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§ 3. Remarques

1. La fonction L (s, k) est essentiellement la fonction zêta globale de la

courbe elliptique

y2 4x3 + 1

sur le corps E Q (p). On observe simplement que si Np nombre de

points dans la courbe réduite

u3 v (v + 1) (mod p),

on a

T
3

T
3

M=p + 1+ — + — pour p ee 1 (mod 3).
p p

Pour plus de détails, voir Weil [19], [20] et aussi Moreno [16].

2. La méthode utilisée ici nous permet de donner une solution partielle
au problème suivant de Hilbert [9] (§112 pp. 227) qui est une généralisation
de celui de Kummer. Soient m un nombre premier et p un autre nombre

premier de la forme p 1 + t m. Soit % un caractère mutliplicatif de

(Z/pZ)* d'ordre m et définissons la somme de Gauss par
p — 1 2nik

T'PZ x(l<)e~
fc 1

Alors on a t p
el6p. Dans notre mémoire [16] nous démontrerons que

m

les angles à la m — 16 puissance p2 eim0p sont équirépartis dans

l'intervalle (0, n) pour la mesure de Lebesgue.

3. Notre théorème donne une solution du problème de Davenport [3]
(§ 3 p. 27).

4. L'équirépartition des angles 3 0
p donne des résultats partiels pour

le problème de Chowla [2] (problème 48, p. 94) qui demande d'obtenir la
meilleure constante pour laquelle l'inégalité

p — 1 2 ni x 3

| Y, e p I — 2 p* p 1 (mod 3)
jc o

reste valable. Nos résultats prouvent que pour chaque e > 0 il a y une
infinité de nombres premiers tels que
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p — 1 2 ni x 3

I £ epI ât(l —e)p*.
x 0

On doit observer simplement que

p — 1 2 ni x 3

X e p Tp + Tp 2p* COS 0,,
X 0

Cette idée remonte à Hasse [7] (§10.8, p. 171) qui l'avait déjà employée
dans le cas de la somme de Gauss

P£ e^' P ~ 1(mod4)*
JC 0

5. La solution complète du problème de Kummer sera immédiate si on

peut établir que les deux fonctions zêta définies par le produit d'Euler

Lv(s) Il (l+zvpp-r1(l+rvPv- 1,2
P

p= 1 (mod 3

3
sont des fonctions holomorphes pour R e (.y) ^ — e et R e (s) 2 — s

resp. et ne s'annulent pas sur la droite de convergence absolue. Il serait
aussi très intéressant de donner une interprétation de caractère 1-adique
d'un élément de Frobenius d'expression x p + z p.

Kubota [10], [11] a obtenu des résultats très profonds pour des fonctions

analogues à L1 (s) et L2 (s) et nous espérons que sa méthode pourrait
s'appliquer à notre problème.
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