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solution, tandis que le calcul n'y est pour rien. J'ai donc cru utile d'exposer
ici, comme un exemple de géométrie de position, la méthode que j'ai trouvée

pour résoudre les problèmes de ce genre.»
Avant de poursuivre, remarquons ceci. D'une façon schématique,

on peut répartir les découvertes mathématiques en deux classes:

— Il y a pour commencer celles qui sont autant d'une époque que
d'un homme, celles qui s'inscrivent naturellement dans le continuum de

la pensée, en bref, celles qui n'auraient pas pu ne pas être. « Lorsqu'il a

neigé tout l'hiver durant, la patte d'un lièvre suffit à déclencher l'avalanche.»

— Et puis, il y a les découvertes qui sont accidentelles, qui ne s'inscrivent

pas dans le cadre d'un temps, qui font bande à part.

Le problème des ponts, qui est peut-être l'acte de naissance de la topo-
logie, appartient à cette deuxième classe: il n'eut guère d'influence sur le

développement de la topologie. Il devait en aller autrement du théorème
d'Euler sur les polyèdres.

§ 3. — Le théorème d'Euler sur les polyèdres

3.1 Euler : Lorsqu'on se propose de désigner les lignes polygonales
du plan, il faut se rappeler le nombre des côtés qui la limitent. Vers 1750,

Euler recherche une classification analogue pour les polyèdres ; il remarque
que le nombre des sommets peut à ce point différer du nombre des faces,

qu'il faut les indiquer tous deux (tétraèdre hexagone, pentaèdre hexagone,
etc.). Cette classification n'est pas non plus

' satisfaisante, et se présente
alors naturellement l'idée de faire appel au troisième nombre caractéristique :

le nombre des arêtes. Cependant, comme le montre l'examen de quelques

cas, ce nombre est déterminé par les deux autres. De cette dernière constatation

découle ce qu'il est convenu d'appeler le théorème d'Euler pour les

polyèdres, publié en 1752: dans tout polyèdre oc0 — + a2 — 2 (où

a0, a1? oc2 représentent respectivement le nombre de sommets, d'arêtes

et de faces) *).

L'importance de ce théorème pour notre sujet apparaît clairement si

l'on songe que l'histoire de la topologie, jusqu'en 1851, se confond, à de

rares exceptions près, avec l'histoire du dit théorème. Aussi doit-on s'y
arrêter quelque peu.

1 On accorde parfois à Descartes la paternité de ce théorème; j'ai examiné, dans
l'ouvrage cité à la page 1, (pp. 8-13) ce qu'il faut penser de cette opinion.
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Il faut d'abord observer que l'énoncé d'Euler est trop général; le

théorème n'est en effet valable que pour les polyèdres homéomorphes à

la sphère. Le nombre a0 — cc1 + a2, qu'on appelle la caractéristique

d'Euler, est un invariant topologique, et le théorème d'Euler est une

proposition de Y analysis situs. Aussi curieux que cela puisse paraître, Euler

ne l'a pas remarqué, lui qui avait créé la topologie quelques années plus

tôt. Il ne comprit donc pas le véritable intérêt de la proposition, lequel

ne pouvait d'ailleurs être mis en évidence que par celui qui montrerait

qu'elle n'est pas toujours vraie, comme devait le faire Lhuilier.
La démonstration qu'Euler donne de son théorème n'est pas correcte 1).

Il faut attendre 1794 pour rencontrer la première démonstration
satisfaisante, pour les polyèdres convexes. On la doit à Legendre.

3.2 Lhuilier: Simon Lhuilier est né à Genève en 1750. Ses premiers

travaux portent sur le problème de l'isopérimétrie dans la pyramide. Son

Exposition élémentaire des principes des calculs supérieurs remporte en 1786

le grand prix mathématique de l'Académie de Berlin. Après quelques
années de préceptorat à Varsovie, il regagne Genève, où il enseigne jusqu'en
1825. Il meurt en 1840.

Dans un mémoire publié en 1813, Lhuilier fait voir que le théorème

d'Euler a des exceptions; il les analyse minutieusement. Son principal
résultat est que pour un polyèdre percé de n cavités, qui le traversent de

part en part, on a a0 — oc1 + a2 — 2 (n— 1). Le nombre n est le genre
du polyèdre, qui joue un rôle de premier plan en topologie des surfaces.

3.3 von Staudt : Lhuilier est donc le premier à remarquer que l'énoncé
d'Euler souffre de nombreuses exceptions. Il doit cependant se contenter
de décrire ce qu'on pourrait nommer, se plaçant dans l'esprit de l'époque,
des cas pathologiques, sans être à même de les caractériser par des

propriétés géométriques. C'est en 1847 que von Staudt présente enfin le théorème
d'Euler avec des hypothèses satisfaisantes: «Lorsque l'on peut joindre
chaque sommet d'un polyèdre à tout autre par une ligne formée d'arêtes,
et lorsque sa surface est partagée en deux parties, par toute ligne fermée

composée d'arêtes, passant au plus une fois par un même sommet, on
a... » 2).

3.4 Schläfli : Ludwig Schläfli est né à Berne en 1814; il enseigne au
gymnase de Thoune jusqu'en 1848, puis à l'Université de Berne jusqu'à

1 Voir op. cité (pp. 16-19).
2 On trouvera la remarquable démonstration de von Staudt dans l'ouvrage cité

p. 28.
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sa mort, survenue en 1895. Ludwig Schläfli est l'un des plus grands
mathématiciens de son temps, et il faut le placer immédiatement après Euler
dans la hiérarchie des mathématiciens suisses. On lui doit de remarquables
découvertes dans tous les domaines des mathématiques : à côté de quelques
mémoires sur les fonctions elliptiques, la théorie des nombres et la théorie
des systèmes d'équations algébriques, il s'est occupé avec brio de la théorie
des surfaces du troisième ordre, de la théorie des polyèdres de l'espace
à n dimensions; il est le co-inventeur de la loi d'inertie de Sylvester; il a

découvert la non-orientabilité du plan projectif, la réduction des matrices

orthogonales ; en géométrie différentielle, c'est lui qui a trouvé les conditions

pour qu'une variété soit à courbure constante (il faut que ses géodésiques

apparaissent comme droites dans un certain système de coordonnées).
Il s'est intéressé au problème des rapports entre les formes non euclidiennes

et l'espace physique, etc. Apprécié à sa juste valeur par tous les grands
de la mathématique de son temps, il reçoit en 1870, consécration suprême,
le prix Steiner de l'Académie de Berlin 1. Vers 1850, Schläfli met la dernière
main à un manuscrit d'un intérêt considérable. Il décrit lui-même son
travail comme «... visant à fonder et à développer un nouveau rameau
de l'analyse, qui soit, en même temps, une géométrie analytique à 2 et
3 dimensions. Comme la géométrie ordinaire peut être nommée théorie
d'un continu trois fois étendu, j'ai nommé ma théorie, théorie d'un continu
multiplement étendu.» Malheureusement, l'ampleur du mémoire empêche

sa publication; il ne voit finalement le jour qu'en 1901, six ans après la

mort de son auteur.
Son importance pour notre histoire provient de ce qu'il contient la

n- 1

relation £(—l)mam + (— 1)" 1, qui est la généralisation du théorème
î

d'Euler au cas de l'espace à n dimensions.

§ 4. — Gauss-Listing

Après un siècle d'histoire, le théorème d'Euler a parcouru toutes les

étapes réservées à un honnête théorème: apparition empirique, énoncé

approximatif, démonstration dans un cas particulier, énoncé exact,
généralisation. On doit cependant remarquer que, pendant tout ce siècle consacré

au théorème d'Euler, on n'a guère parlé de topologie ; ni Euler, ni Legendre,

1 Voir J. J. Burckhardt. Ludwig Schläfli, Birkhaüser, Basel 1948, 23 p.
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