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INITIATION AUX NOMBRES TRANSCENDANTS

par Michel WALDSCHMIDT

Alors qu’elles étaient, a leurs débuts, assez obscures et compliquées,
certaines démonstrations de transcendance ont été énormément simplifiées
au cours de la derniére décade. Cette clarification est essentiellement due a
Lang, qui présentait au Séminaire Bourbaki en 1966 (exposé n° 305) un
théoréme sur la transcendance de nombres exp (x;y;), et qui le démontrait
par la méthode classique de Gel’fond-Schneider, sauf que [’on s’en tire sans
équation différentielle, et que la démonstration s’en trouve simplifiée au point
d’étre complétement triviale (sic).

Il se trouve qu’en apportant une modification trés minime.dans le choix
de certains paramétres, on peut démontrer de la méme maniére le théoréme
de Gel’fond et Schneider sur la transcendance de a®. C’est ce que nous verrons
dans la premiére partie, aprés avoir effectué un rapide survol de 'historique
de ce probléme. ,

Dans la deuxiéme partie, nous étudierons, dans le méme esprit de
simplification, un théoréme de Baker sur I'indépendance linéaire de loga-
rithmes de nombres algébriques.

I. LE THEOREME DE GEL’FOND ET SCHNEIDER
SUR LA TRANSCENDANCE DE g

§ 1. APERGU HISTORIQUE [4,8]

En 1748, un siécle avant que Liouville ne construise le premier exemple
de nombre transcendant, Euler conjecturait que le logarithme, pour une
base rationnelle, d’un nombre rationnel (qui n’est pas une puissance ration-
nelle de la base) est transcendant.

En 1900, au Congrés de Paris, Hilbert constatait que cette conjecture
n’était toujours pas résolue, les seules méthodes connues ne pouvant
s’appliquer qu’aux valeurs, en des points algébriques, de fonctions satis-
faisant une équation différentielle a coefficients algébriques. C’est ainsi que
Hermite (1873) avait obtenu la transcendance de e, Lindemann (1882) celle
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de ¢, pour « algébrique non nul (et par conséquent la transcendance de ),
et Welerstrass (1885) I'indépendance algébrique de el y e s ea”, ol
oy, ..., 0, sont des nombres algébriques Q-linéairement indépendants.

En 1900, donc, dans son exposé « Mathematische Probleme » (voir:
D. Hilbert, Gesammelte Abbhandlungen, New York, 1965; ou bien:
Bull. Amer. Math. Soc., 8, (1902), 437-479), Hilbert énongait une liste de
23 problémes, dont le septiéme, « Irrationalitdt und Tranzendenz bestimmter
Zahlen », reprenait la conjecture d’Euler:

Etudier la transcendance, ou méme seulement Uirrationalité, des nombres
a’, puissance d’un nombre algébrigue a # 0,1 par un nombre algébrigue
irrationnel b, par exemple 2% er e™ = i~ 2.,

Hilbert considérait ce probléme comme trés difficile, et il pensait que sa
solution ne serait trouvée qu’aprés celles de I’hypothése de Riemann et de
la conjecture de Fermat.

Pourtant, dés 1929, une attaque sérieuse de ce probléme est donnée par
Gel’fond, a partir de travaux de Polya. Polya avait étudié, depuis 1914, les
fonctions analytiques f qui vérifient /(Z) € Z pour tout Z e Z, ce qui lui
avait permis d’établir un premier lien entre I’ordre d’une fonction analytique
et la nature arithmétique de ses valeurs. Gel’fond s’intéressa aux fonctions
qui vérifient f (Z) € Z pour tout Z € Z [i], anneau des entiers de Gauss. Sa
méthode, appliquée a des fonctions telles que ™%, lui permit d’apporter une
premicre réponse au 7¢ probléme de Hilbert: si a # 0, 1 est algébrique, et
si b est irrationnel quadratique, alors a” est transcendant; en particulier
e™ est transcendant.

Ce résultat fut amélioré par Kuzmin, puis Boehle. Et, en 1934, la solution
définitive est trouvée, par Gel’fond et par Schneider, indépendamment I’un

de Pautre.

Soient a, b deux nombres algé-

ToEoREME 1. (Gel’fond, Schneider).
briques, a # 0, a # 1 et b irrationnel. Alors le nombre :

a® = exp (h. Log a)
est transcendant.

Les méthodes de Gel’fond et de Schneider ont connu depuis des dévelop-
pements considérables. En 1934 et 1937, Schneider étudiait les valeurs de
fonctions elliptiques; puis, en 1949, 1l généralisait tous ses résultats en un
critére de dépendance algébrique pour des fonctions analytiques [10].

En 1949 également, Gel’fond obtenait des propriétés d’indépendance
algébrique [5]; par exemple, si a # 0,1 est algébrique, et b irrationnel
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cubique, les deux nombres a” et & sont algébriquement indépendants (sur Q).

Ces résultats ont été étendus par Lang (depuis 1963) aux points de varictés
de groupes [7, 8]; Lang déduit ses énoncés de critéres, analogues a celui
obtenu par Schneider en 1949, sur la répartition des points o plusieurs
fonctions méromorphes prennent simultanément des valeurs algébriques.
Grice i une variante de ces critéres, Ramachandra, en 1967, énonga de
nouvelles propriétés des fonctions elliptiques [9]. Enfin Bombieri, en 1970,
a permis I’extension de ces critéres aux fonctions de plusieurs variables
(voir [8]).

On ne peut pas terminer cet apergu historique sans mentionner les
travaux de Baker [1] (dont nous parlerons plus longuement dans la deuxiéme
partie) et sans formuler quelques conjectures; les plus célébres concernent:
— Dindépendance algébrique de logarithmes de nombres algébriques, par

exemple la transcendance de:

Log2. Log3,

et
— ['ndépendance algébrique des nombres e et m, par exemple la trans-
cendance de:

& -+ I .

Nous verrons dans la deuxiéme partiec pourquoi la méthode de Baker
ne permet pas actuellement de résoudre la premiére de ces conjectures.

La deuxiéme conjecture (sur e et m) parait vraiment hors d’atteinte des
techniques actuelles, et il semble que, compte tenu des méthodes connues,
le probléme suivant soit plus accessible:

Les nombres n et e™ sont-ils algébriquement indépendants ?

Cette hiérarchie entre plusieurs problémes non résolus doit €tre accompa-

gnée de toute la prudence enseignée par ’expérience de Hilbert!

§ 2. PRINCIPES DES DEMONSTRATIONS

Les résultats dont nous venons de parler ont tous a la fois un aspect
arithmétique (la propriété pour un nombre d’€tre algébrique ou transcen-
dant) et un aspect analytique (par exemple la définition de a® = exp (b.
Log a)). Le lien entre ces deux aspects est fourni par des résultats du type
de ceux de Polya: on peut minorer 'ordre de croissance d’une fonction

entiere transcendante qui posséde des valeurs algébriques en de nombreux
points algébriques.
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Regardons plus précisément comment exprimer cette propriété dans le
cas du théoréme 1. Supposons que a, b et a” sont trois nombres algébriques,
aveca # 0,a # 1, et b ¢ Q. Soit K = Q (a,b,a).

Les deux fonctions

eZ et eP”

sont algébriquement indépendantes (sur C), prennent leurs valeurs dans K
aux points Z = n. Log a, ne€ Z, et vérifient des équations différentielles a
coefficients dans K. Gel’fond étudiait alors les propriétés d’une fonction

F(Z) = P (¢%, &%),

ou Pe K [X,Y] (voir par exemple [5] chap. 111, § 2., ou [11] chap. III, § 2.).
Sous les mémes hypothéses concernant a, b et a°, les deux fonctions

7 et a*

sont algébriquement indépendantes et prennent des valeurs dans K aux
points Z =n + mb, (nm)e Z x Z. Schneider utilise alors une fonction
auxiliaire

F(Z) = P(Z,d%),

ou Pe K[X,Y] (voir par exemple [11] chap. I1I, § 1., ou [9] chap. 111, §1.).
On n’a ici aucun renseignement sur les dérivées de F, mais on connait
« plus » de points Z ou F (Z) e K.

La méthode de Gel'fond est généralement mieux connue, grice a...
Schneider. En effet, en 1949, utilisant la méthode de Gel’fond (avec d’im-
portantes améliorations), Schneider a obtenu un théoréme général (voir
§ 1) suivant lequel deux fonctions algébriquement indépendantes f;, f,
d’ordre fini, satisfaisant un certain type d’équations différentielles a coef-
ficients algébriques, ne peuvent prendre simultanément des valeurs algé-
briques qu’en un nombre fini de points. On obtient la transcendance de o
en choisissant f; (Z) = €%, f, (Z) = €°%, et la transcendance de €%, pour o
algébrique non nul, en choisissant f; (Z) = Z et f, (Z) = e*%. Ce critére
de Schneider [10] a été notablement simplifi€ par Lang [7] chap. IlI.

On peut également généraliser la méthode de Schneider pour I'appliquer
a des fonctions fi, f, algébriquement indépendantes; le résultat est par
exemple une majoration du rang du Z-module des points algébriques com-
muns; lorsqu’on choisit f; (Z) = Zetf, (Z) = a”, on retrouve le théoréme
1. Un tel critére a été obtenu par Ramachandra [9] (le critére similaire qu’a
obtenu Lang [7] chap. 11, th. 2, ne contient pas la transcendance de a°,
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parce que les deux fonctions fi, f, sont supposées de méme ordre; évidem-
ment, on peut facilement corriger ce défaut). Mais les énonces sont ici
beaucoup plus compliqués.

Et pourtant, si on se contente de la transcendance de a®, 1a méthode de
Schneider et Ramachandra fournit une démonstration plus facile. C’est
ce que nous allons voir.

§ 3. SCHEMA DES DEMONSTRATIONS

Les démonstrations de transcendance que nous étudions, se font toutes
suivant le méme schéma général (4 des permutations prés des différents pas).
On suppose que plusieurs fonctions méromorphes algébriquement inde-
pendantes, f; , ... ,f;, prennent des valeurs algébriques (ainsi, éventuelle-
ment, que leurs dérivées) en de « nombreux » points, et on désire obtenir
une contradiction.

Premier pas. — Construction d’une fonction auxiliaire

Un lemme de Siegel (lemme 2), utilisant le « principe des tiroirs » de
Dirichlet, permet de construire un polyndme non nul:

PeQ[X,, ..., X,]

a coefficients algébriques, tel que la fonction entiére F = P (fi, ...,  q)
s’annule (éventuellement avec un ordre de multiplicité élevé) en certains
points. -

Deuxiéme pas. — Construction d’un nombre algébrique y # 0

On détermine un point Z,€ C ou F (ou bien 'une de ses dérivées)
prend une valeur algébrique y # 0.

On peut effectuer ce pas en utilisant le fait que le nombre de zéros d’une
fonction entiére d’ordre = p dans un disque {Z € C; Zl = R} est 0 (R?);
on utilise aussi quelque fois un calcul de déterminant, ou encore la pro-
priété pour une fonction entiére non nulle de ne pas avoir toutes ses dérivées
nulles en un point. Enfin, dans certains cas particuliers, on peut utiliser des
formules d’interpolation pour obtenir une majoration trés précise du nombre
des zéros de F (voir par exemple le lemme 4 ou la majoration (20)).

Troisieme pas. — Partie analytique : majoration de I Y |

Le lemme de Schwarz et le principe du maximum permettent de majorer
une fonction possédant de nombreux zéros. On procéde de la maniére
sulvante.
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LEmMME 1. Soit F une fonction entiere, admettant des zéros xy , ..., X
(comptés avec leur ordre de multiplicité). Soit x, € C, xq # x; (i=1, ..., k);
soit s = 0 le plus petit entier tel que

F® (x,) # 0.

Soit A > 1 un nombre réel, et soit :

(D) R =22 |xo| +(A*+1). sup |x,].

1 =h =k

Si la fonction F vérifie : ,
(R—|xo [)°

2) sup | F(2)| = |F|q=— 2,
lZ| =R s!

alors on a :

(3) | F& (xo) | = A7%.

En effet, soit

o) = [] (X—x,)eC[X],

h =1

et
F(Z
- FD_
(Z —xo)
: (Z " . .
La fonction 0(Z est entiére; le principe du maximum montre que, pour
R>|xo]|,ona:
| Q (xo) |
|G(xx)| =G| gp.——.
’ T 1Qlk
Le choix (1) de R permet la majoration:
Xg —X
sup [ =272, h=1,..,k,
|Z|=R| Z—X,
donc:
IQ(xO)I é/l_Zk.
1 Q&

D’autre part, grace a la relation (2), on a:

_ |FlR 4_1_1]‘

(R—[x ) s!

|G| &
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Comme
1
G (xo) = ;—‘F(S) (xo) 5

on en déduit la conclusion (3).
On n’utilisera en fait le lemme 1 que dans le cas s = 0.

Quatriéme pas. — Partie arithmétique : minoration de [ Y |

Comme 7 est un nombre algébrique non nul, il posséde un dénominateur
deZ (i.e. tel que d. y soit entier algébrique non nul). La norme de d. y sur
Q est alors un entier rationnel non nul y’, d’ou | p’ | 1.

On en déduit une minoration de y (voir (4)).

Conclusion. Sila minoration de [ Y ] est incompatible avec la majora-
tion (3), on obtient la contradiction désirée.

Remarque. Pour pouvoir effectuer les majorations et les minorations,
on introduit au début de la démonstration un paramétre N (généralement
choisi entier); les inégalités que 1’on écrit sont alors vérifiées pour N suf-
fisamment grand, c’est-a-dire minoré par un nombre fini d’inégalités (plus
ou moins explicitées).

§ 4. NOTATIONS ET RESULTATS PRELIMINAIRES

a) La notation < [7]
Soient f, g deux fonctions réelles de variable réelle; on notera:
f(x)<g(x) pour x> + o
5’1l existe deux réels positifs 4 et C tels que
x>A=f(x)=C.g(x).

Avec cette notation, le résultat que nous avons cité au deuxiéme pas
(§3.) sur le nombre de zéros, dans un disque | Z | = R, d’une fonction
analytique d’ordre = p s’énonce de la maniére suivante.

Soient Fune fonction enticre (i.e. holomorphe dans tout le plan complexe)
et o > 0 un nombre réel, tels que:

Log |F|g =Log sup |F(Z)|< R’ pour R — o
l

Z| = R

(on dit que la fonction F est d’ordre = p); pour r > 0, soit N (r,F) le
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nombre de zéros (comptés avec leur multiplicité) de F dans le disque
{ZeC;|Z|=r};ona:

NF,F)<r® pour r—-» + .

b) Taille d’un nombre algébrique

- Précisions un peu comment s’effectue le quatriéme pas de la démonstra-
tion (§ 3),

Soit K un corps de nombres (c’est-a-dire une extension algébrique finie
de Q), et soit a € K. Un entier rationnel de Z est un dénominateur de a si
d a est entier sur Z (rappelons que ’anneau des entiers de K sur Z forme un
Z-module libre de dimension [K : Q]). Soit d (a) le plus petit dénominateur
positif de a; soient o4, ..., g, (avec n = [K:Q]) les différents plongements
de K dans C. On définit:

la] = max o],

et
t(a) = max {Log | all; Log d(a)}.
Ces valeurs ne dépendent pas du choix du corps de nombres K contenant a.

La taille t (a) posséde la propriété fondamentale suivante [7] chap. II:
Pour tout ae K, a # 0, on a:

(4) —2[K:Q]t(a) = Log |a].

En effet, le nombre
Ngso(d(a).a) = _Uld (a) .0,(a),

(N est application « norme » de K sur Q), est un entier rationnel non
nul, donc supérieur ou égal a 1 en valeur absolue ; donc pour tout plongement
c; de K dans C ; on a:

Log |o;(a)| =—n. d(a) —(n—1) Log | a|

avecn = [K: Q]
Ainsi, pour minorer un nombre algébrique y # 0, il suffit de majorer

[Q (y) : Q] et £(p).

Nous aurons a utiliser les propriétés suivantes de la taille:
—sia,, ... ,a sont des nombres algébriques, on a:

b

t(a,...ap) =t(ay) + ... +t(ay);
t(a;+...+a) = Log k +t(ay) + ... +t(ay;
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— si, de plus, a4, , ..., a;, sont entiers sur Z, alors:

t(a,+...+a) = Log k + max t(a;).

1 =<i<=k

c) Un lemme de Siegel

La construction de la fonction auxiliaire (§ 3., premier pas) repose sur
un lemme, di a Siegel (1929), qui permet de résoudre, dans un corps K,
un systéme d’équations linéaires homogénes a coefficients dans K, pourvu
que le nombre d’inconnues soit supérieur au nombre d’équations. Nous
n’utiliserons ce résultat que dans un corps de nombres, mais on peut formuler
un énoncé analogue au lemme 2 concernant une extension de Q de type fini
(pouvant avoir un degré de transcendance > 1), aprés avoir défint une fonc-
tion « taille » sur un tel corps.

LemMmE 2. (Siegel). -Soit K un corps de nombres. 1l existe une constante
Cx > 0 ayant la propriété suivante.

Soient r et n deux entiers, n >r=1,eta;; (1 =i=r, 1 =j =n) des
éléments de K. Soit d;, (1=i =r) un dénominateur commun positif de

ai,l,...,ai,n.

Enfin soit
d= max d;, e¢ A= max |a;;|.
1 =i<=r l=i=<r
1 =j=n

Alors il existe n éléments x, , ..., x, de K, entiers sur Z., non tous nuls, tels
que : |

n

(5) Y a;;x; =0 pour 1=i=r
i=1
et |
(6) max || x; H = Cx (Cgn.d. A0 4 Cp.
l=j=n

On trouvera des variantes du lemme 2 dans [5] chap. 1I, lemme II;
[7] chap. 1, lemme 3; [9] chap. 1II, lemme 1; [10] appendice, lemme 31;
[11] chap. II, § 2., lemme 2.

L’existence d’une solution non triviale (x, ..., x,) du systéme (5) résulte
de la non injectivité de ’application:

L:K"— K",
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définie par
n
L(xq,.sx,) = ( Z Ai X ji=1, .y r s
i=1
grace a la condition n > r.

Pour obtenir la majoration (6), il faut se fatiguer un peu plus. Etudions
d’abord le cas K = Q et d = 1

Supposons donc a; ;€ Z avec A = max ] ai,jl = 1. Etant donnés
deux entiers positifs m et B, on définit I’ensemble

Z(m,B) = {(x{,...,x,)€Z™; |x,| =B pour [ =1,..,m}.
On a |
Card Z (m,B) = (1+2B)".
D’autre part L applique Z (n,B) dans Z (r,nAB). Choisissons:
B = [% + —;(nA) = ] (partie entiére),
de telle maniére que I'on ait:
(1+2B)" " > (nA)",
donc

Card Z (n,B) = (1+2B)" > (1+2nAB)" = Card Z (r,nAB).

Ainsi l'application L :Z (n,B) — Z (r,nAB) n’est pas injective (C’est ce
qu’on appelle le « principe de Dirichlet »), donc il existe (y;) # (Z;) appar-
tenant a Z (n,B) tels que

L(yyy..,y,) = L(Zy,....,Z,).
Alors (x;) = (y;— Z;) vérifie
L(x{y...,x,) =0

et

r

|x;| =2B =1+ (nd)"~ "’

ce qui montre que 'on peut choisir Cy = 1.
Dans le cas général, soit 6 = [K : Q], et soit (w,, ..., ws) une base d’entiers
de K sur Z.
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Comme w,, . w, est entier sur Z (1=h=9, 1 =h"<5), il existe des entiers’
rationnels €, ., vérifiant '

0

(Dh.a)h»= Zl Qh’h/’k.wk, léhéé, léh/éé.
k =

Soit

2 = max | Qpprx | .
1=hh, k=25

On décompose les éléments d; . a; ; dans la base (w;, ..., w;): il existe des
entiers «; ; , € Z, (1=i=r, 1=j=n, 1=h=90), tels que

5
di.a;; = th % jp+ COp s

on a de plus

max |o;;,| =Cy.|d;.a;,l
L =h=b

s —t =, — s

ol C, est égal a 6 .¢e“!, C’; étant le maximum des tailles des coeflicients
de linverse de la matrice [o}(wy)]y =15 (C; est une constante ne
dépendant que de K).

Déterminer des éléments x, , ..., x, de K, entiers sur Z et non tous nuls,
vérifiant (5), revient a rechercher des entiers rationnels &;,, (1=j=mn,
1=h=5), non tous nuls, tels que

o
ijhzl éj’ha)h, léjén,

et

P
Z ( Zl Aijn - Qh’,h,k)- ‘fj,h = 0

l=i=r, 1=k=3%

On a ainsi & résoudre un systéme de » 6 équations a n § inconnues, a coef-
ficients dans Z majorés par

5
ll Zl & e Qh',h,k | =C,d A,
h =

O]:l C2=5.C1.Q.
On sait donc résoudre ce systéme avec

¥

max | ;| =1 + (CyndA) n—r

Jj.h

b]
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donc

r

max || x;[| =C; + C3(CyndA) =,

1=j<n

C3 = 5. max “ C()h”.
1=h=9

Finalement, on choisit
Cx = max(C,, Cy).

Remarque. Quand on utilisera le lemme de Siegel, on choisira n = 2 r,

et la majoration (6) se réduira toujours a
max t(x;) =3. max t(a;;).

1=j=n 1 = r
1 <=j n

ININ

J
J

d) Dépendance algébrique de fonctions exponentielles

Nous avons affirmé plus haut (§ 2.) que, si b ¢ Q, les deux fonctions
e? et e’Z sont algébriquement indépendantes sur C, et que, si a # 0, 1, les
deux fonctions Z et a” sont algébriquement indépendantes sur C (on dit que
la fonction a” est transcendante — sous-entendu sur C (Z)).

Plus généralement, on a le résultat suivant:

, b, des mnombres complexes. Les fonctions :

LEMME 3. Soient b, , ...
b.Z b,Z
Z,oel, ... e!

sont algébriquement indépendantes sur C si et seulement si les nombres

byy.., b,

sont Q-linéairement indépendants.
Il revient au méme de dire que si Wy , ..., W, sont des nombres complexes

deux a deux distincts, et si a;;, (1=i=p, 1==j=q) sont des nombres
complexes non tous nuls, alors la fonction
p

(7) F(2) = )

i=1_]

c i-1 W%
a;; . 2" " .e
=1

n’est pas identiquement nulle.
Ce résultat est immédiat par récurrence sur ¢, grace a la relation [6]

chap. 12:
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p -
d -w W ;=W )Z

v4 rpoa—1 .
q _ o i—1
S .F(2) "i;,-;l b;.Z 1 e ,

avece
» p! (1—1)!

bi,j = Z

2 (=i (p—1+1)! T (i—1) !

et a la remarque que, pour'toutj =1,..,q9g—1,0na:

. (W’j—Wq)p_l+i . al’j Py

(b; ;=0 pour 1=i=p)=(a,;=0 pour 1=[-=p).

Le lemme 3 sera amplement suffisant pour ce que nous voulons faire
dans la premiére partie. Mais, pour démontrer le théoréme de Baker (part
II), nous aurons besoin de renseignements beaucoup plus précis sur les
zéros des fonctions (7) (cf. les lemmes 4 et 5 et la relation (20)).

§ 5. DEMONSTRATION DU THEOREME |

Soient a et b deux nombres algébriques, a # 0,a # 1,b ¢ Q, et supposons
que |

a’ = exp (b. Log a)

soit algébrique (Log désignant une détermination quelconque du logarithme
complexe).

Soit N un nombre entier « arbitrairement grand » (voir la remarque 2 la
fin du § 3); si fet g sont deux applications de N dans R, on écrira:

f<g
au lieu de

f(N)<g(N) pour N— + oo.
On définit deux fonctions p (N) et ¢ (N) de N par les relations
(3) p(N) = 2N?* et g(N) =N.
Nous justifierons ce choix a la fin de la démonstration.
Premier pas. — Il existe des éléments de K
a,;(N), (1=i=p(N), 1=j=q(N)),
non tous nuls, entiers sur Z., majorés par

(9) max Log | a;,(N)| < p(N) Log q(N) + N>.q(N) < N*.Log N,
1, J
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tels que la fonction :
p (N) g (W) . _
(10) Fx(2) = ) X a;;(N)Z™! a’”
i=1 j=1
vérifie :
Fy(A4+ub) =0 pour 1 =1=N?, 1=pu=N?, (A,pweZ?.
Pour obtenir ce résultat, on applique le lemme de Siegel (lemme 2) au
systeme de N* équations

p (N) g (N)

Z 'Zl aij (N) (l +ﬂb)i_l . aj'l,(abj)”' -0
I=3=N?, l=p=N

i=1 j=

ap(N).q(N)=2N* inconnues a; ; (N),(1=i=p(N),1=j=q(N)) les
coefficients ayant une taille majorée par

t((A+ub)~t. a’*. (a®*) < p(N). Log g (N) + N> q(N).

Notons que si A€ Z est un dénominateur de a, b et a°, alors
2 r .
A PN+ 2N29(N) est yn dénominateur de

(A+ub) . al* . (aby*.

Deuxiéme pas. — Il existe un entier M (N) = N ? tel que :
1) Fy(A+4wub) =0 pour 1 =A=M(N), 1=upu=M(N)

2) Il existe (A, u)eZ x Z, 1 =i =M(N) +1,
1l =pu, =M(N) + 1,

avec
Y = Fn(44+p.b) # 0.

La fonction F, qui n’est pas identiquement nulle (grice au lemme 3),

vérifie
Log | Fy| g €« R pour R — + o

(i.e. elle est d’ordre = 1), donc le nombre de ses zéros dans un disque
| Z| = R est majoré par < R pour R — + oo (Les constantes impliquées
pour R — + oo peuvent dépendre de N). Or le nombre de points

{A+ ub; (4u)eN X N} dans ce disque ne vérifie pas cette majoration.
Donc 'un des nombres F (1+ ub), (A,i) € N X N, est non nul.
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Troisiéme pas. — Le nombre y = F y (1, + p,b) vérifie la majoration :
(11) Log |y| < —M(N)®:. Log M(N).
On utilise le lemme 1 avec
{X{,0r %) ={v+ub, 1=v=MN), 1=pu =M(N)},
(donc k = M (N)?),etxy = A + pu b, s =0,4 = M (N)”

11 faut vérifier (2) sous ’hypothése (1), c’est-a-dire:
| 1
Log |F|gr =k Log A = 3 M (N)*. Log M(N)

pour

R =A|xo| +(A+1D sup [x,] < MNP,

l=h<k

Or pour cette valeur de R on a:

Log | Flg < g(N). M(N)** 4+ p(N). Log M (N) < M (N)"/*,
grace a (8), (9), (10) et 4 la relation M (N) = N 2. Donc pour N assez grand
la condition (2) est vérifie, d’ou (3):

1
Log |Fy(A, +u;b)| = —k Log A = ——gM(N)2 Log M(N).

Quatriéme pas. — La taille de vy vérifie
(12) t(y) <€ p(N) Log M(N) + q(N) M(N) < M(N)*”?. Log (M(N)),
donc, gréce a (4), le nombre | v | est minoré par :
(13) Log |71 » — M (N)*. Log (M(N))

Notons, comme dans le premier pas, 4 un dénominateur de a, b et a’.
Le nombre

AP (N) + 2(M(N)+1).q(N)' Y

est entier sur Z, donc

Log d(y) < p(N) + M(N)gq(N).

D’autre part la majoration

Log | v| < p(N). Log M(N) + M(N)q(N)




est une conséquence immédiate de (9) et (10); on obtient ainsi (12); (13) est
alors une conséquence de (4).

Conclusion. Les conditions (11) et (13) étant incompatibles pour N
(donc M (N)) assez grand, on obtient la contradiction attendue

Ceci démontre le théoréme 1.
Remarque sur le choix de p (N) et q (N)

On remarque que les seules propriétés que 'on ait utilisées pour les
fonctions p (N) et g (N) définies par (8) sont les suivantes.

Ces deux fonctions sont monotones croissantes, tendent vers + oo
avec NV, et vérifient

1
I—V—Zq(N)—>O et ]:]—‘tp(N)LogN—>0 quand N — o0 ;

p(N).q(N) =2 N*.

Il y avait évidemment d’autres choix possibles que (8).

II. LE THEOREME DE BAKER SUR L’INDEPENDANCE
LINEAIRE DE LOGARITHMES DE NOMBRES ALGEBRIQUES

§ 1. ENONCE DU THEOREME

Dans la premiére partie, nous avons étudié le théoréme de Gel’fond et
Schneider sur la transcendance de a”. Ce théoréme peut s’énoncer de la
manicre suivante,

Si les logarithmes de deux nombres algébriques sont Q-linéairement

indépendants, alors ces logarithmes sont Q-linéairement indépendants

((_) désignant le corps des nombres algébriques, cloture algébrique de Q
dans C).

Gel’fond [5] avait suggéré que la propriété devait étre vraie pour n
logarithmes, et il avait mis en évidence I'importance de cette conjecture qu’il
considérait comme le probléme fondamental dans la théorie analytique des
nombres transcendants. Baker résolvait en 1966 le cas ou les nombres algé-
briques sont multiplicativement indépendants [1], I, puis en 1967 le cas
général [1], 1I; il démontrait méme plus [1], III.

THEOREME 2 (Baker). Soient o, ..., o, des nombres algébriques dont
les logarithmes sont Q-linéairement indépendants.



69 —

Alors :
1, Log o;,..., Log «,

sont Q-linéairement indépendants.
Par des arguments trés simples d’algébre linéaire, on peut déduire du
théoréme 2 le corollaire suivant.

COROLLAIRE 1. Soient oy , ..., OBy s> P des nombres algébriques
(¢;#0). On suppose que I’une des propriétés suivantes est vérifiée.

I. Bo# 0

2. Log «, , ..., Loga, sont Q-linéairement indépendants, et 'un des
nombres B, , ..., B, est irrationnel.

3. Logay, ..., Log«, sont non nuls, et 1, i, , ..., B,, sont Q-linéairement
indépendants.
Alors le nombre

est transcendant.
On déduit également du théoréme de Baker la transcendance du nombre
1
dx l(L 5 o T )
—_— = = O ] - = .
1 + b 3 - \/3
0
Plus généralement, Van der Poorten (On the arithmetic nature of definite
integrals of rational functions. Proc. Amer. Math. Soc. 29, (1971), 451-456)

a montré que le théoréme 2 permettait de déterminer la nature arithmétique
d’intégrales définies de fonctions rationnelles; par exemple:

COROLLAIRE 2. Soient P et Q deux polynémes non nuls a coefficients
algébriques, avec deg P < deg Q, les zéros de O dans C étant deux a deux
distincts. Soit I' un contour dans le plan complexe, qui est fermé ou bien qui
a des extrémités algébriques ou infinies.

Si ’intégrale

P(Z)
J Q(2)

dZ

existe, alors elle est nulle ou transcendante.




Dans I’énoncé du résultat de Baker, nous avons négligé I’aspect effectif
du théoréme: non seulement Baker démontrait qu’une forme linéaire non
triviale en 1, Loga, , ..., Log a,,, a coefficients algébriques, est non nulle,
mais en plus il minorait une telle forme, en fonction des tailles des nombres
oy , ... 5 &y €t des coeflicients.

Cette négligence nous permet de simplifier notablement la démonstration,
mais nous interdit aussi 1’étude des conséquences les plus importantes (mais
également moins élémentaires que les précédentes) de cette méthode, telles
que

— les applications aux équations diophantiennes, par exemple la recherche
de points rationnels sur des courbes de genre 1 (Baker, Coates);

— I’étude des approximations de nombres algébriques par des nombres
rationnels, et la recherche d’analogues effectifs du théoréme de Thue,
Siegel, Roth (Baker, Coates);

— les problémes de nombres de classes, en particulier dans les corps
quadratiques imaginaires (Baker, Stark, Bundschuh et Hock);

— I’étude des nombres ayant de grands facteurs premiers (Ramachandra,
Tijdeman, Shorey).

La résolution de nombreux autres problémes de théorie des nombres
fait intervenir des minorations de formes linéaires de logarithmes.

Enfin I’analogue p-adique du théoréme 2 permit a Brumer de résoudre,
dans le cas abélien, une conjecture de Leopoldt sur le rang p-adique du
groupe des unités d’un corps de nombres. Pour résoudre cette conjecture
dans le cas non abélien, il suffirait que 'on puisse démontrer I’analogue
p-adique de la

CONJECTURE. Soient oy , ..., , des nombres algébriques dont les loga-
rithmes sont Q-linéairement indépendants. Alors Loga, , ..., Loga, sont
algébriquement indépendants.

Une approche trés intéressante — et entiérement différente de celle de
Baker — a été faite par Galotschkin et Nurmagomedov, utilisant une
méthode de Siegel et Shidlovskii; ils démontrent que, Pe Q [X; , ..., X,
étant un polyndbme non nul, si les nombres «; , ..., «, sont suffisamment
proches de 1 (d’autant plus proches que le degré total du polyndme est plus
grand), alors P (Log a, ..., Log a,,) # 0 (on peut méme minorer effective-
ment ce nombre). Par exemple, si g est un nombre entier, g > e %94, alors
le nombre
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1 1
Log (1 +-). Log (1—-)
q q

est irrationnel.
Un tel résultat en p-adique serait suffisant pour résoudre completement

la conjecture de Leopoldt; malheureusement, la méthode de Siegel et Shid-
lovskii n’a pas encore été traduite en p-adique (on ignore encore, par exemple,
si ’analogue p-adique du théoréme de Lindemann Weierstrass est vrai).

§ 2. IDEES DE LA DEMONSTRATION DU THEOREME 2

La méthode de Baker est une extension de celles de Gel’fond et
Schneider — d’ailleurs le théoréme 2 contient la transcendance de a” pour
a et b algébrique, a # 0, 1 et b irrationnel.

De plus le théoréme 2 contient la transcendance de e*, pour a # 0
algébrique; or on peut effectuer la démonstration de la transcendance de
e* par la méthode de Gel’fond (ceci a été fait par Schneider en 1949; cf.
1, § 2) en considérant les deux fonctions

[12) =2Z;5 f,(2) =€,
et les points Z = n a, n € Z (voir par exemple [7] chap. 11T ou [10] chap. II,
§ 4).

La premiére chose a faire est donc d’exprimer analytiquement les
hypothéses du théoréme 2. Supposons que o, , ..., o, soient des nombres
algébriques dont les logarithmes sont Q-linéairement indépendants.

Alors les fonctions

z z
2,07, ., 0m

sont algébriquement indépendantes (lemme 3), prennent des valeurs algé-
briques pour Z e Z (et méme pour Z € Q), et vérifient des équations dif-
férentielles a coefficients dans le corps

Q(Log ala seey LOg OCm)

(qui a un degré de transcendance sur Q supérieur ou égal 3 1).
Nous allons étudier les conséquences de ces équations différentielles
sur les dérivées d’une fonction

F(Z) = P(Z,d%,...,0%),

ouPe 6 [X,, ..., X,,] est un polyndme & coefficients algébriques.
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Soit
qo—1 ‘Im_~1 1 .
(14) P= Y . % pCoos d) X, X,
A =0 m:O

que 'on notera

A A
(15) P = Z p(;“)Xoo---Xmm;
(4)

ainsi

(16) F(Z) =Y p(NZ" exp (4 Logay +...+ 4, Loga,)Z .
(4)

La dérivée d’ordre s = 0 de F est un polynéme en Loga, , ..., Log«,,

les coefficients étant des fonctions entiéres qui prennent des valeurs algé-
briques pour Z € Z.

Supposons d’abord que les nombres Log o, , ..., Log a,, sont algébrique-
ment dépendants sur Q ,disons par exemple

Log =, ea[Log %61 5 nvry LOB X1 ] 3

ainsi Loga,, est un polynéme en Loga,, ..., Loga,_,; soit (c—1) le
degré total de ce polyndéme.

On peut exprimer la dérivée d’ordre s de F comme un polyndme en
Loga,,...,Loga,_, soit:

ds cS CcS . G'm_
(17) F= > .. > (Logay) '...(Loga,-y) !
dZS 0-1:O o-m—1=0
‘fs, O qrenns Cm—1 »
et les fonctions f°’~‘71’ o (Z) prennent des valeurs algébriques pour
Zel.

Essayons alors d’effectuer la démonstration en utilisant la méthode
exposée dans la premiére partie (§ 3).

Dans un premier temps, on construit un polyndme (14), (15), tel que la
fonction (16) posséde de nombreux z€ros, soient

N

dZSF(x): 0 pour x =0,...,x0—1,

(13)

et s =0,...,5—1.
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(Les valeurs de xg, So» Go» 1 s - » §m S€TONt précisées plus tard, en
fonction d’un parametre N « suffisamment grand », comme d’habitude).

Regardons la relation (17): On ne connait rien sur les nombres Logo, ,
..., Loga,_, (sinon qu’ils sont transcendants), mais ils peuvent fort bien
étre algébriquement indépendants, auquel cas les conditions (18) sont
équivalentes a

{x :O,...,XO_—'I,
(19 feop e, (X)) =0 pour Is =0,...,5 —1,
'lc)‘i =0,...,c8,(1=i=m—1).

Quoi qu’il en soit, les relations (19) entrainent toujours (18), et C’est
donc le systéme (19) que nous allons résoudre.

11 s’agit d’un systéme linéaire homogéne en p (4), & coeflicients dans un
corps de nombres; le nombre d’inconnues est gg ... ¢,, (o g; — 1 est le
degré de P par rapport a X)), le nombre d’équations est xq 5o (cso+ ™1
< Xq S5,

Donc, a condition que

510 qm = 2X0 So (CSO -+ 1)111—1 5

le lemme de Siegel permet d’effectuer le premier pas.
Remarquons ici que ’hypothese

Log #,Q[Loga,, ..., Log 1]

nous a permis de majorer le nombre d’équations par < x, s, et donc de

choisir g4 ... g9, > < xo5,; sans cette hypothése, on aurait seulement

+1 r . oy rar . .

< xo 8", pour le nombre d’équations, et on aurait été contraint de choisir
m+1

Go s - » G Plus grands: (gq...q4,,> <XoS ,
Le deuxiéme pas consiste a construire un point Z, € C ou la fonction F
(ou bien I'une de ses dérivées) ne s’annule pas.

Or on connait un résultat trés précis sur les zéros des fonctions (7)
(cf. le lemme 4 ou la relation (20)), mais un peu long & démontrer. Nous
nous contenterons, pour simplifier, de supposer o, , ..., o, multiplicative-
ment indépendants (c’est-a-dire 2imn, Logo, , ..., Loga, Q-linéairement
indépendants), et nous montrerons alors (lemme 5) gu’il existe un entier
»,0=y=gqg,9,..9, — 1, tel que

F(y) # 0.

Le principe de la suite de la démonstration réside en la recherche d’une
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majoration de |F ») |, puis d’une majoration de la taille t(F (»), pour
contredire la relation

(4 —2[Q(x):Q].t(x) = Log || si a # 0 estalgébrique.

La majoration de ¢ (F (y)) (quatriéme pas) se fait sans difficulté. 11 n’en
est pas de méme de la majoration de | F(y) ], le cas général — ol Log «, ,
..., Loga,, sont algébriquement dépendants sur Q-n’étant pas encore
résolu.

Le troisiéme pas a donc pour but de fournir une majoration de F (y);
utilisons le lemme 1: les conditions (1) et (2) a vérifier pour obtenir (3)
s’écrivent ici:

- |Flg=A pour R = A’y + (A +1)x,,
avec k = x4 5, et A > 1. La conclusion serait alors

[F(y) | =27F.

Malheureusement la condition (1) sur R implique en particulier R > y,
et on ne connait que ’encadrement

m.
Xg =y < Xy S0

un calcul rapide montre alors que la majoration de | F | r» pour R > y, est
nettement plus mauvaise que A* (quel que soit le choix des fonctions x,,
S0, Go s - 5 9m> €t quel que soit A > 1 constant).

Néanmoins cette méthode permet de majorer | F (x) | pour xo = x < x;
(ou x, est par exemple x,.sy'*"; nous préciserons de toutes fagons plus
loin toutes ces valeurs).

n . r s g So
On peut méme majorer les dérivées F ) (x), pour 0 =5 = 5 1;

s
en effet, la fonction F (Z), pour Oéséaq — 1, admet les zéros

s
0,..,x, — 1, d’ordre _29 , et la méthode précédente s’applique. Seulement

ces valeurs F ¥ (x), pour s > 0, ne sont pas des nombres algébriques, mais
des éléments du corps Q (Logay , ..., Loga,_41); on ne peut donc pas
utiliser I’argument algébrique (4) pour en déduire que ces valeurs sont nulles.

L’idée de Baker est alors de majorer directement les nombres

So _ .
fs O ssensGy 1 (x), pour 0 =5 = 5 1 (qui, eux, sont des nombres algé-
2V 19999 m-— .
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briques dont on peut aisément majorer la taille). Pour cela, il convient de

montrer que les fonctions f g ,

13,;n¢7m_

s
. (Z), pour 0 =5 = 50— 1, admet-

So Tt
tent les zéros 0,1, ..., xq — 1, d’ordre 5 On calcule donc les dérivées de

ces fonctions: ce sont des polynémes en Loga, , ..., Loga,_, dont on
cherche a exprimer les coefficients en fonction des

S S
(), pour Oétéio—l, Oériéczo

fs+t, 0-1+rl, cees Gm—1+rm—1

(qui s’annulent par hypothése pour Z = 0, ..., xo, — 1). Or ceci est possible
lorsqu’on suppose non seulement

Log «,, ea [Log oy, ..., Loga,, 4],
mais
Log ocme(-l + 6 Log ay + ... + aLog Oy 1 -

-C’est ]a le point essentiel de la démonstration. Une fois que I’on a montré que
les relations (19) entrainent

[x = 0,...,x; —1;

0 ——SO——I
s =0,..., e
fs, Oyvees am—l(x) = 0 pour 3 2
So
.= 0 s U0
Lal , ¢

x =0,...,x,—1;

So
=0,..,=—1;
fs,dl, am_l(X) = (0 pour l > 1
S
g, = O""’c—(-l)'
| 2

Or on peut choisir x, , ..., X tels que, en plus des propriétés précédentes,
on ait

m
XoSo < X;
(4]

d’ol la contradiction attendue: F (y) = 0.
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§ 3. ETUDE DES ZEROS DE POLYNOMES EXPONENTIELS

Nous avons vu pourquoi la démonstration du théoréme 2 nécessite des
renseignements précis sur les zéros de polyndmes exponentiels (7). Baker
[1] et Fel’dman [2], [3], ont résolu différemment cette difficulté; depuis,
Tijdeman (On the number of zeros of general exponential polynomials.
Proc. Nederl. Akad. Wetensch., (Indag. Math.), Ser. A, 74 (1971), 1-7)
a obtenu un énoncé trés général, dont nous utiliserons le corollaire suivant:

LemMe 4 (Tijdeman). Soient p,,...,p, des nonmibres entiers positifs,
a; ; (1=i=p;; 1=j=q) des nombres complexes non tous nuls, et wy , ... , w,
des nombres complexes deux a deux distincts. Le nombre N (R,F) de zéros

(comptés avec leur ordre de multiplicité ) de la fonction

P

~.

F(Z) = LZIT eVt

2

II‘M =

—

i P

—

J i

dans le disque { Ze C ; | Z| = R}, est majoré par :

N(R,F)=3(n—1) + 4R 4,
ou
q
n= Y p e 4= max |w;]|.
=1 1=j=q

Une autre majoration de N (R,F), qui donnerait les mémes résultats
ici, a ¢té obtenue par l'auteur (Indépendance algébrique des valeurs de la
fonction exponentielle. Bull. Soc. Math. France, 99 (1971), 285-304):

l

(20) N (R,F) = min [ + 2

— (1 + R4
i>0 A ALogn( R

Plutot que de donner ici une nouvelle démonstration de 'une ou Pautre
de ces majorations de N (R,F), il semble préférable de se limiter au cas ol
les nombres 2in, Loga,, ..., Loga, sont Q-linéairement indépendants
(nous montrerons a la fin de '’exposé comment le lemme 4 ou la majoration
(20) permet de résoudre le cas général).

Nous supposons donc que les ¢, ... ¢,, = p nombres

exp {4, Log oy + ... + 4, Log «,}, 0 =24 =¢q;,—1,
sont deux & deux distincts; notons les uy , ..., u,; pour

llh — eXp ()Ll Log OCI + i ww +)L’" Log am) o
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notons

Pr(Ao) = p(Ags Ays iy -

Ainsi la fonction (16) s’écrit

q—l

F(Z) - Z Z ph(}o)z uh:

A =0h=1

et le lemme 5, di 3 Fel’”dman ([2], lemme 5 et [3], lemme 7) montrera que,

si F# 0 (Cest-a-dire si I'un des nombres p, (o), 1 =h=p,0 =1,

= ¢, — 1, est non nul), alors I'un des nombres :
F(»), »y=0,..,90p—1

est non nul.

LemMmE 5. (Fel’ldman). Soient uy,...,u |

, des nombres complexes. Le
déterminant

A4 (CIO>M1’ --'aup) = kal/flc l >

(ot x,(x=0,...,qop—1) est lindice de ligne par exemple, et (k,1), (k
=0,..,q9,—1;1=1, ...,p) celui de colonne), est égal a

q-—l

(21) A(Go, Uy, s tiy) = ( 1_[ !)".(hljl' upo@o=1)y

. (lgz A_I;—Il (uz—uz)qo) .

Démonstration (d’aprés [2])

Le polyndme 4 (Z) = 4 (qo, Uy, ..., U,—1, Z) € C[ Z] est divisible par
Z #9001 ot ges dérivées s’annulent aux points wu,h=1,..,p — 1,
jusqu’a Lordre g2 — 1. Or le degré de 4 (Z) est:

(gop—1) + (qop—2) + ... +(qoP—40) = Pq" —340(qo+1),
d’ou:
1 p—1
A(Z) = A,. 2790~ D H (Z——uh)
ou A, est le coefficient de plus haut degré de 4 (Z). On obtient ainsi:

p—1 2

1 — q
A(go, gy costty) = A(Gos Uy, s tpq) . 0 uy @1 hHI (u,—u,)
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avec
gp—1

— k — .
= | X" k=0, ..,q,-1 = IT i,

i=

x=q,p=4q, - 9q,p=1

d’ou la relation (21) par récurrence sur p.

§ 4. DEMONSTRATION DU THEOREME DE BAKER
Soient oy , ... , %y Bos - > Pm—q des nombres algébriques tels que
(22) Log o, = By + By Log a; + ... + fB,,—1 Log o, .
Soit

K = Q (dla cees Ay ﬂO’ '-°:Bnt~1) .

Considérons un polyndme

, —1 . —1
(14) Pp=Y . }: Doy ooy M) X2o L X m
4,=0 =0 m
(15) = Y )XY XM e K[ X, ey Xa] -

(4)
La fonction F(Z) = P (Z, ocz, vees OCZ) s’écrit
(16) F(Z) =Y p(A)zZro 1% .. oa*m®,
(%) "
La relation (22) permet de remplacer

}“1 llm
OC]_ cee am

par:

ei’”ﬁo ocflﬂmﬂl ocl'"_ 1t 2 mbBm—1

1 )
c’est-a-dire d’écrire F sous la forme |

(23) F@) = 3 pMZ " at w,
ou

(24) [0 = AmBo

i’yizli‘*—/’{mﬁia l=i=m—1.
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Les dérivées de F vérifient les relations:

ds S! o 0 m—1
25 F = Logo,) '...(Log &,—1) .
SRFPE ,0+,,,+§m_1=sa0!...am_,!( ! '
'F(d)(z)’
ol
Z ddo Ao Amﬂoz) yo‘l d'm__l
26)  Fipy(@ = Zp()—— (27 et
: dZ
742 V12
. A1 eoe App—1

pour
(6) = (603 . vuy an—l) &

(Avec les notations (17) précédentes, on a:

= : F
fs,o'l, ceey dm_l o_ !.-.!O_ 0'0, vy d'n_l

OU 0g=5—01— ... —Cp—1)
Les fonctions F,, sont reliées entre elles par des équations différentielles
(qui généralisent (25)):

d !

az'o =

(27)

- (Logay) * ... (Log a_y) ™!

Tot e +tm__1=t To! Tm—]

'F(o"'l't)

Oh (O'+T) - (O-O +T0, cens O-m—l +Tm_1).

Ces relations (27) sont évidentes par le calcul a partir de (26) (cf. par
exemple Fel’dman [2]), mais on peut donner une raison un peu plus pro-
fonde de leur existence de la maniére suivante (cf. Baker [1]).

On définit une fonction G (Z,, ..., Z,,_;) de m—1 variables complexes
par:

AO OZO z m-— m-—
G(Zoy 'y Zy—r) = 2. p(DZ, e ocyl1 Lo m—1

m—1 ’
(1)

ol Vg 5 - » Vm—y sONt définis par (24).
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D’apres (23), on a:
FZ) =6Z,..,2),

donc:
s s ! 0°
AF@D= Y s G(Z.2).
G'o+ +0'm 1= IQ e m—1 * aZO.” azm—l
Soit:
D; = (Loga)™!. , (1=Zi=m—1),
et
b 0
87y
On a donc, d’aprés (25):
F,,(Z) = D,°..D,"1' G(Z, ..., Z),
et on en déduit immédiatement
t
! oo 0"t o e
= Z .D ...D G(Z,...,2
_iTo !t b ‘m—1 0 m—1
ro+ +rm_1-—t 0 m—1 az az
[ m—1
t! Ty Tm—1 Tt T
= Z | (Log OCI) ...(LOg O(m_l) " D() s

10+ e+ ‘L'm__lzf TO! o ’Cm.—l o

by Ml Gz, L 7)),

~ ce qui est la relation (27).
Soit N un entier suffisamment grand; on définit des fonctions x,, 5o, qo,
q, ty de N par:

i
2

(28) xo = N™; so = N*"; qo = 2N*"; q = N*""'; 1o = N*.

I

Si [ est un entier = 0, on note A, 'ensemble des (m+ 1)-uples

(x,(0)) = (X,00, oy Opy—y)
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d’entiers vérifiant
1 . _
0=x=xot,—1; 06;,>0; 069+ ..+0,y=-7;—1.
Construction de la fonction auxiliaire.

1l existe des éléments
p(}'()""’]'m)\=p(i)a Oélo—éqO—”“l; Oélléq——l(lélém)’

appartenant a K et entiers sur Z, non tous nuls, de taille majorée par

(29)  #(p() < (go+50) Log g + gxo < N*""" LogN,
et tels que les fonctions
0! Ao !

(26) F(o')(Z) - (%P()») Z ‘(O’ ,LL)' (l _ )' (ﬁO m)

Ao~ M 112 A 7

QBN O 4B AN ™ 20

définies pour (6) = (6, +vvy Opy—1), 0; =0, vérifient

(30) Fioy(x) =0 pour (x,(0))e,.
Preuve : Soit A € K, entier sur Z non nul, tel que

ABo s e s APp-1, Adoy,...,4a

m

solent entiers sur Z. Les conditions

s,tqx. m

A ? ? . F(o‘) (X) - 0 pOU.I' (.‘C, (O-)) € AO

forment un systtme de moins de x,s, équations a ¢, ¢™ inconnues
p (Lo ooy 4,y), dont les coefficients sont des éléments de K, entiers sur Z,
de taille majorée par

< (g0 +50) Log g + g x,.
Le lemme 2 fournit le résultat, griace a la relation:

m __ m
doq™ = 2x4 S, .
La récurrence.
Pour tout entier [, 0 <[ =<5m?;on a:

(31) . F,(x) =0 pour (x,(0))e4,.

L’Enseignement mathém., t. XX, fasc. 1-2. A
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Cette relation est vraie par construction (30) pour / = 0. Supposons-la
vraie pour [/ — 1:

-1
[x =0,..,x02 —1

F(s)(x) = 0 pour Jao F o A Oy = S0
2[—1

—1.

Soit (x, (¢)) € A, Nous allons majorer | F,, (x) |, puis majorer  (F,, (x)),
et constater que la relation (4) n’est pas satisfaite, donc F,, (x) = 0.

Majoration de | F,, (x) | .

: ) .
La fonction F,,, pour gy + ... + 0 =2 1, admet les zéros

m—1 "~ A~

0,..,xgt, 1 —1,

1)

k)
d’ordre 52—"1, grace a l'’hypothése de récurrence et aux relations (27).

.- . N -
Utilisons le lemme 1 avec 1 = N%#, s =0, k = 5—; x5 i1

Le nombre R défini par (1) vérifie R < x, 7.N %, donc, en utilisant (26),
(28) et (29), on a:

l

3
Log |F,ylr € g R + (g0 +so) Log R< N°"" 2~ aLog N .
Or:

1 S V l _ 1
k Log A = §§x0t2—1 Log N > N3"*3 "3 . Log N.
Pour N assez grand, on obtient:
l 1
(32) Log |F,(x)| =—N>"" 273,
Majoration de t (F,, (x)) .
1
On remarque que 4 0T T%lo™ o5t un dénominateur de Fiy (x), si A est
un dénominateur de «;, ..., %, PBo, ... Pm—1; le calcul de la taille de

F, (x) s’effectue alors comme on I'a fait lors de la construction des F,;
on a, griace a (26), (28) et (29):

t(F(a)(x))< (qO +SO) LOg xo + qu tf, 5
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d’ou:
l
(33) t(F,y(x))< N>"*27! Log N .

Comme on le désirait, la relation (4) n’est pas vérifiée pour « = F,, (x),
grace 4 (32) et (33), donc:

(31) Fy(x) = 0 pour (x,(0))€4,.

Conclusion. Pour [, = 5m? dans (31), on constate que la fonction

ds |[x xotl _‘“‘1
34 e F = 0 pour ] So
(34) T ) p s =0, “,;;_“1_
|

Comme:

l s 2 2
S + +
xotoo = NZm +m > 2N2m mo__ 0o qm )

A

les équations:

F(x) = p()b)x oq . .a;’")x =0
(4)

pour x = 0,...,q0,q" — 1

et le lemme 5 montrent que deux des nombres:

A A
1 m .
X e Oy, O0=4,=q—1,

sont égaux, donc que les nombres oy ,...,a, sont multiplicativement
dépendants.

Le théoréme 2 est donc démontré dans le cas oti 2in, Loga, , ..., Loga
sont Q-linéairement indépendants.

Indiquons pour terminer comment s’effectue la démonstration dans le

cas général, a partir du lemme 4 ou de la relation (20).
Soit |

m

!
R = x,t,°, et 4 = max (A, Loga, +...+41,Loga,).

0=A4;=q—1

D’aprés (34), on a:

l, 1 . 2
N(R F) Xt = 5 . N=m +3m )

20 25m
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D’autre part:

2 1 s 2
qoqm =‘Z\]Zm +m, et RA<qx0t,,° =N’2_m +3m—1.

On obtient alors une contradiction a la fois avec la relation N (R,F)
=3(qoq"—1) + 4 R4 du lemme 4, et avec la majoration (20) (avec

1
6 m
Remarque sur le choix (28) des fonctions x,, o, qo, g, to de N

Les seules propriétés requises pour ces fonctions sont les suivantes: ce

sont des fonctions monotones croissantes, tendant vers + oo avec N,
et vérifiant:

n = qqq™; choisir par exemple A =

)

{ doq™ = 2x050m§
] (go +s0) Log (xoto) + g X to

—-0 quand N —» + o
X0 So

ll Log t, =¢ Log s,, ou & > 0 ne dépend pas de N.

Par exemple, un autre choix possible est le suivant (Fel’dman, [2]):
( o

go = 2.N.(LogN)’; q = (LogN)! *2°7m;

1% = N; = (Log N)' *%°;

o

L tO = (LOgN)ﬁ;

avec 6 > 0 indépendant de N.
Le choix de ces fonctions est particulierement important lorsqu’il s’agit
d’établir des énoncés effectifs.

Utilisation d’une méthode élémentaire de Gel fond dans la démonstration
des théoremes 1 et 2.

Nous terminerons en remarquant que la méthode exposée par Gel’fond
au chapitre 12 de [6], permet de modifier les démonstrations (dans le cas
réel) de maniére a ne plus utiliser le principe du maximum pour démontrer
I’analogue réel du lemme 1; le seul outil analytique qui intervienne est alors
le théoréme de Rolle (cf. Groupe d’Etude de Théorie des Nombres, exposés
n° 1 (16 octobre 1972) et n® 5.(27 novembre 1972), Paris).



85 —

REFERENCES

[1] BAKER, A. Linear forms in the logarithms of algebraic numbers: I. Mathematika, 13
(1966), 204-216; 11, id., 14 (1967), 102-107; III, id., 14 (1967), 220-228; 1V, id., 15
(1968), 204-216.

[2] FEL'DMAN, N. I. Estimate for a linear form of logarithms of algebraic numbers.
Mat. Sbornik, 76 (118) (1968), 304-319 (trad. angl., Math. U.S.S.R. Sbornik, 5
(1968), 291-307).

3] Improved estimate for a linear form of the logarithms of algebraic numbers.
Mat. Sbhornik, 77 (119) (1968), 423-436 (trad. angl., Math. U.S.S.R. Sbornik, 6
(1968), 393-406).

[4] and A. B. SHmbLovskil. The development and present state of the theory of

transcendental numbers. Usp. Mat. Nauk. S.S.S.R., 22 (1967), 3-81 (trad. angl.,
Russian Math. Surveys, 22 (1967), 1-79).

[5] GEL’FOND, A. O. Transcendental and algebraic numbers. Gosudarstv. Izdat. Tekn.-
Teor. Lit., Moscou, 1952 (trad. angl., Dover Publ., New York, 1960).

[6] —— et Yu. V. LiNnNIK. Méthodes élémentaires dans la théorie analytique des
nombres. Gusudarstv. Izdat. Fiz.-mat. Lit., Moscou 1962 (trad. frang. Gauthier-
Villars, Paris, 1969).

[7] LANG, S. Introduction to transcendental numbers. Addison-Wesley, Reading (Mass.),
1966.

[8] —— Transcendental numbers and diophantine approximations. Bull. Amer. Math.
Soc. 77 (1971), 635-6717. ;

[91 RAMACHANDRA, K. Lectures on transcendental numbers. The Ramanujan Institute,
Madras, 1969.

[10] ScBNEIDER, Th. Einfiihrung in die transzendenten Zahlen. Springer, Berlin, 1957,
(trad. frang., Gauthier-Villars, Paris, 1959).

[11] SieGeL, C. L. Transcendental numbers. Ann. of Math. Studies, n° 16; Princeton Univ.
Press, 1949.

( Regu le 14 juin 1973 )
Université de Paris-Sud
Centre d’Orsay
Mathématiques, bat. 425
F-91405 Orsay







	INITIATION AUX NOMBRES TRANSCENDANTS
	I. Le Théorème de Gel'fond et Schneider SUR LA TRANSCENDANCE DE $a^b$
	II. Le théorème de Baker sur l'indépendance LINÉAIRE DE LOGARITHMES DE NOMBRES ALGÉBRIQUES
	...


