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SUR LE PROBLEME DE KUMMER

par Carlos Julio MORENO

§ 1. INTRODUCTION

Soit p un nombre premier de la formep = 1 + 3 zet g un générateur du
groupe multiplicatif (Z/pZ)*. Soit encore y le caractére cubique non
principal défini par le symbole

X(k) — pIndg(k) ,

2ni

ol p=ce > et k=g dans (Z/pZ)*. La somme de Gauss pour le
caractére y est donnée par la formule

p—1 2 ik

(1) 1, =y x(ke 7 .
k=1
On connait deux résultats classiques sur la valeur du module de la somme
de Gauss ([7] § 20)
A) |1, = p*
B) T, = prer,

ou les angles 0, sont bien définis & conjugaison prés.

Kummer ([12], [13]) a calculé la valeur numérique de 7, pour tous les
nombres premiers p = 499 et a fait I’observation suivante (en utilisant une
notation moderne):

Conjecture de Kummer

W, x X
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= () = , h=1,2,3,
p:li(mom)X’(p) 2logx logx)
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ou y, (resp. x,, x3) est la fonction caractéristique de l’intervalle O, 5]
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Un grand nombre des nouveaux calculs par Goldstine et von Neumann

- [6], Lehmer [15], et Cassels [1] nous ont conduits a douter de la véracité de

la conjecture de Kummer; les mémes calculs semblent aussi indiquer que

les angles 0, sont équirépartis dans l'intervalle (0, 7) pour la mesure de

Lebesgue. Le but de cette note est de donner une démonstration du résultat
suivant.

Théoréme. Soit y; la fonction caractérisitique d’un sous-intervalle I de
(0, n], alors

| 1]x X

p=x Xl(39p) = +O(

= 1(mod 3) 210gx

4

log x

ol l 1 | est la mesure de Lebesgue de I.

Remarque. Le Théoréme a été énoncé comme une loi de distribution
des nombres premiers mais on peut dire simplement que les angles de la
troisiéme puissance de 7, sont €équirépartis dans I'intervalle (0, n] pour la
mesure de Lebesgue.

§ 2. DEMONSTRATION DU THEOREME

L’idée de la démonstration a été déja considérée par Davenport-Hasse
[4] et aussi par Weil [21]. Elle consiste a interpréter les sommes de Gauss
comme des traces d’opérateurs de Frobenius.

Soit £ = Q (p) le corps quadratique imaginaire obtenu en adjoignant

27i

p=ce 3 a Q et J, son anneau d’entiers. L’arithmétique de Jy est bien
connue et on sait que les nombres premiers dans J; appartiennent a deux
classes selon que la norme est un nombre premier rationnel ou le carré d’un
nombre premier rationnel. Dans ce paragraphe, nous décrirons une construc-
tion locale des sommes de Gauss. Soit g un nombre premier de Jg, Fqson
corps résiduel et Ng,, (q) = g 'ordre de Fq. Il est trés facile de voir que

== 1 (mod 3), ce qui permet de construire un caractére cubique multipli-
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