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FORMES-VOLUME SUR LES VARIÉTÉS A BORD

par Augustin Banyaga

1. Introduction

Soit M une variété différentiable. Une famille à 1-paramètre de formes-

volume xt est la donnée pour tout t e [0, 1], d'une forme différentielle de

degré maximum, partout non nulle, C00, et variant différentiablement avec t.

Moser [1] a démontré qui si xt est une famille à 1-paramètre de formes-
volume sur une variété différentiable M connexe et compacte sans bord,
la condition JM xt JM t0, pour tout t, entraînait l'existence d'une isotopie
<Pt de M telle que xt t0.

Nous donnons ici une généralisation de ce théorème aux variétés

compactes, connexes, à bord, par une méthode qui évite l'emploi des

formes harmoniques. Notre résultat s'énoncera ainsi:

Théorème. Soit M une variété différentiable orientable, à bord d M,
compacte et connexe de dimension n, xt une famille à 1-paramètre de

formes-volume. Les conditions suivantes sont équivalentes :

0) Jm t, Jm t0, pour tout t

(ii) Il existe une famille à 1-paramètre de (n— Informes oct telles que
ô xjd t dcctetoct (x) 0 pour tout x e 8 M.

(iii) Il existe une isotopie 4>t de M telle que

~ id et I S M id.

2. Nous utiliserons les lemmes suivants:

Lemme 1. Il existe un atlas (Ub _.>m,rn< oo, de M où tous les
m

Ui sont des ouverts non vides de M tels que U0 en Ui et U0 n d M </>,

i= 1

les (pi étant des difféomorphismes préservant l'orientation de 17; sur
R" ou R" {x(x: x„) e R" | Xj > 0}
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Démonstration. Le lemme est trivial pour n 1. Supposons n > 1.

Soit x0eM\dM et ye M. Soit i// une carte locale en y, c'est-à-dire un
difféomorphisme d'un voisinage Vy de y sur R" ou R+. Soit x1 un point de

Vy différent de y et pris hors du bord. On choisit un chemin différentiable
c (t), évitant y et le bord et reliant x0 k xt c'est-à-dire tel que c (0) x0
et c (1) xx. Ceci est possible en dimension > 1 par connexité.

D'après le théorème d'extension des isotopies (voir Palais [4]), il existe

une isotopie Ht de M telle que

Ht(y) y, Ht(xx) c(t), pour tout t.

Posons Uy — H0 (Vy); c'est un ouvert contenant x0 et y. Soit <py la carte de

source Uy définie par cpy xj/0 Hq l. Comme M est compact on peut
extraire du recouvrement {Uy)yeM un recouvrement fini Uu Um;

soient cpu s cpm les cartes correspondantes. Comme x0e U1 pour tout
m

i, n Ui — U0 ^ (j). On diminue éventuellement U0 pour que U0 n d M
i 1

4> et qu'il existe une carte (p0 de U0 sur R".

Désignons par /\^ (Rn), (respectivement /\* (R+)) l'espace des ^-formes
de classe C00, à support compact dans R" (respectivement dans R+)) On
le munit de la topologie suivante: on dira qu'une suite de formes {(pv}veN,

de coefficients cpv11 ' • 'lp, tend vers 0 dans /\£ (Rn) (ou /\J (R+)) si et seulement

si leurs supports restent dans un compact fixe K et pour tout multi-
indice a (al5 a2, ctn) lessuites Da cpvn "'lp tendent uniformément vers
0 quand v oo.

Le bord d R+ de R+ est le sous-espace { x (xu xn) e Rn I *i °}>
et l'intérieur de R" est R+ \ ô R+.

Lemme 2. Pour toute forme œ e y\" (R+), à support dans l'intérieur de

R+ et telle que Joj 1, il existe un opérateur

/ A" (R") -> Ar1 (R") (resp. /»: A"c(R:> 1 (RJ))

linéaire et continu au sens de la topologie mentionnée plus haut et tel que
l'on ait

1) d I ® (a) a — œ j a, y a e a" (rm)?

2) (/?(a))(x) 0, y * e d R+

Remarques

1) Dans la suite I„ sera désigné par In seulement.

2) Ce lemme est une modification d'un lemme de de Rham [3].
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Démonstration.

1. Cas de /\" (Rn). On construit ln par récurrence en convenant que
70 0 et en choisissant une forme particulière

œ a (xx) a (x2)... a (x„) dxl a dx2 a a dxn

où a (t) est une fonction quelconque, de classe C00, positive ou nulle, à

J+
00

a(t)dt 1. Il est clair que
_ 00

I® L
Désignons par d' l'application de /\r (R") dans f\r+1 (Rn) définie par

K-l
d ' Y, d xt a ôjô xt. On a d d ' + d xn a djd xn,

i= 1

05 œf a a (xn) d xn

avec co' a (yq). a (xn_1) dx1 a a d xn_1

et toute forme a e /\n (Rn) s'écrira a (xn) a d xn où a1 (x„) est une
(n — l)-forme dans R"-1 (xn étant pris comme paramètre). Suivant [3], on
pose

xn
!„(a) 4-1 Oi) a dxn+ (-1)"-1 û)'{J •

— 00

C'est bien un opérateur linéaire et continu. La propriété annoncée se

vérifie par un calcul direct.

dlna d(In_1(cq) Adx„)+ -1)""1 d(co' {J ...}

d (/„-1 (ai) a dx„) (d' + dx„ a dCj (oq) a

d'(J„_i(ai)) A d

(oq — a/Joq) a dxn, par hypothèse de récurrence,
a — (a/ a dxn) j oq

D'autre part

((-I)"-1«' Adx^^a^x^-aix^cc)
(-1 y1 m'a i(x„)) -(-l)"-1®' A a(x„)dx„(ja),

de sorte que dI„(a)a — mJa.

Soit maintenant une autre //-forme œ à support compact dans R" et
telle que Jeo 1; on définit /„(a) ï„ (a) - /„ (co) J oc et on a d /„ (a)

a — co J a.
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2. Cas de f\c (R+). On définit I0 en convenant que /0 0. Définissons

II. Soit a g (x) dx où g est à support dans R " et soit b (x) une fonction
C00, positive ou nulle, à support dans l'intervalle [1,2] et telle que

C b (t)dt 1.
J o

On pose co — b (x) d x et

1,(0)J* (g(t)
On a bien

dlt(a) a — œ J a

Pour n > 1, on définit ln par récurrence en posant

Ä.O) £,-iOi) A dx„ + (-1)"-1 m' {j j" (0 — (0 J a)dt)
-00 Rn-1 R "

où co' b(x1)b(x2). b(xn_x)dxx a a dx„_t

Cet opérateur transforme les formes à support compact, en formes à

support compact. On vérifie que £//„a a — côjaet comme avant on

remarque que l'on peut prendre co quelconque à support dans l'intérieur
R" telle que Jco 1, et construire ln (a) In (a) — In (co) Ja.

Montrons que si a g /\" (R+) alors In (a) (x) 0 pour tout x g dR + Ceci

est vrai pour n 0, 1. Supposons le vrai pour (n — 1). La formule définissant

In montre que
In (a) (x) /„_ x (<xx) (x) a d xn pour tout x e 3R+, mais /„_ x (olx) (x)
0 par hypothèse de récurrence.

3. Démonstration du théorème

(ii) implique (iii). Suivant Moser [1], on définit une famille à 1-para-
mètre de champs de vecteurs ut en posant

(*) i ("() h +o,

i (ut) rt étant le produit intérieur de xt et ut; c'est la (n— l)-forme définie

par
(i («,) t() (^! Tt(u„Ç, i) pour n - 1 champs de

vecteurs .,£„_!•

Comme at| d M0 et t, =£0, on a 0 et l'équation
d

_ (<pt) ut. $t admet une solution $t telle que id ; | d M id.
dt
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On a : <P* rt) <2>* + d [i (ut)it(j 0

par la condition (ii) et l'équation (*) (voir Sternberg [2] et Moser [1].)

(iii) implique (i) trivialement.

(i) implique (ii). Soit (Uùi=0...m le recouvrement du lemme 1, <pt les

cartes correspondantes; (2f) une partition de l'unité subordonnée à (U().

Posons ß\ (cp;1) * ()H T,) avec it dxt\dt \ c'est une w-forme à support

compact dans Rn ou R+.
Soit co une 72-forme à support compact dans R+ c= R" telle que Jco 1

et dont le support soit contenu dans l'intérieur de R+.
Alors coi (cpf1)* a un support qui ne rencontre pas 5R+ et

J©, 1.

D'après le lemme 2, on a

dllnfi ß't- dans <"/);([/;) c R"

où Jj, est l'opérateur du lemme2 construit à partir de 00^ Donc

<P*î dpß'i riß'i - (p*i(DtJß*dansU^,
dicpUnß'd - (äjß'ioù œ (p*0a>-,

on pose a- cp*(I'nß'ß et at£ a- ;

i

on a d a, £ t, - cä £ J /?• Tt - câ J t, t,
i i

par la condition (%).

Comme le support de ne rencontre pas dR+, d'après le lemme 2, on
& (Iln ß\) I dR+ 0, donc a\ et par conséquent a' s'annule sur d M.
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