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2. Cas de f\c (R+). On définit I0 en convenant que /0 0. Définissons

II. Soit a g (x) dx où g est à support dans R " et soit b (x) une fonction
C00, positive ou nulle, à support dans l'intervalle [1,2] et telle que

C b (t)dt 1.
J o

On pose co — b (x) d x et

1,(0)J* (g(t)
On a bien

dlt(a) a — œ J a

Pour n > 1, on définit ln par récurrence en posant

Ä.O) £,-iOi) A dx„ + (-1)"-1 m' {j j" (0 — (0 J a)dt)
-00 Rn-1 R "

où co' b(x1)b(x2). b(xn_x)dxx a a dx„_t

Cet opérateur transforme les formes à support compact, en formes à

support compact. On vérifie que £//„a a — côjaet comme avant on

remarque que l'on peut prendre co quelconque à support dans l'intérieur
R" telle que Jco 1, et construire ln (a) In (a) — In (co) Ja.

Montrons que si a g /\" (R+) alors In (a) (x) 0 pour tout x g dR + Ceci

est vrai pour n 0, 1. Supposons le vrai pour (n — 1). La formule définissant

In montre que
In (a) (x) /„_ x (<xx) (x) a d xn pour tout x e 3R+, mais /„_ x (olx) (x)
0 par hypothèse de récurrence.

3. Démonstration du théorème

(ii) implique (iii). Suivant Moser [1], on définit une famille à 1-para-
mètre de champs de vecteurs ut en posant

(*) i ("() h +o,

i (ut) rt étant le produit intérieur de xt et ut; c'est la (n— l)-forme définie

par
(i («,) t() (^! Tt(u„Ç, i) pour n - 1 champs de

vecteurs .,£„_!•

Comme at| d M0 et t, =£0, on a 0 et l'équation
d

_ (<pt) ut. $t admet une solution $t telle que id ; | d M id.
dt
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On a : <P* rt) <2>* + d [i (ut)it(j 0

par la condition (ii) et l'équation (*) (voir Sternberg [2] et Moser [1].)

(iii) implique (i) trivialement.

(i) implique (ii). Soit (Uùi=0...m le recouvrement du lemme 1, <pt les

cartes correspondantes; (2f) une partition de l'unité subordonnée à (U().

Posons ß\ (cp;1) * ()H T,) avec it dxt\dt \ c'est une w-forme à support

compact dans Rn ou R+.
Soit co une 72-forme à support compact dans R+ c= R" telle que Jco 1

et dont le support soit contenu dans l'intérieur de R+.
Alors coi (cpf1)* a un support qui ne rencontre pas 5R+ et

J©, 1.

D'après le lemme 2, on a

dllnfi ß't- dans <"/);([/;) c R"

où Jj, est l'opérateur du lemme2 construit à partir de 00^ Donc

<P*î dpß'i riß'i - (p*i(DtJß*dansU^,
dicpUnß'd - (äjß'ioù œ (p*0a>-,

on pose a- cp*(I'nß'ß et at£ a- ;

i

on a d a, £ t, - cä £ J /?• Tt - câ J t, t,
i i

par la condition (%).

Comme le support de ne rencontre pas dR+, d'après le lemme 2, on
& (Iln ß\) I dR+ 0, donc a\ et par conséquent a' s'annule sur d M.
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