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PETITE ENFANCE DE LA TOPOLOGIE ALGEBRIQUE

par Jean-Claude PONT

§ 1. — INTRODUCTION

Cet article, tiré d’une conférence que j’ai faite au Cercle mathématique
de Lausanne au mois de février 1973, résume, quelque peu sommairement,
une étude sur la topologie algébrique avant les travaux de Poincaré b).

En 1679, Leibniz forgea le terme analysis situs, repris par Euler, Gauss,
Riemann, Poincaré. Le vocable topologie, introduit par Listing en 1836,
I’a maintenant remplacé.

Bien qu’on ne le trouve nulle part écrit, les figures étudiées par les
mathématiciens de la période qui nous occupe sont toujours supposées
triangulables, c’est-a-dire qu’on peut les recouvrir par un nombre fini ou
infini dénombrable de segments, de triangles, de tétraedres, etc. Ces figures
se prétent donc par nature & une décomposition polyédrale, qui a son tour
est représentable par un schéma, dont I’étude combinatoire permet d’ana-
lyser, au point de vue topologique, la figure qui le définit. Cette attitude
est assez restrictive pour éliminer les ensembles dont I'étude topologique
entraine des difficultés ensemblistes, tout en étant suffisamment large pour
englober presque toutes les figures intéressantes. Le propre de la topologie
combinatoire est donc de substituer des schémas aux ensembles de points
considérés. Or I’é¢tude de ces schémas reléve de I'algébre linéaire et de
la théorie des groupes. L’algébre prend ainsi possession de la topologie
combinatoire. Cela explique pourquoi I’expression topologie combinatoire
fut remplacée, vers 1940, par la dénomination topologie algébrique, mieux
adaptée aux méthodes de cette science. Il serait donc vain de chercher
une solution de continuité entre la topologie combinatoire des origines
et la topologie algébrique.

La notion de fonction continue est centrale en topologie; les propriétés
que I’on établit dans cette discipline sont donc intimement liées a celles

_ 1 'Jean-Claude Pont, La topologie algébrique, des origines & Poincaré, Presses Uni-
versitaires de France, Paris 1974.
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des fonctions continues. Or, a nul endroit la fonction continue n’est davan-
tage chez elle qu'en analyse. De la 4 concevoir une étroite corrélation
entre ces deux disciplines, il n’y a qu’un petit pas, allégrement franchi
par les mathématiciens du xx¢ siecle. Prenant pour réflexion la fonction
continue, qu’elle rapporte aux concepts de voisinages ouverts et fermés,
la topologie générale prend rapidement ses distances a I’égard du modéle
que lui fournit I’espace euclidien, pour s’élever a un haut degré de géné-
ralité en raisonnant sur des ensembles quelconques, dont des parties conve-
nablement choisies sont considérées a priori comme des ensembles ouverts.
La fonction continue se définit ipso facto et avec elle apparait le probléme
de la caractérisation topologique de ces ensembles. Ce point de vue
s’est développé a partir des notions d’espace métrique (M. Fréchet, 1906)
et d’espace topologique (F. Hausdorff, 1914). Vers 1925, les deux topo-
logies, aux traits pourtant si fortement marqués, aux méthodes si nettement
différentiées dans la premicre période, tendent a se confondre a la suite
des travaux de Brouwer, Lefschetz, Alexandroff, Hopf et tant d’autres .

L’origine de la topologie et les travaux de Poincaré sont les limites
naturelles de cette histoire. Avec les recherches du grand savant frangais
— qui €crit a lui seul & peu prés autant de pages sur la topologie que tous
les auteurs rencontrés dans notre histoire — [’analysis situs gagne en effet
ses lettres de noblesse, et devient une discipline autonome des mathé-
matiques.

§ 2. — LES PONTS DE KOENIGSBERG

L’histoire de la topologie commence peut-étre en 1736, quand Euler
reconnait un aspect particulier dans un probléme que rien, de prime abord,
ne distingue de ses homologues de la géométrie élémentaire. Il s’agit du
probléme des ponts de Koenisgberg qu’Euler pose en ces termes: « A
Koenigsberg, en Prusse, il y a une ile A appelée le Kneiphof, entourée
d’un fleuve qui se partage en deux bras, comme on peut le voir sur la

1 On trouvera des précisions sur la genese de la topologie ensembliste jusqu’aux
travaux de Hausdorff dans le livre de J. H. Manheim, The genesis of point set topology,
Pergamon Press, New-York 1964.

Pour quelques développements plus récents, voir H. Hopf, Ein Abschnitt aus der
Entwicklung der Topologie, Jahresbericht der Deutschen Mathematiker-Vereinigung,
pp. 182-192. Bd. 6, 1966.

S. Lefschetz, The early development of algebraic topology, Boletin da sociedade
Brasiliera de matematica, pp. 1-48, 1970.

J. Bollinger, Geschichtliche Entwicklung des Homologiebegriffes, Archive for
history of science, Vol. 9, number 2, 1972, pp. 94-166, '
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figure 1, mais les bras de ce fleuve sont garnis de sept ponts a, b, ¢, d, e,
f, g, et on proposait cette question sur ces ponts: une personne peut-elle
s’arranger de maniére & passer une fois sur chaque pont, mais une fois
seulement ? Les uns affirmaient que cela était possible; d’autres niaient;
mais personne ne pouvait prouver. Quant & moi, j’ai fait de ce probléme
le suivant beaucoup plus général: quelle que soit la figure du fleuve et sa
distribution en bras, et quel que soit aussi le nombre de ponts, trouver si
une personne peut traverser le fleuve en passant une seule fois sur chaque
pont.»

Fig. 1

L’important ici n’est pas tant la solution d’Euler, pas plus que la méthode
qu’il utilise, mais le commentaire qui accompagne ce probléme: « Outre
cette partie de la géométrie qui traite des grandeurs et qui a été de tout
temps cultivée avec beaucoup de zele, il en est une autre, jusqu’a nos jours
complétement inconnue, dont Leibniz a fait le premier mention et qu’il
appela géométrie de position. D’aprés lui, cette partie de la géométrie
s’occupe de déterminer seulement la position et de chercher les propriétés
qui résultent de cette position; dans ce travail, il n’est besoin ni d’avoir
égard aux grandeurs elles-mémes, ni de les calculer; mais il n’est pas encore
assez bien établi quels sont les problémes de ce genre appartenant a la
géométrie de position, et quelle méthode il faut employer pour les résoudre;
c’est pourquoi lorsque récemment il fut question d’un probléme qui semblait,
a la vérité, se rattacher a la géométrie ordinaire, mais dont cependant
la solution ne dépendant, ni de la détermination de grandeurs, ni du calcul
de quantités, je n’ai point balancé a le rapporter a la géométrie de position,
d’autant plus que les considérations de position entrent seules dans la

L’Enseignement mathém.. t. XX, fasc. 1-2. R
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solution, tandis que le calcul n’y est pour rien. J’ai donc cru utile d’exposer
ici, comme un exemple de géométrie de position, la méthode que j’ai trouvée
pour résoudre les problémes de ce genre.»

Avant de poursuivre, remarquons ceci. D’une fagon schématique,
on peut répartir les découvertes mathématiques en deux classes:

— Il y a pour commencer celles qui sont autant d’une époque que
d’un homme, celles qui s’inscrivent naturellement dans le continuum de
la pensée, en bref, celles qui n’auraient pas pu ne pas étre. « Lorsqu’il a
neigé tout ’hiver durant, la patte d’un lievre suffit a déclencher I’avalanche.»

— Et puis, il y a les découvertes qui sont accidentelles, qui ne s’inscrivent
pas dans le cadre d’un temps, qui font bande a part.

Le probléme des ponts, qui est peut-€tre I’acte de naissance de la topo-
logie, appartient a cette deuxiéme classe: il n’eut guére d’influence sur le
développement de la topologie. Il devait en aller autrement du théoréme
d’Euler sur les polyédres.

§ 3. — LF THEOREME D’EULER SUR LES POLYEDRES

3.1 Euler: Lorsqu’on se propose de désigner les lignes polygonales
du plan, il faut se rappeler le nombre des c6tés qui la limitent. Vers 1750,
Euler recherche une classification analogue pour les polyédres; il remarque
que le nombre des sommets peut a ce point différer du nombre des faces,
qu’il faut les indiquer tous deux (tétracdre hexagone, pentaédre hexagone,
etc.). Cette classification n’est pas non plus satisfaisante, et se présente
alors naturellement I’idée de faire appel au troisiéme nombre caractéristique:
le nombre des arétes. Cependant, comme le montre I'examen de quelques
cas, ce nombre est déterminé par les deux autres. De cette derniére consta-
tation découle ce qu’il est convenu d’appeler le théoréme d’Euler pour les
polyedres, publié en 1752: dans tout polyeédre ay — oy + o, = 2 (ou
oo, Oy, X, représentent respectivement le nombre de sommets, d’arétes
et de faces) ').

L’importance de ce théoreme pour notre sujet apparait clairement si
I’on songe que I'histoire de la topologie, jusqu’en 1851, se confond, a de
rares exceptions pres, avec ’histoire du dit théoréme. Aussi doit-on s’y
arréter quelque peu.

1 On accorde parfois 4 Descartes 1a paternité de ce théoréme; j’ai examiné, dans
I’ouvrage cité a la page 1, (pp. 8-13) ce qu’il faut penser de cette opinion.
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Il faut d’abord observer que I’énoncé d’Euler est trop général; le
théoréme n’est en effet valable que pour les polyédres homéomorphes a
la sphére. Le nombre oy — o; + o,, qu'on appelle la caractéristique
d’Euler, est un invariant topologique, et le théoréme d’Euler est une pro-
position de Panalysis situs. Aussi curieux que cela puisse paraitre, Euler
ne I’a pas remarqué, lui qui avait créé la topologie quelques années plus
tdt. 11 ne comprit donc pas le véritable intérét de la proposition, lequel
ne pouvait d’ailleurs étre mis en évidence que par celui qui montrerait
qu’elle n’est pas toujours vraie, comme devait le faire Lhuilier.

La démonstration qu’Euler donne de son théoréme n’est pas correcte .
Il faut attendre 1794 pour rencontrer la premiére démonstration satis-
faisante, pour les polyédres convexes. On la doit & Legendre.

3.2 Lhuilier : Simon Lhuilier est né a Genéve en 1750. Ses premiers
travaux portent sur le probléme de I'isopérimétrie dans la pyramide. Son
Exposition élémentaire des principes des calculs supérieurs remporte en 1786
le grand prix mathématique de 1’Académie de Berlin. Aprés quelques
années de préceptorat a Varsovie, il regagne Genéve, ou il enseigne jusqu’en
1825. 11 meurt en 1840.

Dans un mémoire publié en 1813, Lhuilier fait voir que le théoréme
d’Euler a des exceptions; il les analyse minutieusement. Son principal
résultat est que pour un polyédre percé de n cavités, qui le traversent de
part en part, on a oy — oy + o, = — 2 (n—1). Le nombre n est le genre
du polyédre, qui joue un role de premier plan en topologie des surfaces.

3.3 von Staudt : Lhuilier est donc Ie premier a remarquer que 1’énoncé
d’Euler souffre de nombreuses exceptions. Il doit cependant se contenter
de décrire ce qu’on pourrait nommer, se placant dans I’esprit de I’époque,
des cas pathologiques, sans €tre 2 méme de les caractériser par des pro-
prictés géométriques. C’est en 1847 que von Staudt présente enfin le théoréme
d’Euler avec des hypothéses satisfaisantes: « Lorsque I'on peut joindre
chaque sommet d’un polyédre a tout autre par une ligne formée d’arétes,
et lorsque sa surface est partagée en deux parties, par toute ligne fermée

composée d’arftes, passant au plus une fois par un méme sommet, on
a...» %)

3.4 Schlifli: Ludwig Schléfli est né a Berne en 1814; il enseigne au
gymnase de Thoune jusqu’en 1848, puis & I’Université de Berne jusqu’a

L Voir op. cité (pp. 16-19).

2 On trouvera la remarquable démonstration de von Staudt dans ’ouvrage cité,
p. 28.
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sa mort, survenue en 1895. Ludwig Schlifli est I'un des plus grands mathé-
maticiens de son temps, et il faut le placer immédiatement aprés Euler
dans la hiérarchie des mathématiciens suisses. On lui doit de remarquables
découvertes dans tous les domaines des mathématiques: a coté de quelques
mémoires sur les fonctions elliptiques, la théorie des nombres et la théorie
des systémes d’équations algébriques, il s’est occupé avec brio de la théorie
des surfaces du troisiéme ordre, de la théorie des polyédres de l’espace
a n dimensions; il est le co-inventeur de la loi d’inertie de Sylvester; il a
découvert la non-orientabilité du plan projectif, la réduction des matrices
orthogonales; en géométrie différentielle, c’est lui qui a trouvé les conditions
pour qu’une variété soit a courbure constante (il faut que ses géodésiques
apparaissent comme droites dans un certain systétme de coordonnées).
Il s’est intéressé au probléme des rapports entre les formes non euclidiennes
et I’espace physique, etc. Apprécié a sa juste valeur par tous les grands
de la mathématique de son temps, il regoit en 1870, consécration supréme,
le prix Steiner de I’Académie de Berlin *. Vers 1850, Schlifli met la derniére
main a un manuscrit d’un intérét considérable. Il décrit lui-méme son
travail comme « ... visant a fonder et a développer un nouveau rameau
de I’analyse, qui soit, en méme temps, une géométrie analytique a 2 et
3 dimensions. Comme la géométrie ordinaire peut €tre nommée théorie
d’un continu trois fois étendu, j’ai nommé ma théorie, théorie d’un continu
multiplement étendu.» Malheureusement, 'ampleur du mémoire empéche
sa publication; il ne voit finalement le jour qu’en 1901, six ans aprés la
mort de son auteur.

Son importance pour notre histoire provient de ce qu’il contient la

n—1

relation Y (—=1)"a, + (=1)" = 1, qui est la généralisation du théoreme
1

d’Euler au cas de ’espace a » dimensions.

§ 4. — GAUSS-LISTING

Aprés un siécle d’histoire, le théoréme d’Euler a parcouru toutes les
étapes réservées a un honnéte théoréme: apparition empirique, énoncé
approximatif, démonstration dans un cas particulier, énoncé exact, généra-
lisation. On doit cependant remarquer que, pendant tout ce si¢cle consacré
au théoréme d’Euler, on n’a guére parlé de topologie; ni Euler, ni Legendre,

1 Voir J. J. Burckhardt, Ludwig Schlifli, Birkhaiiser, Basel 1948, 23 p.
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pas plus que Lhuilier, von Staudt ou Schlifli n’ont vu, ou signalé, le lien
entre le théoréme d’Euler et Vanalysis situs. Gauss et son éleve Listing
vont combler cette lacune. Commengons par quelques rappels biogra-
phiques. Gauss est né en 1777. Par son comportement, on peut le rattacher
aux savants du xvie siécle: il ne publie presque pas, communique Ses
découvertes — quand il les communique — par ses conversations et par
sa volumineuse correspondance. Il n’a guére d’éléves, tout au plus quelques
disciples et collégues. C’est en 1794, soit au début de sa carriére scientifique
que Gauss se lie d’amitié avec Uanalysis situs; il Iutilise pratiquement
et sciemment dans sa dissertation inaugurale de 1799, ou il démontre le
théoréme fondamental de I’algébre. A de nombreuses reprises par la suite,
il mentionne la topologie et son importance pour les mathématiques dans
sa correspondance et dans ses conversations '. L’extrait suivant, d’une
lettre de Gauss a Hansen, écrite en 1825, fait bien voir la conception qu’il a
de la topologie: « Vous avez entiérement raison de prétendre que dans toutes
les constructions de cartes, la similitude dans les plus petites parties constitue
la condition essentielle, que 1’on ne peut négliger que dans des circonstances
tout a fait spéciales. Il serait d’ailleurs utile de créer une dénomination
propre aux représentations qui remplissent cette condition. En outre, elles
ne sont que des cas particuliers de la représentation la plus générale d’une
surface sur une autre qui, a chaque point de I'une, fait correspondre un
point de I'autre, et ceci d’une fagon continue.»

Dans un travail publié en 1827, consacré a la théorie des surfaces, et
qui est I'un des principaux textes de Gauss, on voit le Prince des mathé-
maticiens poser et étudier le probléme de la déformation isométrique des
surfaces; c’est une étape indispensable, qui préfigure et annonce 1’étude,
plus générale celle-la, des déformations topologiques. Dans ce méme
travail, Gauss introduit la courbure totale d’une surface, qui tiendra un
si grand role dans le développement de la topologie. L’influence de Gauss
sur I’évolution de I'analysis situs apparait encore et surtout, a travers les
travaux de Listing et ceux de Mobius-Klein.

Johann Benedikt Listing est né en 1808. Il arrive & Gottingen en 1829;
il 'y devient €léve assidu de Gauss, qui lui parle notamment de topologie.
C’est Listing qui crée le mot topologie; on le trouve pour la premiére fois
dans une lettre qu’il écrit en 1836 & I'un de ses amis 2. En 1847, il publie
un ouvrage intitulé Vorstudien zur Topologie, qui consacre I'entrée officielle

1 Voir opuscule cité (p. 32-33).
% idem (p. 41-42).
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du vocable topologie dans le cortége des termes mathématiques. Voici,
tiré de I'introduction de ce livre, un passage significatif: « Lorsque I'on
consideére des formes spatiales, on peut se placer au point de vue de la
quantité ou a celui de la qualité. Aussi variées que soient leurs méthodes
et leur objet, les recherches de la géométrie accordent, dans leurs déve-
loppements actuels, la priorité a la premiére catégorie; aussi, la géométrie
a-t-elle de tout temps été regardée comme une partic de la science des
grandeurs, ainsi d’ailleurs que son nom l'indique. Le deuxiéme point de vue,
celui de la qualité, c’est-a-dire celui qui se rapporte aux questions de position
et d’ordre, ne fut étudié en géométrie que pour autant qu’il fiit possible de
I’adapter a celui de la quantité.»

Et plus loin: « Si I’on fait abstraction des quelques rares contributions
dont nous venons de parler, c’est de I’avenir que le coté qualitatif de la
géométrie attendra son développement. L’étonnement que peut engendrer
le fait que rien ne s’est accompli dans ce domaine du savoir, depuis l'insti-
gation de Leibniz, se tempérera peut-&tre si ’on songe aux multiples diffi-
cultés que 'on rencontre lors de la mise sur pied de méthodes efficaces
et convenables, permettant de ramener 'intuition spatiale a des concepts,
et a I'insuffisance de la langue. L’importance du sujet m’ayant été signalée
par le plus grand géométre de notre temps, je me suis essayé depuis longtemps
a lanalyse de certains cas qui relévent de cette science... Qu’il me soit
permis d’utiliser pour ce genre de recherches sur les complexes spatiaux
le mot topologie, en lieu et place de la dénomination geometria situs
proposée par Leibniz, qui rappelle I'idée de mesure et qui, en outre, se
rapproche par trop de I’expression géométrie de position, qu’il est d’usage
d’employer dans un domaine différent de celui que nous considérons.
Par topologie, nous entendrons donc I’étude des aspects qualitatifs des
formes spatiales ou des lois de la connexion, de la position mutuelle et
de 'ordre des points, droites, surfaces, corps, ainsi que de leurs parties
ou de leurs réunions, abstraction faite de leurs rapports de mesure et de
grandeur... Pour s’élever au rang d’une science exacte, vers lequel tout
semble I'appeler, la topologie doit chercher a ramener les faits, qui lui
sont suggérés par l'intuition spatiale, & des concepts aussi simples que
possibles...»

Le second travail topologique de Listing date de 1861. Dans ce tres
long mémoire, I'effort de Listing se porte sur ’extension du théoréme
d’Euler au cas des complexes spatiaux les plus généraux. Il essaye de déter-
miner linfluence de la nature topologique de chaque constituant du
complexe sur la caractéristique d’Euler, en faisant nommément appel a
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la topologie. Il attribue, & chaque constituant, un nombre, son ordre de
cyclodicité, & qui il reconnait la nature d’un invariant topologique. Cest
13 une nouveauté de taille. On doit toutefois préciser que Listing est passé
4 coté du probléme fondamental de la topologie des surfaces. En outre,
bien qu’il ait le premier mentionné dans ses ecrits cette surface que 'on
appelle le ruban de Mobius, il n’a pas congu, méme en principe, une théorie
topologique des surfaces non orientables.

§ 5. — RIEMANN

A. 1851 marque un tournant dans notre histoire. C’est au cours de cette
année que Riemann, Agé de 25 ans, écrit ses Principes fondamentaux pour
une théorie générale des fonctions d’une grandeur variable complexe (Dis-
sertation inaugurale); a cette occasion, Riemann est conduit a utiliser des
notions qui ressortissent, & Uanalysis situs. Cet événement est doublement
important. D’abord, parce que, dés maintenant la topologie cesse d’étre
un simple jeu de l’esprit pour devenir un auxiliaire précieux dans cette
théorie des fonctions, a laquelle le xixe siécle finissant consacrera le meilleur
de ses forces. Ensuite, parce que dorénavant les problémes topologiques
vont étre attaqués sur deux fronts; celui de la géométrie et celui de ’analyse.

Voyons pourquoi Riemann a besoin de topologie, et ce que la topologie
lui doit.

1. Etudiant Pexpression | f (z) d z, ol f est une fonction holomorphe

sur un domaine et ¢ une courbe fermée, il montre qu’elle est nulle, pourvu
que ¢ soit contour total d’une portion de surface. Lorsque ¢ ne remplit
pas cette condition, le théoréme conserve sa valeur grace a l'introduction
d’une ligne nouvelle — la section transverse — qui joint deux points situés
sur chacune des frontieres. En pratique, cette situation se présente quand
la fonction posséde une singularité, que I'on exclut a I’aide d’une courbe
fermée. Ainsi apparait en théorie des fonctions une classification des
surfaces: surfaces simplement connexes celles qui ne nécessitent aucune
section transverse, doublement connexes celles qui demandent une section,
etc.

2. Confronté au difficile probléme posé par les fonctions multiformes,
Riemann eut I'idée d’attacher a chacune d’elles une surface qu’on appelle
aujourd’hui la surface de Riemann de la fonction. Aux propriétés topo-
logiques de la surface de Riemann correspondent pour les fonctions des
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propriétés intéressantes. L’étude topologique des surfaces s’impose donc,
lorsqu’on aborde la question de ce point de vue. On a trouvé dans les
papiers de Riemann une ébauche non datée, intitulée Fragment sur [’analysis
situs. On y voit Riemann tenter d’étendre au cas de » dimensions, les consi-
dérations topologiques développées pour les surfaces.

B. A la suite de Riemann, on doit encore citer:

Carl Neumann : il reprit les difficiles écrits de Riemann, les approfon-
dit, les éclaira et les publia (1865) dans un ouvrage justement célébre dans
lequel toute une génération de mathématiciens s’est familiarisée avec les
théories du maitre de Gottingen et les idées topologiques du temps. Cest,
a tout prendre, le premier manuel de topologie.

Enrico Betti: le mathématicien de Pise fut a I"époque le meilleur
connaisseur des idées de Riemann. Depuis 1860, Riemann souffre de tuber-
culose, mal qui 'emporta d’ailleurs en 1866. Ses médecins lui conseillent
le climat du sud. Riemann se rend en Italie ou il se lie d’amitié avec Betti
a qui il fait part de ses idées. Ce sont ces idées, concernant notamment
des invariants topologiques pour les variétés a n dimensions que I’on appelle
aujourd’hui les nombres de Betti, qui servent de base, pour ne pas dire
plus, a un célebre mémoire que Betti publie en 1871.

Félix Klein : suivi par plusieurs éléves, dont le plus connu est W. Dyck,
Félix Klein va exploiter le filon découvert par Riemann et par contrecoup
développer 'analysis situs.

§ 6. — MOBIUS

Avec August Ferdinand Mobius, on revient a la géométrie. Mobius
est né a Schulpforta en 1790; il étudie sous Gauss entre 1813 et 1814. Dés
1815, il enseigne & Leipzig jusqu’a sa mort en 1868. On lui doit d’impor-
tantes contributions en géométrie, en mécanique céleste et en statique.

Le fil d’Ariane des travaux topologiques de Mobius apparait dans un
livre — son ceuvre principale — Der barycentrische Calcul publié en 1827.
Ce fil d’Ariane est le concept de Verwandtschaft qu’on traduisait en ce
temps par corrélation — on dit aujourd’hui transformation — que Mobius
envisage d’abord dans des cas ordinaires (isométrie, similitude, affinité,
colinéation); en 1855, il consacre un long mémoire a une corrélation qu’il
nomme Kreisverwandtschaft, c’est-a-dire a cette corrélation qui transforme
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des cercles en des cercles. Par ses travaux, Mobius a puissamment contribué
a faire de la corrélation ce principe d’une rare fécondité que I’on rencontre
aujourd’hui dans toutes les provinces des mathématiques. Aussi considere-
t-on Mobius comme le principal précurseur du Programme d’Erlangen,
dont nous parlerons tout a I’heure.

En 1858, 4gé de 68 ans, il se laisse tenter par le probléme mis au concours
par I’Académie des sciences de Paris; il s’agissait de « Perfectionner en
quelque point important la théorie géométrique des polyédres.» Avant
la date limite, fixée au 1er juillet 1861, ’Académie regoit huit mémoires,
parmi lesquels celui de Mobius intitulé Mémoire sur les polyédres. L’examen
des manuscrits de Mobius montre que ce travail eut probablement pour
but initial ’énumération de tous les polyédres possibles de »n sommets,
mais que les formidables difficultés de ce probléme détournérent son auteur
de la voie primitive, pour I’amener a étudier plus spécialement les questions
d’aire et de volume des polygones et des polyédres. Ce travail ne fut pas
jugé digne du prix, malgré, ou peut-&tre a cause, de la grande nouveauté
des résultats qu’il contenait. On doit cependant dire, a la décharge des
examinateurs, qu’il est couvert de ratures et écrit dans un frangais désastreux.
Le prix ne lui étant pas attribué — aucun d’ailleurs des huit auteurs n’en
fut jugé digne — Mobius se décide a en publier de larges extraits dans
deux mémoires parus en 1863 et 1865.

Je 'ai dit plus haut, I'idée de corrélation est I’ame de ce travail. Ii
s’agit cette fois-ci de corrélation élémentaire. M&bius la définit ainsi:
« Deux figures seront dites en corrélation élémentaire lorsqu’a tout élément
infiniment petit de 'une correspond un élément infiniment petit de [autre,
de telle maniere qu’a deux éléments qui se touchent dans la premiére
correspondent deux éléments qui se touchent dans la seconde; ou aussi:
deux figures sont en corrélation élémentaire lorsqu’a tout point de I'une
correspond un point de I'autre, de telle maniére qu’a deux points infiniment
voisins correspondent toujours deux points infiniment voisins. Dés lors,
une ligne ne peut €tre en corrélation élémentaire qu’avec une autre ligne,
une surface avec une surface et un corps spatial avec un corps spatial.»
L’idée centrale de toute cette théorie est ainsi définie d’une fagon claire,
au moyen de termes auxquels on peut donner une signification mathéma-
tique précise. Cette définition a sur celles ayant cours & ’époque un avantage
décisif': elle n’exige plus I'existence d’une déformation physique transformant
une figure en une autre, mais simplement la possibilité d’établir une corres-
pondance entre les éléments qui les constituent. On est maintenant en
mesure de P’appliquer a des ensembles abstraits, sur lesquels Iintuition
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n’a plus prise, et que I'on ne peut par conséquent pas déformer les uns
dans les autres. Le but de ce premier mémoire est, comme Mobius 'indique,
d’établir une classification des surfaces orientables du point de vue de la
corrélation élémentaire, Il y parvient en attribuant a chaque surface un
€tre mathématique, son schéma, qu’il simplifie ou manipule par des procédés
qui ressemblent fort & ceux de I’algébre ordinaire. A une échelle modeste,
bien str, Mobius fait de la topologie algébrique. C’est également dans ce
mémoire qu’il introduit, comme représentant de chaque classe de surfaces,
des figures aujourd’hui classiques?!. Il démontre finalement le théoréme
fondamental: deux surfaces sont homéomorphes si et seulement si elles
appartiennent a la méme classe.

Le mémoire de 1865 s’intitule Uber die Bestimmung des Inhaltes eines
Polyeders. Ce travail présente et analyse le concept de surface a un coté.
En fait, pour Mobius, le but de cette étude, comme son titre I'indique, est
d’examiner la notion de volume d’un polyédre, I'idée de surface a un coté
n’étant qu’un auxiliaire. D’abord, M6bius innove en considérant la longueur
d’un segment, 'aire d’une surface, le volume d’un polyeédre comme des
nombres munis d’un signe, ce qu’il avait déja fait dans son Calcul bary-
centrigue. Puis il définit I'aire d’un polygone ordinaire, c’est-a-dire d’un
polygone dont le périmétre ne se recoupe pas lui-méme; il décompose
pour cela la figure en triangles a partir d’un point quelconque; grace aux
considérations sur le signe, lorsqu’un méme triangle apparait p fois avec
le signe + et g fois avec le signe —, il I’écrit p — ¢ fois dans la somme
finale. Dans le cas des polyédres, il fait de méme; pour démontrer que la
somme des volumes des pyramides obtenues par décomposition a partir
d’un point P ne dépend pas de P, il prend un deuxiéme point P’ et montre
que la différence des volumes engendrés par les deux décompositions est
nulle. Au cours de ce raisonnement se présente une somme de tétracdres,
chacun d’eux étant compté deux fois; cette somme est nulle si les volumes
s’éliminent deux a deux, c’est-a-dire s’ils sont de signe contraire. En derniére
analyse, cela signifie que le polyedre puisse €tre orienté de maniere que chaque
aréte soit parcourue dans des sens opposés, selon qu’on la considére comme
appartenant a une face ou a I'autre. C’est la loi des arétes. Mobius se demande
alors naturellement s’il existe des polyedres qui ne vérifient pas cette loi.
Il en a découvert, les a étudiés, en a compris le caractére topologique,
les a popularisés sous la forme du ruban dont il a ’honneur de porter le
nom. Malheureusement, il n’a pas essayé de situer ses « surfaces unilaté-

1 Voir opusc. cité, p. 97.
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rales » dans le cadre de sa classification de 1863. On le regrettera d’autant
que notre auteur avait conscience de ce probléme, comme l'atteste le texte
écrit & lintention du Grand-Prix. Nous I’avons vu plus haut, Listing a
publié des considérations sur le ruban de M&bius en 1861 déja. Il a donc
la priorité de droit sur cette découverte. En fait, les archives de Mdbius
et de Listing établissent que c’est en juillet 1858 chez le premier, en septembre
de la méme année chez le second que cette surface apparait. Cette concor-
dance dans les dates mérite réflexion. En examinant de prés cette question,
j’ai acquis la conviction que le pére du fameux ruban est en réalité I'iné-
vitable Gauss!. En tout état de cause, le nom par lequel on a coutume
d’appeler cette surface est justifié. Pour Listing c’était uniquement une
forme secondaire, faisant exception a celles qu’il étudiait, et juxtaposée
mais non intégrée a son étude. Pour Mobius, au contraire, le ruban est
un élément qui se présente naturellement et nécessairement. Mobius a
défini 'homéomorphisme, pris en considération et résolu pour la premiere
fois le probléme de la classification des lignes et des surfaces orientables,
ouvertes ou fermées, déterminé un invariant topologique: leur ordre de
connexion, et ceci par voie originale, montré 1’existence d’une relation
entre ce nombre et la caractéristique d’Euler, abordé le probléme de
I’homéomorphisme entre corps de I’espace, introduit rigoureusement, et
de l'intérieur, les surfaces « unilatérales ». Si Euler, Listing, Riemann et
autres ont donné des béquilles a la topologie, Mdbius lui a donné des ailes.
Néanmoins, I'influence de son ceuvre sur le développement de la topologie
ne fut pas aussi importante que ce que 1’on aurait été en droit d’attendre,
ni la notoriété de Mobius ce qu’elle aurait di étre. Il est quasi certain
que si ’Académie lui avait décerné le prix, amplement mérité par 1’extra-
ordinaire originalit¢ du mémoire, ses résultats auraient eu une diffusion
large et rapide; tandis que les quelques pages, d’une lecture relativement
difficile, traitant d’un sujet ne paraissant se rattacher a rien, et qui plus
est, parues dans un périodique d’ordre secondaire, n’curent guére d’audience.

§ 8. JORDAN

Le premier des deux importants problémes topologiques que
Camille Jordan aborde au cours de I'année 1866 s’inspire d’une question
traitée par Gauss en 1827: « Un des problémes les plus connus de la géo-
métrie est le suivant: Trouver les conditions nécessaires et suffisantes pour

1 Voir opusc. cité, p. 109-110.
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que deux surfaces ou portions de surfaces flexibles et inextensibles puissent
étre appliquées 'une sur l'autre sans déchirure ni duplicature. On peut
se proposer un probleme analogue, en supposant au contraire, que les
surfaces considérées soient extensibles a volonté. La question ainsi simplifiée
rentre dans la géométrie de situation, et nous allons la résoudre en démon-
trant le théoréme suivant:

Théoréme. Pour que deux surfaces ou portions de surfaces flexibles
et extensibles a volonté soient applicables I'une sur I’autre sans déchirure
ni duplicature, il faut et il suffit:

1. Que le nombre des contours séparés qui limitent respectivement ces
deux portions de surfaces soient le méme. (Si les surfaces considérées
sont fermées, ce nombre est nul).

2. Que le nombre maximum des contours fermés ne se traversant ni
eux-mémes ni mutuellement nulle part, que 'on peut tracer sur chacune
des deux surfaces sans la partager en deux régions séparées, soit le méme
de part et d’autre.»

Le second travail de Jordan est lui complétement neuf: « Deux contours
fermés quelconques, tracés sur une surface donnée, seront dits réductibles
I’'un a Pautre, si 'on peut passer de 'un a I'autre par une déformation
progressive.

« Deux contours quelconques tracés sur un plan sont toujours réduc-
tibles I'un a I'autre; mais il n’en est pas de méme sur toute surface: ainsi,
par exemple, il est clair que dans un tore un méridien et un paralléle forment
deux contours irréductibles. |

» Nous nous proposons ici de déterminer dans quels cas deux contours,
tracés sur une surface donnée, sont réductibles I'un a I’autre.»

Jordan est ainsi le pere de la notion d’homotopie. Une étude détaillée
de son texte fait voir qu’il est passé tout prés de I'idée de groupe fonda-
mental, en quoi Poincaré reconnaitra un outil d’une grande efficacité
pour la topologie.

§9. FeLix KLEIN ET LE PROGRAMME D’ERLANGEN
En 1872, Felix Klein agé de 25 ans, présente un travail dont l'intérét

pour I'histoire des mathématiques, et en particulier pour I’histoire de la
topologie, est considérable. La genése de ce texte — qu’on appelle le Pro-
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gramme d’Erlangen parce qu’il fut lu par Klein & I'université de cette ville
comme dissertation inaugurale — n’a pas été étudiée de manicre systéma-
tique par les historiens des mathématiques. En premiére approximation,
on peut dire que les idées maitresses du Programme proceédent de trois
sources, qui alimentent par ailleurs le gros de la pensée mathématique
au XIxe siecle.

— 1l s’agit d’abord de I'idée de transformation d’une surface dans une
autre, de correspondance entre ensembles géométriques, que nous avons vu
apparaitre et se développer par les soins de Gauss et de Mobius. Clest
grice 4 la forme saisissante dont Klein saura la vétir, qu’elle deviendra
I'une des clefs de la mathématique.

— 11 s’agit ensuite de cette théorie des invariants, qui conduit Cayley a
envisager dans un méme schéma géométric métrique et géométrie pro-
jective: celle-ci devenant partie de celle-la. Ce bien singulier résultat,
Klein allait I’étendre en 1871 aux géométries non-euclidiennes. La remar-
quable unité qui se crée ainsi sous la houlette de la géométrie projective,
préfigure et suggére celle encore plus compléte que révélera le Programme
d’Erlangen.

— Enfin, avec la redécouverte des travaux de Galois, vers 1846, I'idée
de groupe, qui avait montré ce dont elle est capable & Ioccasion d’une
question célebre et difficile, se diffuse promptement dans les cercles mathé-
matiques. Klein saura s’en servir magistralement dans son Programme
d’Erlangen.

Synthése admirable de ces trois grandes conceptions, le Programme
développe I'idée qu’une géométrie est 1’étude des invariants d’un certain
groupe de transformations. C’est un principe unificateur d’une étonnante
efficacité qui apparait. Dans cette optique, la topologie devient la géométrie
du groupe des transformations topologiques.

§ 10. Dyck

Il serait indécent de quitter la petite enfance de la topologie algébrique,
sans citer le mathématicien munichois Walther Dyck, aujourd’hui tombé
dans Poubli, et qui fut un personnage considérable de la mathématique
allemande entre 1890 et 1920.

Dyck est né a Munich en 1856; éléve favori, puis ami de Klein, on lui
doit plusieurs travaux en théorie des fonctions et surtout en théorie des
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groupes et en topologie, Il est durant de nombreuses années rédacteur
aux Mathmatische Annalen; il est aussi I'un des promoteurs de la célébre
Encyclopédie des sciences mathématiques. Ses contributions a la topologie
paraissent en 1888 et 1890. Dyck y expose le probléme fondamental de
Vanalysis situs en termes précis, le traite rigoureusement, par une méthode
qui lui est propre, dans le cas de une et deux dimensions puis présente
une classification irréprochable des surfaces orientables et non orientables.
Dans un second mémoire, il étend ses raisonnements au cas de ’espace a
n-dimensions et découvre a cette occasion trois théorémes, qui devraient
suffire a lui assurer I'immortalité:

— La caractéristique d’Euler d’une n-sphére est 2 ou 0, selon que n
est pair ou impair;

— La caractéristique de ’espace projectif est 1 ou 0, selon que »n est
pair ou impair;

— L’espace projectif est orientable ou non orientable, selon que » est
impair ou pair.

Dans ses travaux topologiques, Dyck allie & une brillante synthése
des idées de ses prédécesseurs, un remarquable apport original.

( Recue le 13 septembre 1973 )

Jean-Claude Pont
Glarey 40 B
CH-3%60 — Sierre



	PETITE ENFANCE DE LA TOPOLOGIE ALGÉBRIQUE
	§1. — Introduction
	§2. — Les ponts de Koenigsberg
	§3. — Le théorème d'Euler sur les polyèdres
	§4. — Gauss-Listing
	§5. — Riemann
	§6. — Möbius
	§8. Jordan
	§9. Felix Klein et le Programme d'Erlangen
	§10. Dyck


