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FORMES-VOLUME SUR LES VARIETES A BORD

par Augustin BANYAGA

1. Introduction

Soit M une variété différentiable. Une famille a 1-parametre de formes-
volume 7, est la donnée pour tout ¢ € [0, 1], d’'une forme différentielle de
degré maximum, partout non nulle, C*, et variant différentiablement avec 7.

Moser [1] a démontré qui si 7, est une famille & 1-paramétre de formes-
volume sur une variété différentiable M connexe et compacte sans bord,
la condition [, 7, = [4 7o, pour tout #, entrainait I'existence d’une isotopie
@, de M telle que &% 1, = 1,.

Nous donnons ici une généralisation de ce théoréme aux variétes
compactes, connexes, a bord, par une méthode qui évite 'emploi des
formes harmoniques. Notre résultat s’énoncera ainsi:

THEOREME. Soit M une variété différentiable orientable, a bord 9 M,
compacte et connexe de dimension n, 7, une famille a 1-paramétre de
formes-volume. Les conditions suivantes sont équivalentes:

() [t = [3 7o, poUr tout ¢
(i) II existe une famille a 1-paramétre de (n—1)-formes o, telles que
0t,/0t = da,eto, (x) = 0pourtout x e d M.

(1i1) II existe une isotopie &, de M telle que
dit, = 1,0, =1det @, |0 M = id.

2. Nous utiliserons les lemmes suivants:

Lemme 1. 1l existe un atlas (U;, ®i=o,....m» M < 00, de M ol tous les

U;sont des ouverts non videsde M telsque Uy = n U;et Uy n 0 M = ¢
2

les ¢; étant des difféomorphismes préservant I'orientation de U, sur

R*ouR}Y = {x = (x;...x,)eR"|x; >0} .

b
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Démonstration. Le lemme est trivial pour » = 1. Supposons n > 1.
Soit xo e M\ 0 M et ye M. Soit § une carte locale en y, c’est-a-dire un
diffcomorphisme d’un voisinage V, de y sur R” ou R. Soit x; un point de
V, différent de y et pris hors du bord. On choisit un chemin différentiable
c (t), évitant y et le bord et reliant x, & x; c’est-a-dire tel que ¢ (0) = x,
et ¢ (1) = x,. Ceci est possible en dimension > 1 par connexité.

D’aprés le théoréme d’extension des isotopies (voir Palais [4]), il existe
une isotopie H, de M telle que

H,(y) = y, H,(x,) = c(1), pour tout ¢.

Posons U, = H, (V,); c’est un ouvert contenant x, et y. Soit ¢, la carte de
source U, définie par ¢, = ¢, Hy'. Comme M est compact on peut
extraire du recouvrement {Uy}yeM un recouvrement fini Uy, ..., U,;
solent ¢4, ..., @, les cartes correspondantes. Comme x, € U, pour tout

m

i, n U, = U, # ¢. On diminue éventuellement U, pour que Uy nd M
i=1
= ¢ et qu’il existe une carte ¢, de U, sur R".

Désignons par A? (R"), (respectivement A% (R})) I'espace des p-formes
de classe C”, a support compact dans R” (respectivement dans R})) . On
le munit de la topologie suivante: on dira qu’une suite de formes {®,}ens
de coeflicients ¢,"* *** "7, tend vers 0 dans AL (R") (ou A? (RY)) si et seule-
ment si leurs supports restent dans un compact fixe K et pour tout multi-
indice o = (ay, oy, ..., ®,) lessuites D* (pvil +++'? tendent uniformément vers
0 quand v — o0.

Le bord & R} de RY est le sous-espace { x = (xy, ..., x,) e R" | x; = 0},
et 'intérieur de R est R} \ 0 R}.

Lemme 2. Pour toute forme w € A, (R}), & support dans l'intérieur de
R% et telle que f w = 1, il existe un opérateur
15 Ne(RY) = AR (resp. I7: Az (RE) = A7 (RY))

linéaire et continu au sens de la topologie mentionnée plus haut et tel que
I’on ait

DdI() =a—ofa yvoep(RY,

2) (I () (x) = 0,y xedRY.
Remarques

1) Dans la suite I, sera désigné par I, seulement.
2) Ce lemme est une modification d’'un lemme de de Rham [3].



— 129 —

Démonstration.

1. Cas de p;(R"). On construit /, par récurrence en convenant que
I, = 0 et en choisissant une forme particuliere

0 = a(xlja(xz)...a(xn)dxl Adx, A ... Adx,

ol a(¢) est une fonction quelconque, de classe C*®, positive ou nulle, a
support dans I'intervalle [1, 2] et telle que f+: a(t)dt = 1. 1l est clair que

Jo = 1.
Désignons par d’ Iapplication de A" (R") dans A""! (R") définie par

n—1

d’ -——igldxi A0l0x;.Onad =d’ +dx, A 0]0 x,,

® =0 Aa(x,)dx,,

/

avec o =a(xy)...a(x,_)dx; A ... ANdx,_

et toute forme o e A" (R") s’écrira o = o4 (x,) A d x, ou ay (x,) est une
(n—1)-forme dans R"~! (x, étant pris comme paramétre). Suivant [3], on
pose

L) = Doy () A d, + (=10 (§ (fay (9 —a 0 Ja) 1}

C’est bien un opérateur linéaire et continu. La propriété annoncée se
vérifie par un calcul direct.

dl,a = d(I,-; () Adx,) + (=D td(o'{]..}),
d(I,-1(o;) Adx,) = <d’ +dx, /\a—a) (I,-1 (1) Adx,)

-

=d’ (In—l (061)) A dxn
= (oy —'fay) A dx,, par hypothése de récurrence,
= a — (o' Adx,) [ oy .
D’autre part
0 0
<d'+dxn-é——> (0'{..}) =dx, A &

X, 0x,,
= (=1 "o’ Adx,)(Joy (x,) —a (x,)f)
=(=D"" o Adx,(fo; (x)) — (=1 ' Aa(x,)dx, (Jo),

de sorte que d I, () = o0 — @ o

-3

Soit maintenant une autre n-forme w A support compact dans RI et
telle que [w = 1; on définit I, (x) = I, («) — I, (w) [o et on a dI,(a)
— -0
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2. Cas de N.(R}). On définit I, en convenant que I, = 0. Définissons
I,. Soit« = g (x)dx ol g est a support dans R} et soit b (x) une fonction
C”, positive ou nulle, a support dans lintervalle [I,2] et telle que

[Tb@yde=1.
On pose @ = b(x)d x et
I, (o) = j: (g(O—b() [a)dt.

On a bien
dl, (0) =a —@[o.

Pour n > 1, on définit I, par récurrence en posant

L) = Iy ) A dx, + (=0 0 (] (] a®=b) o) dy

— 0 Rn—

ouw =b(x)b(x,)...b(x,—)dxy A ... AdXx,_,.

Cet opérateur transforme les formes a support compact, en formes a
support compact. On vérifie que d I, 0 = o« — @ f o et comme avant on
remarque que I’on peut prendre @ quelconque & support dans lintérieur
R telle que _f ® = 1, et construire 1, (&) = I, () — I, (w) foc.

Montrons que si o € A, (RY) alors 1, («) (x) = O pour tout x e R’ Ceci
est vrai pour n = 0, 1. Supposons le vrai pour (n—1). La formule définis-
sant /, montre que

I, () (x) = I,_; () (x) Ad X" pour tout xe dRY, mais 7,_; (z) (x)
= 0 par hypothése de récurrence.

3. Démonstration du théoréme

(i) implique (iii). Suivant Moser [1], on définit une famille & 1-para-
métre de champs de vecteurs u, en posant

(*) i(ut) Ty + o = 03

i (u,) t, étant le produit intérieur de 7, et u,; c’est la (n—1)-forme définie
par

(i () ;) (&g ... &u 1) = 7 Uy, &g oo &y y) pOUr m — 1 champs de vec-
teurs €,,..., &,

Comme oc,laM =0e 7,#0, on a utlaM = 0 et I’équation

d : : .
" (?,) = u,. &, admet une solution @, telle que ¢, = id ; d>t| oM =id.
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