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Un grand nombre des nouveaux calculs par Goldstine et von Neumann
[6], Lehmer [15], et Cassels [1] nous ont conduits à douter de la véracité de

la conjecture de Kummer; les mêmes calculs semblent aussi indiquer que
les angles 6

p sont équirépartis dans l'intervalle (0, n) pour la mesure de

Lebesgue. Le but de cette note est de donner une démonstration du résultat
suivant.

Théorème. Soit Xi la fonction caractérisitique d'un sous-intervalle I de

(0,n], alors

y \i \ x / x
Xl(39p) + °(i_._) :

p 1 (mod 3) """ 2l0gX
où 1/1 est la mesure de Lebesgue de I.

dogx'

Remarque. Le Théorème a été énoncé comme une loi de distribution
des nombres premiers mais on peut dire simplement que les angles de la
troisième puissance de t p sont équirépartis dans l'intervalle (0, n] pour la

mesure de Lebesgue.

§ 2. Démonstration du théorème

L'idée de la démonstration a été déjà considérée par Davenport-Hasse
[4] et aussi par Weil [21]. Elle consiste à interpréter les sommes de Gauss

comme des traces d'opérateurs de Frobenius.
Soit E Q (p) le corps quadratique imaginaire obtenu en adjoignant

2%i

p — e ~3~ à Q et JE son anneau d'entiers. L'arithmétique de JE est bien

connue et on sait que les nombres premiers dans JE appartiennent a deux

classes selon que la norme est un nombre premier rationnel ou le carré d'un
nombre premier rationnel. Dans ce paragraphe, nous décrirons une construction

locale des sommes de Gauss. Soit q un nombre premier de /£, /q son

corps résiduel et NE/Q (q) q l'ordre de /q. Il est très facile devoir que

q 1 (mod 3), ce qui permet de construire un caractère cubique multipli-
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catif pour le groupe cyclique F*q Fq — (0) en prenant la racine de l'unité

xq dans JE qui satisfait à la congruence

g — i
xq (x) x 3 (mod q).

Pour x=0 (mod q) nous posons xq (x) 0. Soit ij/ (x) un caractère

additif du groupe i^q distinct de l'unité. La somme de Gauss attachée au

nombre premier q est définie par

g to, «/O £ xqO) 00 >

x

où x décrit le corps résiduel Fq. Le changement de x en t x, où t s F*q,
donne

0 to, </0 xq (0 Z xq 00 00,
x

ce qui prouve que le changement du caractère additif ij/ en un autre dans la
définition de la somme de Gauss ne fait que multiplier celle-ci par un
facteur connu. Il en résulte que g (xq, *A)3 ne dépend que du nombre premier
q.

Les propriétés suivantes des sommes de Gauss sont immédiates.

A') I ^ (xq, I2 iVjE/Q (q) -

2nik

C) Si q est de degré 1 et ij/ (k) e p où p NE/Q (g) il en résulte que
la somme g (xq, \j/) coincide avec la somme t p

définie par (1) pour un choix
du générateur g de (Z/pZ)* bien déterminé.

D) Le symbole local

K-q g (jq, é)3

ne dépend que de q.

Pour définir le symbole de Kummer global nous considérons l'ensemble
des entiers IE (2(1 —p)2) qui sont premiers avec 2 (1 —p)2, et pour chaque
a e IE (2(1 —p)2) nous posons

nord q(a)
(- *q)

q I a
K(a)

NEIQ(ar

On a pour le symbole de Kummer k (a) le résultat suivant.

Théorème (Deuring-Shimura-Weil). Le symbole de Kummer k (a) est un
« Grössencharakter ».
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Pour la démonstration de ce résultat important nous renvoyons aux
mémoires de Weil ([20] pp. 489-491), Shimura-Taniyama ([18] pp. 144-148:

Main Theorem 4) et Deuring ([5]). Voir aussi notre mémoire ([16] §3:
Generalized Gauss sums as characters) où nous donnons une démonstration
valable pour le cas d'une somme de Gauss générale.

Du fait que le symbole k (a) est un Grössencharakter on peut construire
les fonctions

L(s,k")X'K»(a)JV(a)-s E['(l-^(qW')"1.
où a (resp. q) sont des entiers (resp. nombres premiers) dans IE(2(l— p)2)
et v un entier rationnel ^ 1. La théorie de Hecke [8] nous donne que

L (1 + it, kv) =£ 0

pout tous — co ^ t ^ co et v e Z +. Alors un raisonnement du type
Taubérien nous donne (voir Hecke [8], Serre [17] et Lang [14])

Yj KVa O( —
N(q)^x log X

Mais nous savons que

E S o(.\J (logx)2) ;
n q - x

deg c} 2

il en résulte, selon le critère de Weyl [22], que les angles Oq de Kq el9q

pour les nombres premiers q de degré 1 sont équirépartis dans le cercle

R/2 n Z pour la mesure de Lebesgue. Pour vérifier notre Théorème il reste à

observer que pour chaque nombre premier q in IE (2(1 — p)2) de degré 1 on a

par conjugaison un autre nombre premier q aussi de degré 1 avec la propriété

Kq= Kq

Finalement nous faisons usage de l'égalité

K(\ P~fTp3

où p — Ne/q (q), ou ce qui est la même chose

NE\Q(qfeWc> p*ei3ep.

Cela démontre la proposition.
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