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PETITE ENFANCE DE LA TOPOLOGIE ALGÉBRIQUE

par Jean-Claude Pont

§ 1. — Introduction

Cet article, tiré d'une conférence que j'ai faite au Cercle mathématique
de Lausanne au mois de février 1973, résume, quelque peu sommairement,

une étude sur la topologie algébrique avant les travaux de Poincaré *).

En 1679, Leibniz forgea le terme analysis situs, repris par Euler, Gauss,

Riemann, Poincaré. Le vocable topologie, introduit par Listing en 1836,

l'a maintenant remplacé.
Bien qu'on ne le trouve nulle part écrit, les figures étudiées par les

mathématiciens de la période qui nous occupe sont toujours supposées

triangulares, c'est-à-dire qu'on peut les recouvrir par un nombre fini ou
infini dénombrable de segments, de triangles, de tétraèdres, etc. Ces figures
se prêtent donc par nature à une décomposition polyédrale, qui à son tour
est représentable par un schéma, dont l'étude combinatoire permet d'analyser,

au point de vue topologique, la figure qui le définit. Cette attitude
est assez restrictive pour éliminer les ensembles dont l'étude topologique
entraîne des difficultés ensemblistes, tout en étant suffisamment large pour
englober presque toutes les figures intéressantes. Le propre de la topologie
combinatoire est donc de substituer des schémas aux ensembles de points
considérés. Or l'étude de ces schémas relève de l'algèbre linéaire et de

la théorie des groupes. L'algèbre prend ainsi possession de la topologie
combinatoire. Cela explique pourquoi l'expression topologie combinatoire
fut remplacée, vers 1940, par la dénomination topologie algébrique, mieux
adaptée aux méthodes de cette science. Il serait donc vain de chercher
une solution de continuité entre la topologie combinatoire des origines
et la topologie algébrique.

La notion de fonction continue est centrale en topologie; les propriétés
que l'on établit dans cette discipline sont donc intimement liées à celles

1 Jean-Claude Pont, La topologie algébrique, des origines à Poincaré, Presses
Universitaires de France, Paris 1974.



des fonctions continues. Or, à nul endroit la fonction continue n'est davantage

chez elle qu'en analyse. De là à concevoir une étroite corrélation
entre ces deux disciplines, il n'y a qu'un petit pas, allègrement franchi
par les mathématiciens du xxe siècle. Prenant pour réflexion la fonction
continue, qu'elle rapporte aux concepts de voisinages ouverts et fermés,
la topologie générale prend rapidement ses distances à l'égard du modèle

que lui fournit l'espace euclidien, pour s'élever à un haut degré de généralité

en raisonnant sur des ensembles quelconques, dont des parties
convenablement choisies sont considérées a priori comme des ensembles ouverts.
La fonction continue se définit ipso facto et avec elle apparaît le problème
de la caractérisation topologique de ces ensembles. Ce point de vue
s'est développé à partir des notions d'espace métrique (M. Fréchet, 1906)

et d'espace topologique (F. Flausdorlf, 1914). Vers 1925, les deux
topologies, aux traits pourtant si fortement marqués, aux méthodes si nettement
difîerentiées dans la première période, tendent à se confondre à la suite
des travaux de Brouwer, Lefschetz, Alexandrolf, Hopf et tant d'autres F

L'origine de la topologie et les travaux de Poincaré sont les limites
naturelles de cette histoire. Avec les recherches du grand savant français
— qui écrit à lui seul à peu près autant de pages sur la topologie que tous
les auteurs rencontrés dans notre histoire — / 'analysis situs gagne en effet

ses lettres de noblesse, et devient une discipline autonome des

mathématiques.

§ 2. — Les ponts de Koenigsberg

L'histoire de la topologie commence peut-être en 1736, quand Euler
reconnaît un aspect particulier dans un problème que rien, de prime abord,
ne distingue de ses homologues de la géométrie élémentaire. Il s'agit du

problème des ponts de Koenisgberg qu'Euler pose en ces termes: «A
Koenigsberg, en Prusse, il y a une île A appelée le Kneiphof, entourée
d'un fleuve qui se partage en deux bras, comme on peut le voir sur la

1 On trouvera des précisions sur la genèse de la topologie ensembliste jusqu'aux
travaux de Hausdorff dans le livre de J. H. Manheim, The genesis ofpoint set topology,
Pergamon Press, New-York 1964.

Pour quelques développements plus récents, voir H. Hopf, Ein Abschnitt aus der
Entwicklung der Topologie, Jahresbericht der Deutschen Mathematiker-Vereinigung,
pp. 182-192. Bd. 6, 1966.

S. Lefschetz, The early development of algebraic topology, Boletin da sociedade
Brasi/iera de matematica, pp. 1-48, 1970.

J. Bollinger, Geschichtliche Entwicklung des Homologiebegriffes, Archive for
history of science, Vol. 9, number 2, 1972, pp. 94-166,
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figure 1, mais les bras de ce fleuve sont garnis de sept ponts a, b, c, d, e,

f, g, et l'on proposait cette question sur ces ponts: une personne peut-elle

s'arranger de manière à passer une fois sur chaque pont, mais une fois

seulement? Les uns affirmaient que cela était possible; d'autres niaient;

mais personne ne pouvait prouver. Quant à moi, j'ai fait de ce problème

le suivant beaucoup plus général: quelle que soit la figure du fleuve et sa

distribution en bras, et quel que soit aussi le nombre de ponts, trouver si

une personne peut traverser le fleuve en passant une seule fois sur chaque

pont.»

L'important ici n'est pas tant la solution d'Euler, pas plus que la méthode

qu'il utilise, mais le commentaire qui accompagne ce problème: «Outre
cette partie de la géométrie qui traite des grandeurs et qui a été de tout
temps cultivée avec beaucoup de zèle, il en est une autre, jusqu'à nos jours
complètement inconnue, dont Leibniz a fait le premier mention et qu'il
appela géométrie de position. D'après lui, cette partie de la géométrie
s'occupe de déterminer seulement la position et de chercher les propriétés
qui résultent de cette position; dans ce travail, il n'est besoin ni d'avoir
égard aux grandeurs elles-mêmes, ni de les calculer ; mais il n'est pas encore
assez bien établi quels sont les problèmes de ce genre appartenant à la
géométrie de position, et quelle méthode il faut employer pour les résoudre ;

c'est pourquoi lorsque récemment il fut question d'un problème qui semblait,
à la vérité, se rattacher à la géométrie ordinaire, mais dont cependant
la solution ne dépendant, ni de la détermination de grandeurs, ni du calcul
de quantités, je n'ai point balancé à le rapporter à la géométrie de position,
d'autant plus que les considérations de position entrent seules dans la

L'Enseignement mathém.. t. XX. fasc. 1-2. 8
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solution, tandis que le calcul n'y est pour rien. J'ai donc cru utile d'exposer
ici, comme un exemple de géométrie de position, la méthode que j'ai trouvée

pour résoudre les problèmes de ce genre.»
Avant de poursuivre, remarquons ceci. D'une façon schématique,

on peut répartir les découvertes mathématiques en deux classes:

— Il y a pour commencer celles qui sont autant d'une époque que
d'un homme, celles qui s'inscrivent naturellement dans le continuum de

la pensée, en bref, celles qui n'auraient pas pu ne pas être. « Lorsqu'il a

neigé tout l'hiver durant, la patte d'un lièvre suffit à déclencher l'avalanche.»

— Et puis, il y a les découvertes qui sont accidentelles, qui ne s'inscrivent

pas dans le cadre d'un temps, qui font bande à part.

Le problème des ponts, qui est peut-être l'acte de naissance de la topo-
logie, appartient à cette deuxième classe: il n'eut guère d'influence sur le

développement de la topologie. Il devait en aller autrement du théorème
d'Euler sur les polyèdres.

§ 3. — Le théorème d'Euler sur les polyèdres

3.1 Euler : Lorsqu'on se propose de désigner les lignes polygonales
du plan, il faut se rappeler le nombre des côtés qui la limitent. Vers 1750,

Euler recherche une classification analogue pour les polyèdres ; il remarque
que le nombre des sommets peut à ce point différer du nombre des faces,

qu'il faut les indiquer tous deux (tétraèdre hexagone, pentaèdre hexagone,
etc.). Cette classification n'est pas non plus

' satisfaisante, et se présente
alors naturellement l'idée de faire appel au troisième nombre caractéristique :

le nombre des arêtes. Cependant, comme le montre l'examen de quelques

cas, ce nombre est déterminé par les deux autres. De cette dernière constatation

découle ce qu'il est convenu d'appeler le théorème d'Euler pour les

polyèdres, publié en 1752: dans tout polyèdre oc0 — + a2 — 2 (où

a0, a1? oc2 représentent respectivement le nombre de sommets, d'arêtes

et de faces) *).

L'importance de ce théorème pour notre sujet apparaît clairement si

l'on songe que l'histoire de la topologie, jusqu'en 1851, se confond, à de

rares exceptions près, avec l'histoire du dit théorème. Aussi doit-on s'y
arrêter quelque peu.

1 On accorde parfois à Descartes la paternité de ce théorème; j'ai examiné, dans
l'ouvrage cité à la page 1, (pp. 8-13) ce qu'il faut penser de cette opinion.
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Il faut d'abord observer que l'énoncé d'Euler est trop général; le

théorème n'est en effet valable que pour les polyèdres homéomorphes à

la sphère. Le nombre a0 — cc1 + a2, qu'on appelle la caractéristique

d'Euler, est un invariant topologique, et le théorème d'Euler est une

proposition de Y analysis situs. Aussi curieux que cela puisse paraître, Euler

ne l'a pas remarqué, lui qui avait créé la topologie quelques années plus

tôt. Il ne comprit donc pas le véritable intérêt de la proposition, lequel

ne pouvait d'ailleurs être mis en évidence que par celui qui montrerait

qu'elle n'est pas toujours vraie, comme devait le faire Lhuilier.
La démonstration qu'Euler donne de son théorème n'est pas correcte 1).

Il faut attendre 1794 pour rencontrer la première démonstration
satisfaisante, pour les polyèdres convexes. On la doit à Legendre.

3.2 Lhuilier: Simon Lhuilier est né à Genève en 1750. Ses premiers

travaux portent sur le problème de l'isopérimétrie dans la pyramide. Son

Exposition élémentaire des principes des calculs supérieurs remporte en 1786

le grand prix mathématique de l'Académie de Berlin. Après quelques
années de préceptorat à Varsovie, il regagne Genève, où il enseigne jusqu'en
1825. Il meurt en 1840.

Dans un mémoire publié en 1813, Lhuilier fait voir que le théorème

d'Euler a des exceptions; il les analyse minutieusement. Son principal
résultat est que pour un polyèdre percé de n cavités, qui le traversent de

part en part, on a a0 — oc1 + a2 — 2 (n— 1). Le nombre n est le genre
du polyèdre, qui joue un rôle de premier plan en topologie des surfaces.

3.3 von Staudt : Lhuilier est donc le premier à remarquer que l'énoncé
d'Euler souffre de nombreuses exceptions. Il doit cependant se contenter
de décrire ce qu'on pourrait nommer, se plaçant dans l'esprit de l'époque,
des cas pathologiques, sans être à même de les caractériser par des

propriétés géométriques. C'est en 1847 que von Staudt présente enfin le théorème
d'Euler avec des hypothèses satisfaisantes: «Lorsque l'on peut joindre
chaque sommet d'un polyèdre à tout autre par une ligne formée d'arêtes,
et lorsque sa surface est partagée en deux parties, par toute ligne fermée

composée d'arêtes, passant au plus une fois par un même sommet, on
a... » 2).

3.4 Schläfli : Ludwig Schläfli est né à Berne en 1814; il enseigne au
gymnase de Thoune jusqu'en 1848, puis à l'Université de Berne jusqu'à

1 Voir op. cité (pp. 16-19).
2 On trouvera la remarquable démonstration de von Staudt dans l'ouvrage cité

p. 28.
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sa mort, survenue en 1895. Ludwig Schläfli est l'un des plus grands
mathématiciens de son temps, et il faut le placer immédiatement après Euler
dans la hiérarchie des mathématiciens suisses. On lui doit de remarquables
découvertes dans tous les domaines des mathématiques : à côté de quelques
mémoires sur les fonctions elliptiques, la théorie des nombres et la théorie
des systèmes d'équations algébriques, il s'est occupé avec brio de la théorie
des surfaces du troisième ordre, de la théorie des polyèdres de l'espace
à n dimensions; il est le co-inventeur de la loi d'inertie de Sylvester; il a

découvert la non-orientabilité du plan projectif, la réduction des matrices

orthogonales ; en géométrie différentielle, c'est lui qui a trouvé les conditions

pour qu'une variété soit à courbure constante (il faut que ses géodésiques

apparaissent comme droites dans un certain système de coordonnées).
Il s'est intéressé au problème des rapports entre les formes non euclidiennes

et l'espace physique, etc. Apprécié à sa juste valeur par tous les grands
de la mathématique de son temps, il reçoit en 1870, consécration suprême,
le prix Steiner de l'Académie de Berlin 1. Vers 1850, Schläfli met la dernière
main à un manuscrit d'un intérêt considérable. Il décrit lui-même son
travail comme «... visant à fonder et à développer un nouveau rameau
de l'analyse, qui soit, en même temps, une géométrie analytique à 2 et
3 dimensions. Comme la géométrie ordinaire peut être nommée théorie
d'un continu trois fois étendu, j'ai nommé ma théorie, théorie d'un continu
multiplement étendu.» Malheureusement, l'ampleur du mémoire empêche

sa publication; il ne voit finalement le jour qu'en 1901, six ans après la

mort de son auteur.
Son importance pour notre histoire provient de ce qu'il contient la

n- 1

relation £(—l)mam + (— 1)" 1, qui est la généralisation du théorème
î

d'Euler au cas de l'espace à n dimensions.

§ 4. — Gauss-Listing

Après un siècle d'histoire, le théorème d'Euler a parcouru toutes les

étapes réservées à un honnête théorème: apparition empirique, énoncé

approximatif, démonstration dans un cas particulier, énoncé exact,
généralisation. On doit cependant remarquer que, pendant tout ce siècle consacré

au théorème d'Euler, on n'a guère parlé de topologie ; ni Euler, ni Legendre,

1 Voir J. J. Burckhardt. Ludwig Schläfli, Birkhaüser, Basel 1948, 23 p.
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pas plus que Lhuilier, von Staudt ou Schläfli n'ont vu, ou signalé, le lien

entre le théorème d'Euler et Yanalysis situs. Gauss et son élève Listing
vont combler cette lacune. Commençons par quelques rappels

biographiques. Gauss est né en 1777. Par son comportement, on peut le rattacher

aux savants du xvme siècle: il ne publie presque pas, communique ses

découvertes — quand il les communique — par ses conversations et par
sa volumineuse correspondance. Il n'a guère d'élèves, tout au plus quelques

disciples et collègues. C'est en 1794, soit au début de sa carrière scientifique

que Gauss se lie d'amitié avec Yanalysis situs; il l'utilise pratiquement
et sciemment dans sa dissertation inaugurale de 1799, où il démontre le

théorème fondamental de l'algèbre. A de nombreuses reprises par la suite,

il mentionne la topologie et son importance pour les mathématiques dans

sa correspondance et dans ses conversations 1. L'extrait suivant, d'une
lettre de Gauss à Hansen, écrite en 1825, fait bien voir la conception qu'il a

de la topologie: « Vous avez entièrement raison de prétendre que dans toutes
les constructions de cartes, la similitude dans les plus petites parties constitue
la condition essentielle, que l'on ne peut négliger que dans des circonstances

tout à fait spéciales. Il serait d'ailleurs utile de créer une dénomination

propre aux représentations qui remplissent cette condition. En outre, elles

ne sont que des cas particuliers de la représentation la plus générale d'une
surface sur une autre qui, à chaque point de l'une, fait correspondre un
point de l'autre, et ceci d'une façon continue.»

Dans un travail publié en 1827, consacré à la théorie des surfaces, et
qui est l'un des principaux textes de Gauss, on voit le Prince des
mathématiciens poser et étudier le problème de la déformation isométrique des

surfaces; c'est une étape indispensable, qui préfigure et annonce l'étude,
plus générale celle-là, des déformations topologiques. Dans ce même
travail, Gauss introduit la courbure totale d'une surface, qui tiendra un
si grand rôle dans le développement de la topologie. L'influence de Gauss

sur l'évolution de Yanalysis situs apparaît encore et surtout, à travers les

travaux de Listing et ceux de Möbius-Klein.
Johann Benedikt Listing est né en 1808. Il arrive à Göttingen en 1829;

il y devient élève assidu de Gauss, qui lui parle notamment de topologie.
C'est Listing qui crée le mot topologie; on le trouve pour la première fois
dans une lettre qu'il écrit en 1836 à l'un de ses amis2. En 1847, il publie
un ouvrage intitulé Vorstudien zur Topologie, qui consacre l'entrée officielle

1 Voir opuscule cité (p. 32-33).
2 idem (p. 41-42).
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du vocable topologie dans le cortège des termes mathématiques. Voici,
tiré de l'introduction de ce livre, un passage significatif: «Lorsque l'on
considère des formes spatiales, on peut se placer au point de vue de la
quantité ou à celui de la qualité. Aussi variées que soient leurs méthodes
et leur objet, les recherches de la géométrie accordent, dans leurs
développements actuels, la priorité à la première catégorie; aussi, la géométrie
a-t-elle de tout temps été regardée comme une partie de la science des

grandeurs, ainsi d'ailleurs que son nom l'indique. Le deuxième point de vue,
celui de la qualité, c'est-à-dire celui qui se rapporte aux questions de position
et d'ordre, ne fut étudié en géométrie que pour autant qu'il fût possible de

l'adapter à celui de la quantité.»
Et plus loin: « Si l'on fait abstraction des quelques rares contributions

dont nous venons de parler, c'est de l'avenir que le côté qualitatif de la

géométrie attendra son développement. L'étonnement que peut engendrer
le fait que rien ne s'est accompli dans ce domaine du savoir, depuis
l'instigation de Leibniz, se tempérera peut-être si l'on songe aux multiples
difficultés que l'on rencontre lors de la mise sur pied de méthodes efficaces

et convenables, permettant de ramener l'intuition spatiale à des concepts,
et à l'insuffisance de la langue. L'importance du sujet m'ayant été signalée

par le plus grand géomètre de notre temps, je me suis essayé depuis longtemps
à l'analyse de certains cas qui relèvent de cette science... Qu'il me soit

permis d'utiliser pour ce genre de recherches sur les complexes spatiaux
le mot topologie, en lieu et place de la dénomination geometria situs

proposée par Leibniz, qui rappelle l'idée de mesure et qui, en outre, se

rapproche par trop de l'expression géométrie de position, qu'il est d'usage

d'employer dans un domaine différent de celui que nous considérons.

Par topologie, nous entendrons donc l'étude des aspects qualitatifs des

formes spatiales ou des lois de la connexion, de la position mutuelle et

de l'ordre des points, droites, surfaces, corps, ainsi que de leurs parties

ou de leurs réunions, abstraction faite de leurs rapports de mesure et de

grandeur... Pour s'élever au rang d'une science exacte, vers lequel tout
semble l'appeler, la topologie doit chercher à ramener les faits, qui lui
sont suggérés par l'intuition spatiale, à des concepts aussi simples que
possibles...»

Le second travail topologique de Listing date de 1861. Dans ce très

long mémoire, l'effort de Listing se porte sur l'extension du théorème

d'Euler au cas des complexes spatiaux les plus généraux. Il essaye de

déterminer l'influence de la nature topologique de chaque constituant du

complexe sur la caractéristique d'Euler, en faisant nommément appel à
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la topologie. Il attribue, à chaque constituant, un nombre, son ordre de

cyclodicité, à qui il reconnaît la nature d'un invariant topologique. C'est

là une nouveauté de taille. On doit toutefois préciser que Listing est passé

à côté du problème fondamental de la topologie des surfaces. En outre,

bien qu'il ait le premier mentionné dans ses écrits cette surface que l'on

appelle le ruban de Möbius, il n'a pas conçu, même en principe, une théorie

topologique des surfaces non orientables.

§ 5. — Riemann

A. 1851 marque un tournant dans notre histoire. C'est au cours de cette

année que Riemann, âgé de 25 ans, écrit ses Principes fondamentaux pour
une théorie générale des fonctions d'une grandeur variable complexe
(Dissertation inaugurale) ; à cette occasion, Riemann est conduit à utiliser des

notions qui ressortissent, à Yanalysis situs. Cet événement est doublement

important. D'abord, parce que, dès maintenant la topologie cesse d'être

un simple jeu de l'esprit pour devenir un auxiliaire précieux dans cette

théorie des fonctions, à laquelle le xixe siècle finissant consacrera le meilleur
de ses forces. Ensuite, parce que dorénavant les problèmes topologiques
vont être attaqués sur deux fronts ; celui de la géométrie et celui de l'analyse.

Voyons pourquoi Riemann a besoin de topologie, et ce que la topologie
lui doit.

1. Etudiant l'expression J / (z) d z, où / est une fonction holomorphe
c

sur un domaine et c une courbe fermée, il montre qu'elle est nulle, pourvu
que c soit contour total d'une portion de surface. Lorsque c ne remplit
pas cette condition, le théorème conserve sa valeur grâce à l'introduction
d'une ligne nouvelle — la section transverse — qui joint deux points situés

sur chacune des frontières. En pratique, cette situation se présente quand
la fonction possède une singularité, que l'on exclut à l'aide d'une courbe
fermée. Ainsi apparaît en théorie des fonctions une classification des

surfaces: surfaces simplement connexes celles qui ne nécessitent aucune
section transverse, doublement connexes celles qui demandent une section,
etc.

2. Confronté au difficile problème posé par les fonctions multiformes,
Riemann eut l'idée d'attacher à chacune d'elles une surface qu'on appelle
aujourd'hui la surface de Riemann de la fonction. Aux propriétés
topologiques de la surface de Riemann correspondent pour les fonctions des
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propriétés intéressantes. L'étude topologique des surfaces s'impose donc,
lorsqu'on aborde la question de ce point de vue. On a trouvé dans les

papiers de Riemann une ébauche non datée, intitulée Fragment sur Fanalysis
situs. On y voit Riemann tenter d'étendre au cas de n dimensions, les

considérations topologiques développées pour les surfaces.

B. A la suite de Riemann, on doit encore citer:

Carl Neumann : il reprit les difficiles écrits de Riemann, les approfondit,

les éclaira et les publia (1865) dans un ouvrage justement célèbre dans

lequel toute une génération de mathématiciens s'est familiarisée avec les

théories du maître de Göttingen et les idées topologiques du temps. C'est,
à tout prendre, le premier manuel de topologie.

Enrico Betti : le mathématicien de Pise fut à l'époque le meilleur
connaisseur des idées de Riemann. Depuis 1860, Riemann souffre de

tuberculose, mal qui l'emporta d'ailleurs en 1866. Ses médecins lui conseillent
le climat du sud. Riemann se rend en Italie où il se lie d'amitié avec Betti
à qui il fait part de ses idées. Ce sont ces idées, concernant notamment
des invariants topologiques pour les variétés à n dimensions que l'on appelle

aujourd'hui les nombres de Betti, qui servent de base, pour ne pas dire

plus, à un célèbre mémoire que Betti publie en 1871.

Félix Klein : suivi par plusieurs élèves, dont le plus connu est W. Dyck,
Félix Klein va exploiter le filon découvert par Riemann et par contrecoup
développer Yanalysis situs.

§ 6. — Möbius

Avec August Ferdinand Möbius, on revient à la géométrie. Möbius
est né à Schulpforta en 1790; il étudie sous Gauss entre 1813 et 1814. Dès

1815, il enseigne à Leipzig jusqu'à sa mort en 1868. On lui doit d'importantes

contributions en géométrie, en mécanique céleste et en statique.
Le fil d'Ariane des travaux topologiques de Möbius apparaît dans un

livre — son œuvre principale — Der barycentrische Calcul publié en 1827.

Ce fil d'Ariane est le concept de Verwandtschaft qu'on traduisait en ce

temps par corrélation — on dit aujourd'hui transformation — que Möbius
envisage d'abord dans des cas ordinaires (isométrie, similitude, affinité,
colinéation) ; en 1855, il consacre un long mémoire à une corrélation qu'il
nomme Kreisverwandtschaft, c'est-à-dire à cette corrélation qui transforme
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des cercles en des cercles. Par ses travaux, Möbius a puissamment contribué
à faire de la corrélation ce principe d'une rare fécondité que l'on rencontre

aujourd'hui dans toutes les provinces des mathématiques. Aussi considère-

t-ori Möbius comme le principal précurseur du Programme d'Erlangen,
dont nous parlerons tout à l'heure.

En 1858, âgé de 68 ans, il se laisse tenter par le problème mis au concours

par l'Académie des sciences de Paris ; il s'agissait de « Perfectionner en

quelque point important la théorie géométrique des polyèdres.» Avant
la date limite, fixée au 1er juillet 1861, l'Académie reçoit huit mémoires,

parmi lesquels celui de Möbius intitulé Mémoire sur les polyèdres. L'examen
des manuscrits de Möbius montre que ce travail eut probablement pour
but initial l'énumération de tous les polyèdres possibles de n sommets,
mais que les formidables difficultés de ce problème détournèrent son auteur
de la voie primitive, pour l'amener à étudier plus spécialement les questions
d'aire et de volume des polygones et des polyèdres. Ce travail ne fut pas
jugé digne du prix, malgré, ou peut-être à cause, de la grande nouveauté
des résultats qu'il contenait. On doit cependant dire, à la décharge des

examinateurs, qu'il est couvert de ratures et écrit dans un français désastreux.

Le prix ne lui étant pas attribué — aucun d'ailleurs des huit auteurs n'en
fut jugé digne — Möbius se décide à en publier de larges extraits dans

deux mémoires parus en 1863 et 1865.

Je l'ai dit plus haut, l'idée de corrélation est l'âme de ce travail. Il
s'agit cette fois-ci de corrélation élémentaire. Möbius la définit ainsi:
« Deux figures seront dites en corrélation élémentaire lorsqu'à tout élément
infiniment petit de l'une correspond un élément infiniment petit de l'autre,
de telle manière qu'à deux éléments qui se touchent dans la première
correspondent deux éléments qui se touchent dans la seconde; ou aussi:
deux figures sont en corrélation élémentaire lorsqu'à tout point de l'une
correspond un point de l'autre, de telle manière qu'à deux points infiniment
voisins correspondent toujours deux points infiniment voisins. Dès lors,
une ligne ne peut être en corrélation élémentaire qu'avec une autre ligne,
une surface avec une surface et un corps spatial avec un corps spatial.»
L'idée centrale de toute cette théorie est ainsi définie d'une façon claire,
au moyen de termes auxquels on peut donner une signification mathématique

précise. Cette définition a sur celles ayant cours à l'époque un avantage
décisif: elle n'exige plus l'existence d'une déformation physique transformant
une figure en une autre, mais simplement la possibilité d'établir une
correspondance entre les éléments qui les constituent. On est maintenant en
mesure de l'appliquer à des ensembles abstraits, sur lesquels l'intuition
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n'a plus prise, et que l'on ne peut par conséquent pas déformer les uns
dans les autres. Le but de ce premier mémoire est, comme Möbius l'indique,
d'établir une classification des surfaces orientables du point de vue de la
corrélation élémentaire, Il y parvient en attribuant à chaque surface un
être mathématique, son schéma, qu'il simplifie ou manipule par des procédés
qui ressemblent fort à ceux de l'algèbre ordinaire. A une échelle modeste,
bien sûr, Möbius fait de la topologie algébrique. C'est également dans ce

mémoire qu'il introduit, comme représentant de chaque classe de surfaces,
des figures aujourd'hui classiques1. Il démontre finalement le théorème
fondamental: deux surfaces sont homéomorphes si et seulement si elles

appartiennent à la même classe.

Le mémoire de 1865 s'intitule Über die Bestimmung des Inhaltes eines

Polyeders. Ce travail présente et analyse le concept de surface à un côté.
En fait, pour Möbius, le but de cette étude, comme son titre l'indique, est

d'examiner la notion de volume d'un polyèdre, l'idée de surface à un côté

n'étant qu'un auxiliaire. D'abord, Möbius innove en considérant la longueur
d'un segment, l'aire d'une surface, le volume d'un polyèdre comme des

nombres munis d'un signe, ce qu'il avait déjà fait dans son Calcul bary-
centrique. Puis il définit l'aire d'un polygone ordinaire, c'est-à-dire d'un
polygone dont le périmètre ne se recoupe pas lui-même; il décompose

pour cela la figure en triangles à partir d'un point quelconque; grâce aux
considérations sur le signe, lorsqu'un même triangle apparaît p fois avec
le signe + et q fois avec le signe —, il l'écrit p — q fois dans la somme
finale. Dans le cas des polyèdres, il fait de même; pour démontrer que la

somme des volumes des pyramides obtenues par décomposition à partir
d'un point P ne dépend pas de P, il prend un deuxième point P' et montre

que la différence des volumes engendrés par les deux décompositions est

nulle. Au cours de ce raisonnement se présente une somme de tétraèdres,
chacun d'eux étant compté deux fois; cette somme est nulle si les volumes
s'éliminent deux à deux, c'est-à-dire s'ils sont de signe contraire. En dernière

analyse, cela signifie que le polyèdre puisse être orienté de manière que chaque
arête soit parcourue dans des sens opposés, selon qu'on la considère comme

appartenant à une face ou à l'autre. C'est la loi des arêtes. Möbius se demande

alors naturellement s'il existe des polyèdres qui ne vérifient pas cette loi.
Il en a découvert, les a étudiés, en a compris le caractère topologique,
les a popularisés sous la forme du ruban dont il a l'honneur de porter le

nom. Malheureusement, il n'a pas essayé de situer ses « surfaces unilaté-

1 Voir opusc. cité, p. 97.
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rales » dans le cadre de sa classification de 1863. On le regrettera d'autant

que notre auteur avait conscience de ce problème, comme l'atteste le texte

écrit à l'intention du Grand-Prix. Nous l'avons vu plus haut, Listing a

publié des considérations sur le ruban de Möbius en 1861 déjà. Il a donc

la priorité de droit sur cette découverte. En fait, les archives de Möbius

et de Listing établissent que c'est en juillet 1858 chez le premier, en septembre
de la même année chez le second que cette surface apparaît. Cette concordance

dans les dates mérite réflexion. En examinant de près cette question,

j'ai acquis la conviction que le père du fameux ruban est en réalité
l'inévitable Gauss 1. En tout état de cause, le nom par lequel on a coutume

d'appeler cette surface est justifié. Pour Listing c'était uniquement une
forme secondaire, faisant exception à celles qu'il étudiait, et juxtaposée
mais non intégrée à son étude. Pour Möbius, au contraire, le ruban est

un élément qui se présente naturellement et nécessairement. Möbius a

défini l'homéomorphisme, pris en considération et résolu pour la première
fois le problème de la classification des lignes et des surfaces orientables,
ouvertes ou fermées, déterminé un invariant topologique: leur ordre de

connexion, et ceci par voie originale, montré l'existence d'une relation
entre ce nombre et la caractéristique d'Euler, abordé le problème de

l'homéomorphisme entre corps de l'espace, introduit rigoureusement, et
de l'intérieur, les surfaces « unilatérales ». Si Euler, Listing, Riemann et
autres ont donné des béquilles à la topologie, Möbius lui a donné des ailes.

Néanmoins, l'influence de son œuvre sur le développement de la topologie
ne fut pas aussi importante que ce que l'on aurait été en droit d'attendre,
ni la notoriété de Möbius ce qu'elle aurait dû être. Il est quasi certain

que si l'Académie lui avait décerné le prix, amplement mérité par
l'extraordinaire originalité du mémoire, ses résultats auraient eu une diffusion
large et rapide; tandis que les quelques pages, d'une lecture relativement
difficile, traitant d'un sujet ne paraissant se rattacher à rien, et qui plus
est, parues dans un périodique d'ordre secondaire, n'eurent guère d'audience.

§ 8. Jordan

Le premier des deux importants problèmes topologiques que
Camille Jordan aborde au cours de l'année 1866 s'inspire d'une question
traitée par Gauss en 1827: « Un des problèmes les plus connus de la
géométrie est le suivant: Trouver les conditions nécessaires et suffisantes pour

1 Voir opusc. cité, p. 109-110.
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que deux surfaces ou portions de surfaces flexibles et inextensibles puissent
être appliquées l'une sur l'autre sans déchirure ni duphcature. On peut
se proposer un problème analogue, en supposant au contraire, que les

surfaces considérées soient extensibles à volonté. La question ainsi simplifiée
rentre dans la géométrie de situation, et nous allons la résoudre en démontrant

le théorème suivant:

Théorème. Pour que deux surfaces ou portions de surfaces flexibles
et extensibles à volonté soient applicables l'une sur l'autre sans déchirure
ni duplicature, il faut et il suffit:

1. Que le nombre des contours séparés qui limitent respectivement ces

deux portions de surfaces soient le même. (Si les surfaces considérées

sont fermées, ce nombre est nul).
2. Que le nombre maximum des contours fermés ne se traversant ni

eux-mêmes ni mutuellement nulle part, que l'on peut tracer sur chacune
des deux surfaces sans la partager en deux régions séparées, soit le même
de part et d'autre.»

Le second travail de Jordan est lui complètement neuf: « Deux contours
fermés quelconques, tracés sur une surface donnée, seront dits réductibles
l'un à l'autre, si l'on peut passer de l'un à l'autre par une déformation
progressive.

« Deux contours quelconques tracés sur un plan sont toujours réductibles

l'un à l'autre; mais il n'en est pas de même sur toute surface: ainsi,

par exemple, il est clair que dans un tore un méridien et un parallèle forment
deux contours irréductibles.

» Nous nous proposons ici de déterminer dans quels cas deux contours,
tracés sur une surface donnée, sont réductibles l'un à l'autre.»

Jordan est ainsi le père de la notion d'homotopie. Une étude détaillée
de son texte fait voir qu'il est passé tout près de l'idée de groupe
fondamental, en quoi Poincaré reconnaîtra un outil d'une grande efficacité

pour la topologie.

§ 9. Felix Klein et le Programme d'Erlangen

En 1872, Felix Klein âgé de 25 ans, présente un travail dont l'intérêt

pour l'histoire des mathématiques, et en particulier pour l'histoire de la

topologie, est considérable. La genèse de ce texte — qu'on appelle le Pro-
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gramme d'Erlangen parce qu'il fut lu par Klein à l'université de cette ville

comme dissertation inaugurale — n'a pas été étudiée de manière systématique

par les historiens des mathématiques. En première approximation,

on peut dire que les idées maîtresses du Programme procèdent de trois

sources, qui alimentent par ailleurs le gros de la pensée mathématique

au xixe siècle.

— Il s'agit d'abord de l'idée de transformation d'une surface dans une

autre, de correspondance entre ensembles géométriques, que nous avons vu

apparaître et se développer par les soins de Gauss et de Möbius. C'est

grâce à la forme saisissante dont Klein saura la vêtir, qu'elle deviendra

l'une des clefs de la mathématique.

— Il s'agit ensuite de cette théorie des invariants, qui conduit Cayley à

envisager dans un même schéma géométrie métrique et géométrie
projective: celle-ci devenant partie de celle-là. Ce bien singulier résultat,
Klein allait l'étendre en 1871 aux géométries non-euclidiennes. La remarquable

unité qui se crée ainsi sous la houlette de la géométrie projective,
préfigure et suggère celle encore plus complète que révélera le Programme
d'Erlangen.

— Enfin, avec la redécouverte des travaux de Galois, vers 1846, l'idée
de groupe, qui avait montré ce dont elle est capable à l'occasion d'une
question célèbre et difficile, se diffuse promptement dans les cercles
mathématiques. Klein saura s'en servir magistralement dans son Programme
d'Erlangen.

Synthèse admirable de ces trois grandes conceptions, le Programme
développe l'idée qu'une géométrie est l'étude des invariants d'un certain
groupe de transformations. C'est un principe unificateur d'une étonnante
efficacité qui apparaît. Dans cette optique, la topologie devient la géométrie
du groupe des transformations topologiques.

§ 10. Dyck

Il serait indécent de quitter la petite enfance de la topologie algébrique,
sans citer le mathématicien munichois Walther Dyck, aujourd'hui tombé
dans l'oubli, et qui fut un personnage considérable de la mathématique
allemande entre 1890 et 1920.

Dyck est né à Munich en 1856; élève favori, puis ami de Klein, on lui
doit plusieurs travaux en théorie des fonctions et surtout en théorie des
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groupes et en topologie, Il est durant de nombreuses années rédacteur

aux Mathmatische Annalen; il est aussi l'un des promoteurs de la célèbre

Encyclopédie des sciences mathématiques. Ses contributions à la topologie
paraissent en 1888 et 1890. Dyck y expose le problème fondamental de
Yanalysis situs en termes précis, le traite rigoureusement, par une méthode

qui lui est propre, dans le cas de une et deux dimensions puis présente
une classification irréprochable des surfaces orientables et non orientables.
Dans un second mémoire, il étend ses raisonnements au cas de l'espace à

//-dimensions et découvre à cette occasion trois théorèmes, qui devraient
suffire à lui assurer l'immortalité:

— La caractéristique d'Euler d'une //-sphère est 2 ou 0, selon que n

est pair ou impair;

— La caractéristique de l'espace projectif est 1 ou 0, selon que n est

pair ou impair;

— L'espace projectif est orientable ou non orientable, selon que n est

impair ou pair.

Dans ses travaux topologiques, Dyck allie à une brillante synthèse
des idées de ses prédécesseurs, un remarquable apport original.

Reçu le 13 septembre 1973)

Jean-Claude Pont
Glarey 40 B
CH-3960 — Sierre
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