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INITIATION AUX NOMBRES TRANSCENDANTS

par Michel Waldschmidt

Alors qu'elles étaient, à leurs débuts, assez obscures et compliquées,
certaines démonstrations de transcendance ont été énormément simplifiées

au cours de la dernière décade. Cette clarification est essentiellement due à

Lang, qui présentait au Séminaire Bourbaki en 1966 (exposé n° 305) un
théorème sur la transcendance de nombres exp et qui le démontrait

par la méthode classique de Gel'fond-Schneider, sauf que l'on s'en tire sans

équation différentielle, et que la démonstration s'en trouve simplifiée au point
d'être complètement triviale (sic).

Il se trouve qu'en apportant une modification très minime dans le choix
de certains paramètres, on peut démontrer de la même manière le théorème
de Gel'fond et Schneider sur la transcendance de ah. C'est ce que nous verrons
dans la première partie, après avoir effectué un rapide survol de l'historique
de ce problème.

Dans la deuxième partie, nous étudierons, dans le même esprit de

simplification, un théorème de Baker sur l'indépendance linéaire de
logarithmes de nombres algébriques.

I. Le Théorème de Gel'fond et Schneider
SUR LA TRANSCENDANCE DE ab

§ 1. Aperçu historique [4,8]

En 1748, un siècle avant que Liouville ne construise le premier exemple
de nombre transcendant, Euler conjecturait que le logarithme, pour une
base rationnelle, d'un nombre rationnel (qui n'est pas une puissance rationnelle

de la base) est transcendant.
En 1900, au Congrès de Paris, Hilbert constatait que cette conjecture

n'était toujours pas résolue, les seules méthodes connues ne pouvant
s'appliquer qu'aux valeurs, en des points algébriques, de fonctions
satisfaisant une équation différentielle à coefficients algébriques. C'est ainsi que
Hermite (1873) avait obtenu la transcendance de e, Lindemann (1882) celle
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de ea, pour a algébrique non nul (et par conséquent la transcendance de n),

et Weierstrass (1885) l'indépendance algébrique de e
1 el\ où

ofj an sont des nombres algébriques Q-linéairement indépendants.
En 1900, donc, dans son exposé «Mathematische Probleme» (voir:

D. Hilbert, Gesammelte Abbhandlungen, New York, 1965; ou bien:
Bull. Amer. Math. Soc., 8, (1902), 437-479), Hilbert énonçait une liste de

23 problèmes, dont le septième, « Irrationalität und Tranzendenz bestimmter
Zahlen », reprenait la conjecture d'Euler:

Etudier la transcendance, ou même seulement Virrationalité, des nombres
ab, puissance d'un nombre algébrique a ^ 0, 1 par un nombre algébrique
irrationnel b, par exemple 2^ et en — i~2t.

Hilbert considérait ce problème comme très difficile, et il pensait que sa

solution ne serait trouvée qu'après celles de l'hypothèse de Riemann et de

la conjecture de Fermât.

Pourtant, dès 1929, une attaque sérieuse de ce problème est donnée par
Gel'fond, à partir de travaux de Polya. Polya avait étudié, depuis 1914, les

fonctions analytiques / qui vérifient /(Z) e Z pour tout Z e Z, ce qui lui
avait permis d'établir un premier lien entre l'ordre d'une fonction analytique
et la nature arithmétique de ses valeurs. Gel'fond s'intéressa aux fonctions
qui vérifient /(Z) e Z pour tout Z e Z [/], anneau des entiers de Gauss. Sa

méthode, appliquée à des fonctions telles que e%z, lui permit d'apporter une
première réponse au 7e problème de Hilbert: si a ^ 0, 1 est algébrique, et
si b est irrationnel quadratique, alors ab est transcendant; en particulier
en est transcendant.

Ce résultat fut amélioré par Kuzmin, puis Boehle. Et, en 1934, la solution
définitive est trouvée, par Gel'fond et par Schneider, indépendamment l'un
de l'autre.

Théorème 1. (Gel'fond, Schneider). — Soient a, b deux nombres

algébriques, a A 0, a # 1 et b irrationnel. Alors le nombre :

ab exp (b. Log a)

est transcendant.

Les méthodes de Gel'fond et de Schneider ont connu depuis des développements

considérables. En 1934 et 1937, Schneider étudiait les valeurs de

fonctions elliptiques; puis, en 1949, il généralisait tous ses résultats en un
critère de dépendance algébrique pour des fonctions analytiques [10].

En 1949 également, Gel'fond obtenait des propriétés d'indépendance

algébrique [5]; par exemple, si a A 0, 1 est algébrique, et b irrationnel
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cubique, les deux nombres ab et ab2 sont algébriquement indépendants (sur Q).

Ces résultats ont été étendus par Lang (depuis 1963) aux points de variétés

de groupes [7, 8]; Lang déduit ses énoncés de critères, analogues à celui

obtenu par Schneider en 1949, sur la répartition des points où plusieurs

fonctions méromorphes prennent simultanément des valeurs algébriques.

Grâce à une variante de ces critères, Ramachandra, en 1967, énonça de

nouvelles propriétés des fonctions elliptiques [9]. Enfin Bombieri, en 1970,

a permis l'extension de ces critères aux fonctions de plusieurs variables

(voir [8]).
On ne peut pas terminer cet aperçu historique sans mentionner les

travaux de Baker [1] (dont nous parlerons plus longuement dans la deuxième

partie) et sans formuler quelques conjectures; les plus célèbres concernent:

— l'indépendance algébrique de logarithmes de nombres algébriques, par
exemple la transcendance de :

Log 2 Log 3

et

— l'ndépendance algébrique des nombres e et n, par exemple la trans¬

cendance de:

e + 7i

Nous verrons dans la deuxième partie pourquoi la méthode de Baker

ne permet pas actuellement de résoudre la première de ces conjectures.
La deuxième conjecture (sur e et n) paraît vraiment hors d'atteinte des

techniques actuelles, et il semble que, compte tenu des méthodes connues,
le problème suivant soit plus accessible :

Les nombres n et en sont-ils algébriquement indépendants
Cette hiérarchie entre plusieurs problèmes non résolus doit être accompagnée

de toute la prudence enseignée par l'expérience de Hilbert

§ 2. Principes des démonstrations

Les résultats dont nous venons de parler ont tous à la fois un aspect
arithmétique (la propriété pour un nombre d'être algébrique ou transcendant)

et un aspect analytique (par exemple la définition de ab exp (b.
Log a)). Le lien entre ces deux aspects est fourni par des résultats du type
de ceux de Polya: on peut minorer l'ordre de croissance d'une fonction
entière transcendante qui possède des valeurs algébriques en de nombreux
points algébriques.
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Regardons plus précisément comment exprimer cette propriété dans le

cas du théorème 1. Supposons que a, b et ab sont trois nombres algébriques,
avec a ^ 0, a =£ 1, et b <£ Q. Soit K Q (a,b,ab).

Les deux fonctions

ez et ebZ

sont algébriquement indépendantes (sur C), prennent leurs valeurs dans K
aux points Z n. Log a, n e Z, et vérifient des équations différentielles à

coefficients dans K. Gel'fond étudiait alors les propriétés d'une fonction

F (Z) P (ez, ebz),

où P e K [X, Y] (voir par exemple [5] chap. Ill, § 2., ou [11] chap. III, § 2.).
Sous les mêmes hypothèses concernant a, b et ab, les deux fonctions

Z et az

sont algébriquement indépendantes et prennent des valeurs dans K aux
points Z n + m b, (n,m) e Z x Z. Schneider utilise alors une fonction
auxiliaire

F(Z) P(Z,az),

où P e K [X, Y] (voir par exemple [11] chap. III, § 1., ou [9] chap. Ill, § 1.).

On n'a ici aucun renseignement sur les dérivées de F, mais on connaît
« plus » de points Z où F (Z) e K.

La méthode de Gel'fond est généralement mieux connue, grâce à...

Schneider. En effet, en 1949, utilisant la méthode de Gel'fond (avec

d'importantes améliorations), Schneider a obtenu un théorème général (voir
§ 1) suivant lequel deux fonctions algébriquement indépendantes fu f2
d'ordre fini, satisfaisant un certain type d'équations différentielles à

coefficients algébriques, ne peuvent prendre simultanément des valeurs
algébriques qu'en un nombre fini de points. On obtient la transcendance de ab

en choisissant ft (Z) ez,f2 (Z) ebz, et la transcendance de ea, pour a

algébrique non nul, en choisissant fl(Z) Zet f2 (Z) eaZ. Ce critère
de Schneider [10] a été notablement simplifié par Lang [7] chap. III.

On peut également généraliser la méthode de Schneider pour l'appliquer
à des fonctions /1?/2 algébriquement indépendantes; le résultat est par
exemple une majoration du rang du Z-module des points algébriques
communs; lorsqu'on choisit fx(Z) Z et/2 (Z) az, on retrouve le théorème
1. Un tel critère a été obtenu par Ramachandra [9] (le critère similaire qu'a
obtenu Lang [7] chap. Il, th. 2, ne contient pas la transcendance de ob,
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parce que les deux fonctions/1?/2 sont supposées de même ordre; évidemment,

on peut facilement corriger ce défaut). Mais les énoncés sont ici

beaucoup plus compliqués.
Et pourtant, si on se contente de la transcendance de ab, la méthode de

Schneider et Ramachandra fournit une démonstration plus facile. C'est

ce que nous allons voir.

§ 3. Schéma pes démonstrations

Les démonstrations de transcendance que nous étudions, se font toutes

suivant le même schéma général (à des permutations près des différents pas).

On suppose que plusieurs fonctions méromorphes algébriquement
indépendantes, /i ,/j, prennent des valeurs algébriques (ainsi, éventuellement,

que leurs dérivées) en de « nombreux » points, et on désire obtenir

une contradiction.

Premier pas. — Construction d'une fonction auxiliaire

Un lemme de Siegel (lemme 2), utilisant le « principe des tiroirs » de

Dirichlet, permet de construire un polynôme non nul :

PeQlXu...,Xd-]
à coefficients algébriques, tel que la fonction entière F — P (/i, ...,/d)
s'annule (éventuellement avec un ordre de multiplicité élevé) en certains

points.

Deuxième pas. — Construction d'un nombre algébrique y ^ 0

On détermine un point Z0 e C où F (ou bien l'une de ses dérivées)

prend une valeur algébrique y =£ 0.

On peut effectuer ce pas en utilisant le fait que le nombre de zéros d'une
fonction entière d'ordre ^ p dans un disque {Z e C; | Z | ^ R} est 0 (Rp);
on utilise aussi quelque fois un calcul de déterminant, ou encore la
propriété pour une fonction entière non nulle de ne pas avoir toutes ses dérivées
nulles en un point. Enfin, dans certains cas particuliers, on peut utiliser des

formules d'interpolation pour obtenir une majoration très précise du nombre
des zéros de F (voir par exemple le lemme 4 ou la majoration (20)).

Troisième pas. — Partie analytique : majoration de | y |

Le lemme de Schwarz et le principe du maximum permettent de majorer
une fonction possédant de nombreux zéros. On procède de la manière
suivante.
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Lemme 1. Soit F une fonction entière, admettant des zéros xk
(comptés avec leur ordre de multiplicité). Soit x0 eC, x0 ^ xt (i~ 1, k);
soit s ^ 0 le plus petit entier tel que

F(s) (x0) * 0

Soit X~> \ un nombre réel, et soit :

(1) R À2 | x0 I + (X" + 1). sup | xh |

Si la fonction F vérifie :

(2)

alors on a :

(3) \F^(x0)\^rk.
En effet, soit

i ^ h ^ k

I l ^ i ^(R—\X0 lksup I F(Z) I I FU: *k
| z | jR 5

Ô(Z) n
h 1

et

G(Z)
f(Z)

(z —x0y
G (Z)

La fonction est entière; le principe du maximum montre que, pour

R> I x0 I on a:

I (x0) | ^ | G | u

Le choix (1) de i? permet la majoration:

e(*o)i
IÔIr

sup
| Z | R

donc:

Z — xfc

\Q(x0)

^X~2 h1

ÖIr
D'autre part, grâce à la relation (2), on a :



— 59 —

Comme

G (x0) ~F^(xo),
s

on en déduit la conclusion (3).
On n'utilisera en fait le lemme 1 que dans le cas s 0.

Quatrième pas. — Partie arithmétique : minoration de | y |

Comme y est un nombre algébrique non nul, il possède un dénominateur

de Z (i.e. tel que d. y soit entier algébrique non nul). La norme de d. y sur

Q est alors un entier rationnel non nul y', d'où | y' | ^ 1

On en déduit une minoration de y (voir (4)).

Conclusion. Si la minoration de | y | est incompatible avec la majoration

(3), on obtient la contradiction désirée.

Remarque. Pour pouvoir effectuer les majorations et les minorations,
on introduit au début de la démonstration un paramètre N (généralement
choisi entier); les inégalités que l'on écrit sont alors vérifiées pour N
suffisamment grand, c'est-à-dire minoré par un nombre fini d'inégalités (plus
ou moins explicitées).

§ 4. Notations et résultats préliminaires

a) La notation [7]

Soient/, g deux fonctions réelles de variable réelle; on notera:

f (x) < g (x) pour x -> + oo

s'il existe deux réels positifs A et C tels que

x > A =>/ (x) e&C. g (.x).

Avec cette notation, le résultat que nous avons cité au deuxième pas
(§ 3.) sur le nombre de zéros, dans un disque \ Z\*= R, d'une fonction
analytique d'ordre ^ p s'énonce de la manière suivante.

Soient L'une fonction entière (i.e. holomorphe dans tout le plan complexe)
et p > 0 un nombre réel, tels que:

Log | F\R Log sup \F(Z)\ < Rp pour Roo
| Z | R

(on dit que la fonction F est d'ordre Äp); pour r > 0, soit N(r,F) le



— 60 —

nombre de zéros (comptés avec leur multiplicité) de F dans le disque
{ Ze C ; | Z | ^ r }; on a:

N (r, F) rp pour r -> + oo

b) Taille d'un nombre algébrique

Précisions un peu comment s'effectue le quatrième pas de la démonstration

(§ 3),

Soit K un corps de nombres (c'est-à-dire une extension algébrique finie
de Q), et soit aeK. Un entier rationnel de Z est un dénominateur de a si

d a est entier sur Z (rappelons que l'anneau des entiers de K sur Z forme un
Z-module libre de dimension [K : Q]). Soit d (a) le plus petit dénominateur
positif de a; soient o1 on (avec n — [i^T:Q]) les différents plongements
de K dans C. On définit:

Il a I max | ai (a) |

x ^ j ^ n

et

t (a) max { Log || a || ; Log d (a)}

Ces valeurs ne dépendent pas du choix du corps de nombres K contenant a.

La taille t (a) possède la propriété fondamentale suivante [7] chap. II :

Pour tout aeK, a ^ 0, on a :

(4) — 2[K: Q] t(a) ^ Log \ a\

En effet, le nombre
n

NKIQ(d(a).a)[] at (a),
1

(Nk/Q est l'application « norme » de K sur Q), est un entier rationnel non
nul, donc supérieur ou égal à 1 en valeur absolue; donc pour tout plongement

üi de K dans C ; on a:

Log | (a) | ^ — n d(a) — (n — 1) Log | a ||

avec n [K : Q].
Ainsi, pour minorer un nombre algébrique y # 0, il suffit de majorer

[Q : Q] et t (y).
Nous aurons à utiliser les propriétés suivantes de la taille:

— si ax ak sont des nombres algébriques, on a:

t (iaL...ak) ^ t (ux) + + t (ak) ;

t(ax +... +ak) ^ Log k + t(ax) + + t(ak) ;
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— si, de plus, a1 ak sont entiers sur Z, alors:

t {ai -f... -f afi — Log k -j- max t {ai).

c) Un lemme de Siegel

La construction de la fonction auxiliaire (§ 3., premier pas) repose sur

un lemme, dû à Siegel (1929), qui permet de résoudre, dans un corps K,
un système d'équations linéaires homogènes à coefficients dans K, pourvu
que le nombre d'inconnues soit supérieur au nombre d'équations. Nous
n'utiliserons ce résultat que dans un corps de nombres, mais on peut formuler
un énoncé analogue au lemme 2 concernant une extension de Q de type fini
(pouvant avoir un degré de transcendance > 1), après avoir défini une fonction

« taille » sur un tel corps.

Lemme 2. (Siegel). Soit K un corps de nombres. Il existe une constante
CK > 0 ayant la propriété suivante.

Soient r et n deux entiers, n > r 1, et ai}j (1 ^ r, 1 ^j^n) des

éléments de K. Soit dh (1^/ ^r) un dénominateur commun positif de

1 • • • n •

Enfin soit

à max di, et A max || au j ||

1 ^ r 1 ^ j r
X ^ j

il existe n éléments xt xn de K, entiers sur Z, non tous nuls,
gwe ;

n

(5) y a, j-Xj 0 pour 1 ^ij i

et

(6) max ||x.|| ^ CK(Cx.n.d.^l"-r) + CK
1 ^ j ^ n

On trouvera des variantes du lemme 2 dans [5] chap. II, lemme II;
[7] chap. I, lemme 3; [9] chap. III, lemme 1; [10] appendice, lemme 31;
[11] chap. II, § 2., lemme 2.

L'existence d'une solution non triviale (x13..., x„) du système (5) résulte
de la non injectivité de l'application :

L : K" Kr
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définie par
n

L(xu...,Xn) Y, r> j1

grâce à la condition n> r.

Pour obtenir la majoration (6), il faut se fatiguer un peu plus. Etudions
d'abord le cas K Q et d — 1

Supposons donc aitj e Z avec A max | atj | 1 Etant donnés
deux entiers positifs m et B, on définit l'ensemble

Z(m,B) {(*!, ...,x„,)eZm; | -= B pour / 1, m}

On a

Card Z (m,B) (1+2B)m

D'autre part L applique Z (n,B) dans Z (r,nAB). Choisissons:

r
1 1 — -,B [- + ~(nA)n~r] (partie entière),

de telle manière que l'on ait:

(1+2B)n~r > (nA)r,

donc

Card Z (n,B) (1+2B)n > (1+2nAB)r Card Z (r,nAB).

Ainsi l'application L : Z (rc,i?) -» Z (r,nAB) n'est pas injective (c'est ce

qu'on appelle le « principe de Dirichlet »), donc il existe (yj) # (ZJ) appartenant

à Z (n,B) tels que

L(yu
Alors (xj) (yj — ZJ) vérifie

L (x1?x„) 0

et
r

| Xj j ±+2B+a +(nA)r=rr'

ce qui montre que l'on peut choisir CQ 1.

Dans le cas général, soit Ô [K : Q], et soit (col5 co^) une base d'entiers
de K sur Z.
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Comme coA. ov est entier sur Z (l^/z^d, 1 il existe des entiers

rationnels Q.hth'ik vérifiant

œh o)h.X Qh,h*,k • >
1 ^ <5, 1 ^ h'^ 5

k 1

Soit

O max | Qhth,tk |

1 ^ h, h', ô

On décompose les éléments dt. aUj dans la base (oo1? oo5): il existe des

entiers oci Jfh e Z, (l^z^r, 1 l^h^ô), tels que

di -aUjX aiJ,h-ahl
h 1

on a de plus

max | aM>J ^ Cx I dt .aUJIj l=sÊi^r,
1 ^ h ^0

où Cjl est égal à <5 ec l, C't étant le maximum des tailles des coefficients
de l'inverse de la matrice (Q est une constante ne

dépendant que de K).
Déterminer des éléments xt xn de if, entiers sur Z et non tous nuls,

vérifiant (5), revient à rechercher des entiers rationnels c,jth, (1 ^j^n,
l^h^ô), non tous nuls, tels que

xj X £j,h œh s
1 — j — n >

ft - î

et
n ö Ö

X X X • ç 0
j « £ h 1 h' 1

On a ainsi à résoudre un système de r 5 équations à n ô inconnues, à
coefficients dans Z majorés par

I X! aiJ,ft' • Qï,h,k I — C2 d A
ft' 1

où C2 (5 Cx O
On sait donc résoudre ce système avec

r

max | Çjj, |^1+
j' ft
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donc

r

max I xj II ^ C3 + C3
1 j ^ n

OÙ

C3 ô max II j]

l^h^ö
Finalement, on choisit

CK max(C2, C3).

Remarque. Quand on utilisera le lemme de Siegel, on choisira n — 2 r,
et la majoration (6) se réduira toujours à

max t (xj) ^ 3 max t (aUj).
1 l^j^r1 ^ j

d) Dépendance algébrique de fonctions exponentielles

Nous avons affirmé plus haut (§ 2.) que, si b $ Q, les deux fonctions
ez et ebz sont algébriquement indépendantes sur C, et que, si a # 0, 1, les

deux fonctions Z et az sont algébriquement indépendantes sur C (on dit que
la fonction az est transcendante — sous-entendu sur C (Z)).

Plus généralement, on a le résultat suivant :

Lemme 3. Soient bx bt des nombres complexes. Les fonctions :

sont algébriquement indépendantes sur C si et seulement si les nombres

bu ...,bt

sont Q-linéairement indépendants.

Il revient au même de dire que si W± Wq sont des nombres complexes
deux à deux distincts, et si aitj, (1 ^m^p% \±=j^q) sont des nombres

complexes non tous nuls, alors la fonction

P Q w z
(7) F (Z) £ E a^.H^.e j

i=i j=î
n'est pas identiquement nulle.

Ce résultat est immédiat par récurrence sur q, grâce à la relation [6]

chap. 12:
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dp -wz
e 4 F(Z)Z Z bu.Z'-1 .e 4 4

d Zp " " v 7
i

avec

t.. y Zl LlN fli.

et à la remarque que, pour tout j 1 <7 — 1, on a:

(fr;j 0 Pour 1 — i —p) ^ (ffij 0 pour 1 ±=p).

Le lemme 3 sera amplement suffisant pour ce que nous voulons faire
dans la première partie. Mais, pour démontrer le théorème de Baker (part
II), nous aurons besoin de renseignements beaucoup plus précis sur les

zéros des fonctions (7) (cf. les lemmes 4 et 5 et la relation (20)).

§ 5. Démonstration du théorème 1

Soient atib deux nombres algébriques, a ^ 0, a # 1, b £ Q, et supposons
que

ab exp (b. Log a)

soit algébrique (Log désignant une détermination quelconque du logarithme
complexe).

Soit N un nombre entier « arbitrairement grand » (voir la remarque à la
fin du § 3); si/et g sont deux applications de N dans R, on écrira:

f < g
au lieu de

f (N) < g (N) pour N -> + 00

On définit deux fonctions p (N) et q (N) de N par les relations

(8) p(N) 2 N3 et q (N) N

Nous justifierons ce choix à la fin de la démonstration.

Premier pas. — Il existe des éléments de K

ai,j(N)«(1 1 ==/ —kj (N)),

non tous nuls, entiers sur IL, majorés par

(9) max Log jj aU](N)|| <? p N) Log q(N) + N2 q (N) N3 Log N
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tels que la fonction :

P W a (N)
(10) FN(Z) E E

i 1 j 1

vérifie :

Fn (^ ~1~ ^ pour 1 ^ ^ AT2 1 — f,i — TV2 (A, ju) g Z2

Pour obtenir ce résultat, on applique le lemme de Siegel (lemme 2) au
système de TV4 équations

P W q (N)

E I W a +liVf-1. ay-A
• W 0

i i j i
l^X^TV2, l^fx^TV2,

à ^ (TV). <7 (TV) 2 TV4 inconnues afJ (TV), (l^i^p(N) l^j^q(N)) les

coefficients ayant une taille majorée par

t ((A +^)1'-'. ajx (a*)-7'") < P(N). Log 4 (AT) + N2 q (AT).

Notons que si El g Z est un dénominateur de a, b et ab, alors

j p (N) + 2 N2q(N> est un dénominateur de

Deuxième pas. — // existe un entier M (TV) ^ N 2 tel que :

1) FN(À+iib) 0 pour 1^2^M(TV), l^/i^M(TV)
2) Il existe (A1? ^x) gZxZ, 1 ^ — M (TV) + 1

1 M (TV) + 1,

avec

Y Fjv^! +jMib) 7^ 0

La fonction F, qui n'est pas identiquement nulle (grâce au lemme 3),

vérifie

Log I Fn ||.ä <1 R pour R -+ + 00

(i.e. elle est d'ordre ^ 1), donc le nombre de ses zéros dans un disque
I Z I ^ R est majoré par R pour R -> + 00 (Les constantes impliquées

pour R -> + 00 peuvent dépendre de TV). Or le nombre de points
{ X + /lb ; (X,p) g N X N } dans ce disque ne vérifie pas cette majoration.
Donc l'un des nombres F (2 + 11b), (X,fi) g N X N, est non nul.
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Troisième pas. — Le nombre y FN (Xl+ pfi) vérifie la majoration :

(11) Log \y\ < —M (Nf. Log M (N).

On utilise le lemme 1 avec

{x1 ,xk} {v + pb l^v^M (N) 1 p ^ M (N) }

(donc k M(N)2),et x00, M{N)/s.

Il faut vérifier (2) sous l'hypothèse (1), c'est-à-dire:

Log \F\rLog 2
1 .Log M (N)
O

pour

RA2 | x0 | + (22 +1) sup \xh\ M(iV)5/4.
l^h^k

Or pour cette valeur de R on a:

Log | F\R< q(N).M(iV)5/4 + p (N). Log M (N) < M (AT)7/4

grâce à (8), (9), (10) et à la relation M ^ Donc pour N assez grand
la condition (2) est vérifiée, d'où (3) :

Log I FH a, +ßlb) I ^ — /c Log A — Im(Log(N).
O

Quatrième pas. — La taille de y vérifie

(12) t(y) < p (N) Log M (N) + q(N) M (N) < M(N)3/2 Log (M(N)),

donc, grâce à (4), le nombre | y | est minoré par :

(13) Log|y | > — M(N)3'2.Log (M(JV)).

Notons, comme dans le premier pas, A un dénominateur de a, b et ab.

Le nombre

JP(JV) + 2(M(N) + i) .q(N) ^

est entier sur Z, donc

Log d(y) « p(N) + M (N) q (N)

D'autre part la majoration

Log y ^ p (N). Log M (N) + M (N) q (.N)
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est une conséquence immédiate de (9) et (10); on obtient ainsi (12); (13) est
alors une conséquence de (4).

Conclusion. Les conditions (11) et (13) étant incompatibles pour TV

(donc M (TV)) assez grand, on obtient la contradiction attendue.
Ceci démontre le théorème 1.

Remarque sur le choix de p (TV) et q (TV)

On remarque que les seules propriétés que l'on ait utilisées pour les

fonctions p (TV) et q (TV) définies par (8) sont les suivantes.
Ces deux fonctions sont monotones croissantes, tendent vers + oo

avec TV, et vérifient

1 1

—^q{N)-+§ et — p (N) Log TV -> 0 quand TV -> oo ;

p(N).q (TV) ^ 2 TV4

Il y avait évidemment d'autres choix possibles que (8).

IL Le théorème de Baker sur l'indépendance
LINÉAIRE DE LOGARITHMES DE NOMBRES ALGÉBRIQUES

§ 1. Enoncé du théorème

Dans la première partie, nous avons étudié le théorème de Gel'fond et
Schneider sur la transcendance de ah. Ce théorème peut s'énoncer de la
manière suivante.

Si les logarithmes de deux nombres algébriques sont Q-linéairement

indépendants, alors ces logarithmes sont Q-linéairement indépendants

(Q désignant le corps des nombres algébriques, clôture algébrique de Q
dans C).

Gel'fond [5] avait suggéré que la propriété devait être vraie pour n

logarithmes, et il avait mis en évidence l'importance de cette conjecture qu'il
considérait comme le problème fondamental dans la théorie analytique des

nombres transcendants. Baker résolvait en 1966 le cas où les nombres
algébriques sont multiplicativement indépendants [1], I, puis en 1967 le cas

général [1], II; il démontrait même plus [1], III.

Théorème 2 (Baker). Soient am des nombres algébriques dont
les logarithmes sont Q-linéairement indépendants.



— 69 —

Alors :

1 Log cc± Log ccm

sont Q-linéairement indépendants.

Par des arguments très simples d'algèbre linéaire, on peut déduire du

théorème 2 le corollaire suivant.

Corollaire 1. Soient al am ,ß0, ßm des nombres algébriques

On suppose que l'une des propriétés suivantes est vérifiée.

2. Log al5... ,Logam sont Q-linéairement indépendants, ei Fun des

nombres ßx ßm est irrationnel.

.3. Log a1 Log am sont non nuls, et l, ß1 ßm sont Q-linéairement

indépendants.

Alors le nombre

est transcendant.

On déduit également du théorème de Baker la transcendance du nombre

Plus généralement, Van der Poorten (On the arithmetic nature of definite
integrals of rational functions. Proc. Amer. Math. Soc. 29, (1971), 451-456)
a montré que le théorème 2 permettait de déterminer la nature arithmétique
d'intégrales définies de fonctions rationnelles; par exemple:

Corollaire 2. Soient P et 0 deux polynômes non nuls à coefficients
algébriques, avec deg P < deg O, les zéros de Q dans C étant deux à deux-

distincts. Soit r un contour dans le plan complexe, qui est fermé ou bien qui
a des extrémités algébriques ou infinies.
Si l'intégrale

1. /?o 7^ 0

o

r
existe, alors elle est nulle ou transcendante.
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Dans l'énoncé du résultat de Baker, nous avons négligé l'aspect effectif
du théorème: non seulement Baker démontrait qu'une forme linéaire non
triviale en 1, Loga! Logaw, à coefficients algébriques, est non nulle,
mais en plus il minorait une telle forme, en fonction des tailles des nombres
ccx aw et des coefficients.

Cette négligence nous permet de simplifier notablement la démonstration,
mais nous interdit aussi l'étude des conséquences les plus importantes (mais
également moins élémentaires que les précédentes) de cette méthode, telles

que

— les applications aux équations diophantiennes, par exemple la recherche
de points rationnels sur des courbes de genre 1 (Baker, Coates);

— l'étude des approximations de nombres algébriques par des nombres

rationnels, et la recherche d'analogues effectifs du théorème de Thue,
Siegel, Roth (Baker, Coates);

— les problèmes de nombres de classes, en particulier dans les corps
quadratiques imaginaires (Baker, Stark, Bundschuh et Hock) ;

— l'étude des nombres ayant de grands facteurs premiers (Ramachandra,
Tijdeman, Shorey).

La résolution de nombreux autres problèmes de théorie des nombres
fait intervenir des minorations de formes linéaires de logarithmes.

Enfin l'analogue /7-adique du théorème 2 permit à Brumer de résoudre,
dans le cas abélien, une conjecture de Leopoldt sur le rang p-adique du

groupe des unités d'un corps de nombres. Pour résoudre cette conjecture
dans le cas non abélien, il suffirait que l'on puisse démontrer l'analogue
p-adique de la

Conjecture. Soient a1 am des nombres algébriques dont les

logarithmes sont Q-linéairement indépendants. Alors Log oc1 Log am sont

algébriquement indépendants.

Une approche très intéressante — et entièrement différente de celle de

Baker — a été faite par Galotschkin et Nurmagomedov, utilisant une
méthode de Siegel et Shidlovskii; ils démontrent que, P e Q [Xx Xm]

étant un polynôme non nul, si les nombres ocx ocm sont suffisamment

proches de 1 (d'autant plus proches que le degré total du polynôme est plus

grand), alors jP(Loga!, LogaJ ^ 0 (on peut même minorer effectivement

ce nombre). Par exemple, si q est un nombre entier, q > e 694, alors

le nombre
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Log (1 + -) Log (1 — -)
qq

est irrationnel.
Un tel résultat en /?-adique serait suffisant pour résoudre complètement

la conjecture de Leopoldt; malheureusement, la méthode de Siegel et Shid-

lovskii n'a pas encore été traduite en/?-adique (on ignore encore, par exemple,

si l'analogue /?-adique du théorème de Lindemann Weierstrass est vrai).

§ 2. Idées de la démonstration du théorème 2

La méthode de Baker est une extension de celles de Gel'fond et

Schneider — d'ailleurs le théorème 2 contient la transcendance de ab pour
a et b algébrique, a ^ 0, 1 et b irrationnel.

De plus le théorème 2 contient la transcendance de e01, pour a ^ 0

algébrique; or on peut effectuer la démonstration de la transcendance de

ea par la méthode de Gel'fond (ceci a été fait par Schneider en 1949; cf.
1, § 2) en considérant les deux fonctions

f,(Z)=Z; f2(Z) =ez,
et les points Z n oc, ne Z (voir par exemple [7] chap. III ou [10] chap. II,
§4).

La première chose à faire est donc d'exprimer analytiquement les

hypothèses du théorème 2. Supposons que a1 am soient des nombres

algébriques dont les logarithmes sont Q-linéairement indépendants.
Alors les fonctions

Z ,txf,Otmsont algébriquement indépendantes (lemme 3), prennent des valeurs
algébriques pour Z e Z (et même pour Z e Q), et vérifient des équations
différentielles à coefficients dans le corps

Q(Log cc1, Log ocm)

(qui a un degré de transcendance sur Q supérieur ou égal à 1).

Nous allons étudier les conséquences de ces équations différentielles
sur les dérivées d'une fonction

FÇZ) P(Z,al
où P g Q [X0, Xm] est un polynôme à coefficients algébriques.
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Soit

qo~1 4m ~1
;

(H) p e E
Ao 0 Am 0

que l'on notera

(15) P Y p tt)X}00
(A)

ainsi

(16) F(Z) X p(X)ZA° exp (Â, Loga,+ ...+X,„ Log a„7)Z.
(A)

La dérivée d'ordre s ^ 0 de F est un polynôme en Log a, Log am,

les coefficients étant des fonctions entières qui prennent des valeurs
algébriques pour Z e Z.

Supposons d'abord que les nombres Log a, Log am so/?/1 algébriquement

dépendants sur Q ,disons par exemple

Log am6Q[Loga1, ...,Logam_1] ;

ainsi Log am est un polynôme en Log a, Log am_, ; soit (c — 1) le

degré total de ce polynôme.
On peut exprimer la dérivée d'ordre s de F comme un polynôme en

Loga, Log am_,, soit:

TS CS es

(17) -y—FE ••• E (Log ax) (Log am_ j)
d Z am—t=0

•/s, aj,..., vm_l

et les fonctions „ (Z) prennent des valeurs algébriques pour* 1 "" m — 1

ZeZ.
Essayons alors d'effectuer la démonstration en utilisant la méthode

exposée dans la première partie (§ 3).

Dans un premier temps, on construit un polynôme (14), (15), tel que la

fonction (16) possède de nombreux zéros, soient

ds
(18) F= 0 P°ur * 0, ...,x0-l,

et s0 sn — 1
•
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(Les valeurs de x0, s0, q0> Qi > ••• > Qm seront précisées plus tard, en

fonction d'un paramètre N « suffisamment grand », comme d'habitude).

Regardons la relation (17): On ne connaît rien sur les nombres Log oc1

Log am_i (sinon qu'ils sont transcendants), mais ils peuvent fort bien

être algébriquement indépendants, auquel cas les conditions (18) sont

équivalentes à

fx 0 x0 — 1

(19) pour ^ 5 0 s0 — 1

{at 0 c s0 (1 —i — m—1)

Quoi qu'il en soit, les relations (19) entraînent toujours (18), et c'est

donc le système (19) que nous allons résoudre.

Il s'agit d'un système linéaire homogène en p (A), à coefficients dans un

corps de nombres; le nombre d'inconnues est q0 qm (où qt — 1 est le

degré de P par rapport à Xt), le nombre d'équations est x0 Sq (c^Hb l)m
1

< *o C
Donc, à condition que

qo " ' Qm — 2 xQ Sq (cs0 -f- i)m
— 1

5

le lemme de Siegel permet d'effectuer le premier pas.

Remarquons ici que l'hypothèse

Log y.m e Q [Log a., Log

nous a permis de majorer le nombre d'équations par <| x0 s, et donc de

choisir q0 qm > < x0 s; sans cette hypothèse, on aurait seulement

^ x0 smo1 pour le nombre d'équations, et on aurait été contraint de choisir
<7o > - » Vm plus grands: (q0<x0sm+01).
Le deuxième pas consiste à construire un point Z0eC où la fonction F
(ou bien l'une de ses dérivées) ne s'annule pas.

Or on connait un résultat très précis sur les zéros des fonctions (7)
(cf. le lemme 4 ou la relation (20)), mais un peu long à démontrer. Nous
nous contenterons, pour simplifier, de supposer oc1 am multiplicative-
ment indépendants (c'est-à-dire 2 in. Log at Log am Q-linéairement
indépendants), et nous montrerons alors (lemme 5) qu'il existe un entier
.»'• 0^y^?o <7i ••• - 1 >tel <iue

F(y)¥=0.

Le principe de la suite de la démonstration réside en la recherche d'une
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majoration de | .F(j) |, puis d'une majoration de la taille t(F(y)\ pour
contredire la relation

(4) — 2 [Q(a) : Q] t (a) ^ Log | a | si a # 0 est algébrique.

La majoration de t {F {y)) (quatrième pas) se fait sans difficulté. 11 n'en
est pas de même de la majoration de | F (y) |, le cas général — où Log

,Logam sont algébriquement dépendants sur Q-n'étant pas encore
résolu.

Le troisième pas a donc pour but de fournir une majoration de F (y) \

utilisons le lemme 1 : les conditions (1) et (2) à vérifier pour obtenir (3)
s'écrivent ici :

- | FI*^ Xkpour RA2 + 1)

avec k — x0 s0 et 2 > 1. La conclusion serait alors

\F(y)\^rk.
Malheureusement la condition (1) sur R implique en particulier R > y,

et on ne connaît que l'encadrement

x0 ^y < x0 so ;

un calcul rapide montre alors que la majoration de | F\r, pour R> y, est

nettement plus mauvaise que Ak (quel que soit le choix des fonctions x0,
j0) ••• > et quel °lue s°il ^ 1 constant).

Néanmoins cette méthode permet de majorer | F(x) | pour x0 ^ x < xx
(où x^ est par exemple x0 sl/4m; nous préciserons de toutes façons plus
loin toutes ces valeurs).

On peut même majorer les dérivées F{s) (x), pour 0 ^ s ^ — — 1 ;

en effet, la fonction F(s)(Z), pour 0^s^~ — 1, admet les zéros

s0
0 x0 — 1, d'ordre — et la méthode précédente s'applique. Seulement

ces valeurs F(s) (x), pour 5 > 0, ne sont pas des nombres algébriques, mais

des éléments du corps Q (Log Log am_t); on ne peut donc pas
utiliser l'argument algébrique (4) pour en déduire que ces valeurs sont nulles.

L'idée de Baker est alors de majorer directement les nombres

Sof s a <r (*)> Pour 0 — 1 (qui, eux, sont des nombres algé-
' 1 " ' " m — 1 ' 2



briques dont on peut aisément majorer la taille). Pour cela, il convient de

0 7

montrer que les fonctions fs a a (Z), pour 0 ^.s ^ — — 1, admet-
9 i * *9 9 9 iti "• i 2

tent les zéros 0, 1 x0 — 1, d'ordre y. On calcule donc les dérivées de

ces fonctions: ce sont des polynômes en Logoq Logaw_1, dont on
cherche à exprimer les coefficients en fonction des

fs+<- °i + ti ww (Z)' pour 0 — f °-T^-cf
(qui s'annulent par hypothèse pour Z 0 x0 — 1). Or ceci est possible

lorsqu'on suppose non seulement

Log ame Q {Log ocl9..., Log

mais

Log ameQ + Q Log oq + + Q Log am-1

C'est là le point essentiel de la démonstration. Une fois que l'on a montré que
les relations (19) entraînent

\ x 0, — 1 ;

J0
s 0, ...,y — 1;

CT; 0, ,C-

fs,ai 0 pour

on obtient, par récurrence, pour tout entier £ / ^
x 0 xt — 1 ;

.0) 0 pourl' ' m — 1

s 0, ,^ 1 ;

CT. 0,...,C:

Or on peut choisir x( x,^ tels que, en plus des propriétés précédentes,

on ait

m ^Xo S O ^ 'v/ 5
o

d'où la contradiction attendue : F (y) 0.
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§ 3. Etude des zéros de polynômes exponentiels

Nous avons vu pourquoi la démonstration du théorème 2 nécessite des

renseignements précis sur les zéros de polynômes exponentiels (7). Baker
[1] et Fel'dman [2], [3], ont résolu différemment cette difficulté; depuis,

Tijdeman (On the number of zeros of general exponential polynomials.
Proc. Nederl. Akad. Wetensch., (Indag. Math.), Ser. A, 74 (1971), 1-7)

a obtenu un énoncé très général, dont nous utiliserons le corollaire suivant:

Lemme 4 (Tijdeman). Soient p1 pq des nombres entiers positifs,

üi j (1 ^LFrLp-\ 1 ^=/^%) des nombres complexes non tous nuls, et w1 wq

des nombres complexes deux à deux distincts. Le nombre N (R,F) de zéros

(comptés avec leur ordre de multiplicité) de la fonction

F(z) x y
pj
y

j= l i =1

dans le disque { ZeC ; \ Z \ ^ R), est majoré par :

N(R,F) ^3 (/?—!) + 4 RA

ou

q

n £ Pj et A max | wy |

.7 1 1 r^j^q

Une autre majoration de N (R,F), qui donnerait les mêmes résultats

ici, a été obtenue par l'auteur (Indépendance algébrique des valeurs de la

fonction exponentielle. Bull. Soc. Math. France, 99 (1971), 285-304):

(20) N (R,F) ^ min [ - + 2 (1 + RA)]
a > o 2 ALogn

Plutôt que de donner ici une nouvelle démonstration de l'une ou l'autre
de ces majorations de N (R,F), il semble préférable de se limiter au cas où
les nombres lin, Log olx Log am sont Q-linéairement indépendants

(nous montrerons à la fin de l'exposé comment le lemme 4 ou la majoration
(20) permet de résoudre le cas général).

Nous supposons donc que les qx qm p nombres

exp Log oc± + + Am Log 0 ^ Ai ~qx 1

sont deux à deux distincts; notons les ux ,up; pour

uh exp {Ax Log «J+...+ Am Log aj
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notons

Ph (*o) ~ P (^o 5 ^15 • • • > ^m) *

Ainsi la fonction (16) s'écrit

q°~1 P X 7
F(Z) I Z ph(A0)Z°uzh,

X =0/1=1o

et le lemme 5, dû à Fel'dman ([2], lemme 5 et [3], lemme 7) montrera que,

si F A 0 (c'est-à-dire si l'un des nombres ph (20)> 1 ^ A 2.0

^ <70 — 1, est non nul), alors l'un des nombres

F(y)> y °> ••• ><ioP —1

est non nul.

Lemme 5. (Fel'dman). Soient u± up des nombres complexes. Le

déterminant

A(q0,uu...,up)

(où x, (x 0, q0p— 1) est l'indice de ligne par exemple, et (kj), (k
0, q0 — 1 ; /= 1, p) celui de colonne), est égal à

«o-1 p

(2i) a (q0,uu...,Up)(n<!)'( n 4^°-i)).
i 0 /i 1

•(FI II Ol wa)°)•
/ 2 A 1

Démonstration (d'après [2])
Le polynôme A (Z) A (q0, uu np_u Z)eC [Z] est divisible par

Z^qo(qo~i), et ses dérivées s'annulent aux points uh9 h 1 — 1,

jusqu'à l'ordre ^ L Or le degré de A (Z) est:

(qop—l) + (<ioP—2) + +(q0p—qo) pq2—2 q oOzo + i),
d'où:

d (z) - z,. z^°(3o-i). "n (z-u,y°,
h 1

où dp est le coefficient de plus haut degré de d (Z). On obtient ainsi:

p — 1 2

/4(q0,"i, ...,up) A(q0,<5 n {up—uh)q°
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avec

«o-1
ô \x \k=o,0-i n il.

i 0

x qop-qo.,,$qop-l

d'où la relation (21) par récurrence sur p.

§ 4. Démonstration du théorème de Baker

Soient ax am, ß0 ßm^1 des nombres algébriques tels que

(22) Log ocm — ß0 -f- ßi Log ocj -f- -f- ßm—i Log ocm_^

Soit

K Q(oc1?..., ctm,ß0, ...,^w_1).

Considérons un polynôme
1 1

(14) P= Z I p(20,..,2m)xV..X^
Ao ° Aw 0

(15) - (A)

La fonction F(Z) — P (Z, a^, a^) s'écrit

(16) F(Z) E P(2)ZAoaV...ay
(A)

La relation (22) permet de remplacer

A. A

a! amm

par:
^ym^o + ^ m- I + 1

e ax ...a 1m- 1

c'est-à-dire d'écrire P sous la forme

(23) F (Z) %P (X) Z'A° ^°Z *ïlZ
• • •

ocL'-V

W

où

(24) I y° /lm^°
1 ; \y, At + Amj5i5 1
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Les dérivées de F vérifient les relations :

(25 F V ——^ r (Log (Log am_1)<Tm_1

d Zs
<70 + + <rm_l s ^0 * ••• •

où

(26) r(.)(z). y p(l)IF(Z'-
(A) dZ°

?iZ ym_iZ
.ai aw-1

pour

(<r) (cr0,..., crm-i)

(Avec les notations (17) précédentes, on a:

t

al...la
O

OÙ C0 5 — (71 — — Om _ 1).

S

FV am — 1 '
m-1

Les fonctions sont reliées entre elles par des équations différentielles

(qui généralisent (25)) :

(27 )f-F y —-— -(Logai)11... (Log
dZ' r„+...+zm_1=,xm_,!

* F(a + T)

OÙ (<7 +T) ((70 +T0, tTm_ +Tm_i)

Ces relations (27) sont évidentes par le calcul à partir de (26) (cf. par
exemple Fel'dman [2]), mais on peut donner une raison un peu plus
profonde de leur existence de la manière suivante (cf. Baker [1]).

On définit une fonction G (Z0,..., Zm_1) de m—1 variables complexes

par:

G(rj r~r \ V ~ / 7\ r7^o jZo ylzi ym- lzm— 1(Zq Zm_ i) zL P (4) Z0 e ai am_ i
(A)

où y0 ym_i sont définis par (24).
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D'après (23), on a:

F(Z) G(Z,...,Z),
donc:

ds „ s ös

7VSf^= % —;ao+-+am-1s^0• •

o m -1

Soit:

A (Log a,)-1 (1^/^m—l),
o Zf

et

On a donc, d'après (25) :

F(ff)(Z) =dI° ...Djr-1 G {Z9...,Z)>

et on en déduit immédiatement

d*

âëF<«(Z>'

£ — G(Z, Z)
i .i"' t î t ° m —1 o m—1

T° *" »1—1
* " m~ 1

o m — 1

^
S — (Log aj)'1 (Log

X -4- «4- T ^ f T i T ^ i
o ~ m~l • ••• lm.-l

rfc1*1""1 G(Z,Z),

ce qui est la relation (27).
Soit 77 un entier suffisamment grand; on définit des fonctions x09 s0, #0,

q, ^par :

(28) x0 tfm'î s0 ^2m; 4o 2772m; 4 iV2"1-1 ; t0 AT*.

Si / est un entier 2^ 0, on note Z, l'ensemble des (m-b l)-uples

(x,(ff)) (x,ff0. 1)
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d'entiers vérifiant

O^x^x0tl0 —1;<r0 + + — 1
•

Construction de la fonction auxiliaire.

Il existe des éléments

p(l0,...,XJ =p(X), O^Ao^go-1; 1(1

appartenant à K et entiers sur Z, non tons nuls, de taille majorée par

(29) t (p(A)) <? (?0 + s0) Log q + qx0 4 Af3m_1 LogiV

tels que les fonctions

(26) J(,j(Z) X P(l) S .Z0' „ -TT^Tt-CMmr^-
(t, „=o pifo — j«)! -^)!

+ JMJ'1 (Am_! +L-i^)'m l z"0""
•
«îlZ - «mmZ

définies pour (cr) (or0, (7m_1)? cr£ ^ 0, vérifient

(30) Fu)(x) 0 pour (x, (er)) e/10

Preuve : Soit d e K, entier sur Z non nul, tel que

A ß0,... ,Aßm-!

soient entiers sur Z. Les conditions

As°+qxom .F(a)(x)0 pour (x, (er)) e

forment un système de moins de x0 s équations à q0 qm inconnues

p (X0f..., Am), dont les coefficients sont des éléments de K, entiers sur Z,
de taille majorée par

< 0?o + s0) Log q + q x0

Le lemme 2 fournit le résultat, grâce à la relation :

q0qm 2x0 s
La récurrence.

Pour tout entier /, 0 ^ ^ 5 m2 ; on a :

(31) F{a){x) 0 pour (x,(<t)) e Ât.

L'Enseignement mathém., t. XX. fasc. 1-2. e.
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Cette relation est vraie par construction (30) pour / 0. Supposons-la
vraie pour / — 1 :

f -î x 0—1

F(*)(x) 0 pour °o + ••• + Jl i _

2l-l

Soit (x, (<t)) e A/. Nous allons majorer | F(a) (x) |, puis majorer t (F(a) (x)),
et constater que la relation (4) n'est pas satisfaite, donc F(a)(x) 0.

Majoration de I *<,> (*) I •

La fonction F((J), pour cr0 + + crm_t ^ 5| — 1 admet les zéros

0 ,x0— 1

d'ordre —, grâce à l'hypothèse de récurrence et aux relations (27).

Utilisons le lemme 1 avec k N1/s, s 0, k ~ x0
1

•

Le nombre 7? défini par (1) vérifie R x0 tl0Nv\ donc, en utilisant (26),
(28) et (29), on a:

Log | F(ff) \R< q R + (q0+ s0) Log jR N3m+ 2 ~ 4 Log iV

Or:

k Log 1
1

— Xq tlo-iLogJV ^ JV3m+ 2 - 2 Log N
8 2

Pour TV assez grand, on obtient:

(32) Log I F(<y) (x) I

Majoration de t {F\g) (x))

,Sn + ^Xntlnm
On remarque que A 0 00 est un dénominateur de F(a) (x), si A est

un dénominateur de a1 am, ß0 ßm-1; le calcul de la taille de

F{a) (x) s'effectue alors comme on l'a fait lors de la construction des

on a, grâce à (26), (28) et (29) :

t(Fu7)(x))<(q0+s0)Log x0 +
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d'où :

(33) t(F(<r)(x))« N3m+2"1 Log

Comme on le désirait, la relation (4) n'est pas vérifiée pour a F(a) (x),

grâce à (32) et (33), donc:

(31) F(ff)(x) 0 pour (x,(o)) e A,.

Conclusion. Pour l0 5 m2dans(31), on constate que la fonction

F F{0) vérifie:

ds
[x= 1

(34) F(x)0 pour { n
5o

1 ^
dZs

K ' | « 1

I 2

Comme :

XJo° N-ï>n2 + m > 1N2m2 + m ^ qm ^

les équations:

F(x) Z 0
a)

pour x » 0 q0 qm — 1

et le lemme 5 montrent que deux des nombres :

ai1 amm 0 — 1

sont égaux, donc que les nombres oq am sont multiplicativement
dépendants.

Le théorème 2 est donc démontré dans le cas où 2 i n, Log oq Log am

sont Q-linéairement indépendants.

Indiquons pour terminer comment s'effectue la démonstration dans le

cas général, à partir du lemme 4 ou de la relation (20).
Soit

1

oR — Xq t0 et A — max (2^ Log oq + -f- 2m Log ocm).
0^ li

D'après (34), on a:

N (R,F) ^ ~x0/;-l Nh"2 + 3m

20 25m
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D'autre part:

q0qm=N2m2 + m, et RA <1

On obtient alors une contradiction à la fois avec la relation N (R,F)
— 3(#o#m~"l) + 4Rd du lemme 4, et avec la majoration (20) (avec

q0 qm ; choisir par exemple X
1

» m
;)•

Remarque sur le choix (28) des fonctions x0, s0, #0, #, /0 de N
Les seules propriétés requises pour ces fonctions sont les suivantes: ce

sont des fonctions monotones croissantes, tendant vers + oo avec N,
et vérifiant:

tri m
q0qm =2 x0s0 ;

(go + s0) Log (x0t0) +
X0 50

0 quand N -> + oo

[ Log t0 — £ Log s0 où s > 0 ne dépend pas de N.

Par exemple, un autre choix possible est le suivant (Fel'dman, [2]):

q0 2 JV (Log N)d;q (Log » ;

x0 N;s0 (LogW)1 + 2ä;
(5

t0 (Log N) ;

avec ö > 0 indépendant de N.
Le choix de ces fonctions est particulièrement important lorsqu'il s'agit

d'établir des énoncés effectifs.

Utilisation d'une méthode élémentaire de Gel'fond dans la démonstration

des théorèmes 1 et 2.

Nous terminerons en remarquant que la méthode exposée par Gel'fond

au chapitre 12 de [6], permet de modifier les démonstrations (dans le cas

réel) de manière à ne plus utiliser le principe du maximum pour démontrer

l'analogue réel du lemme 1 ; le seul outil analytique qui intervienne est alors

le théorème de Rolle (cf. Groupe d'Etude de Théorie des Nombres, exposés

n° 1 (16 octobre 1972) et n° 5.(27 novembre 1972), Paris).
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