôles doubles en s 1, 2,. n — 1 Cette fonction zêta ne

peut donc être égale à la fonction zêta d'une algèbre à division que si n 1,

et cela prouve que M — Q est triviale. C'est cette méthode que A. Weil a
choisie dans [8] pour montrer que l'homomorphisme canonique de localisation

B r (Q) -» Yl B r (Qp) est injectif.
p

** *

En conclusion, les adèles fournissent un langage pour traiter de problèmes
d'arithmétique à l'aide d'analyse (entendue au sens d'analyse harmonique
dans les groupes abéliens localement compacts par exemple). Les intégrales
adéliques globales permettent parfois une comparaison profonde entre

propriétés locales et globales d'objets algébriques, et dans ce sens, on peut

comparer leur utilisation à celle de la cohomologie des faisceaux sur les

variétés analytiques. Mais ce langage, même s'il permet une bonne formulation

des problèmes, ne permet pas toujours de les résoudre. Il arrive au
contraire qu'une généralisation suggérée par son utilisation défie — et de

loin — toutes les méthodes connues et initie un vaste champ de conjectures
D'autre part, il est probable que l'utilisation des adèles va continuer à se

répandre et à influencer d'autres domaines mathématiques, comme elle l'a
fait récemment en topologie algébrique.
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