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1.4 Hauptsatz

Die Hauptklasse § verdient im Zusammenhang mit den drei
fundamentalen Masszahlen x ,L, F ganz besonderes Interesse dadurch, dass der
folgende Hauptsatz gilt :

Ist cp e § ein additives, bewegungsinvariantes und bedingt beschränktes

Polygonfunktional, so lassen sich drei reelle Konstanten a, ß, y so angeben,
dass über dem Polygonverband ^ die Identität

(1.5) (p(A) a%(A) + + yF (A)

besteht.

Die drei Funktionen / ,L, F bilden also eine Basis des Yektorraumes §
und es gilt dim 9) 3.

Es genügen die drei Eigenschaften (1.2), (1.3), (1.4) eines Funktionais
cp, um den Schluss ziehen zu können, dass eine Darstellung (1,5) gültig ist,
wonach cp durch die drei fundamentalen Masszahlen ausdrückbar wird.

2. Spezieller Teil

2.1 Kennzeichnung einer Charakteristik

Unter einer Charakteristik für Polygone verstehen wir eine Funktion
^3 -* R, welche die nachfolgenden drei Forderungen erfüllt:

(2.1) x{4>) 0;
(2.2) Â e Ä, A # <j) => x (Ä) 1 ;

(2.3) A,Be?ß => x(Ä) + x(B) '= x(AvB) + x(AnB).

Eine Charakteristik ist demnach ein über dem Polygonverband definiertes

additives Funktional, das der Nullkonvention entspricht und so normiert
ist, dass jedem nichtleeren Eipolygon der Wert 1 zugeordnet wird.

Mit der Additivität und Berücksichtigung der Sachlage, wonach jedes

Polygon als Vereinigung endlich vieler Eipolygone dargestellt werden kann,

folgt unmittelbar, dass % ganzwertig ist, so dass also x eine Funktion

X'. ^3 -> Z darstellt. Es ist keineswegs selbstverständlich, dass eine derartige
Charakteristik, welche die drei aufgestellten Axiome (2.1), (2.2), (2.3)

befriedigt, existiert. Nachfolgend zeigen wir, dass dies in der Tat der Fall ist.
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2.2 Existenzbeweis

Wir weisen nach, dass wenigstens eine Charakteristik existiert. Vorbereitend

werden zunächst Hilfsfunktionen $ : E x ^ R konstruiert, die

einem Punkt p e E und einem Polygon A 3 den reellen Wert <P (p, A) so

zuordnen, dass das Additionstheorem

(2.4) <2> (p, A) + <P(p,B) <f> (P, AkjB) + (p, AnP)

uneingeschränkt gilt. Diesem Zwecke dienend, stellen wir mit dem Begriff
Umgebungsbild U(p, A) eines Punktes peE bezüglich eines Polygons
A g ^ ein nützliches Hilfsmittel bereit.

Mit Inanspruchnahme der elementargeometrischen Stuktur der kompakten,

polygonalen Punktmenge A e ^ lässt sich zu jedem beliebig gewählten
Punkt p e E ein o a (p, A) > 0 so festlegen, dass die Punktmenge U (p, A)

(1 Ip) (Kp (p) n A) für alle p, 0 < p < <r, nicht von p abhängig ist, wenn

Kp (p) einen abgeschlossenen Kreisbereich mit Zentrum p und Radius p

anzeigt. Die für alle p des Intervalls (0, a) festbleibende Figur U (p, Ä) ist
offensichtlich eine abgeschlossene Teilmenge des Einheitskreisbereiches

Ki (p); wir nennen sie das Umgebungsbild von p bezüglich A. Je nach der

Lage von p relativ zu A lassen sich sechs Typen bilden, deren Unterscheidung
in unserem Zusammenhang relevant sein wird.

| Fall I : p e cmpl A
Fall II : p e int A
Fall III : p e relint S, S einseitige Randstrecke von A
Fall IV : p e relint S, S zweiseitige Randstrecke von A
Fall V : p nicht unter den Fällen I bis IV und nicht isoliert
Fall VI: p isoliert.

Die sechs Lagen von p bezüglich A sind in Abbildung 1 aufgewiesen und
j die zugehörigen Umgebungsbilder U (p, A) in Abbildung 2 dargestellt. Im
{Fall I ist U (p, A) leer. In den Fällen II bis V besteht U(p,A) aus n
\ n (p) e N Einheitskreissektorbereichen mit dem gemeinsamen Scheitel
j p und den Zentriwinkeln 0f (i 1, n). Insbesondere ist im Fall II
j U (p, A) ein Vollkreis, n 1, ^ In. Im Fall III ist U(p, A) ein Halbkreis,
j/? 1, 9L 7i. Im Fall IV besteht U (p, A) aus zwei Strecken, n 2,

jöi 02 0.

j Im allgemeinen Fall V ist U (p, Ä) die Vereinigung von n Sektoren
(n ^ 1) 0 ^ 0f < 2n (i 1,..., n). Im Fall VI ist U (p, A) mit dem Punkt p
identisch.



Abb. 2
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Mit den nachfolgenden Ansätzen bilden wir drei Hilfsfunktionen, deren

Werte sich nach den vorliegenden sechs Fällen richten, nämlich :

(2.5) a (p, A) 0bzw 1 (Fall I bzw Fälle II, III, IV, V, VI);
(2.6) ß p, Ä)0 bzw n (p) (Fälle I, II, VI bzw Fälle III, IV, V);
(2.7) yp, A)0 bzw ï{ 0, (Fälle I, VI bzw Fälle II, III, IV, V).

Mit & (p, A)a (p, A), ßp,A), y (p, A) sind nun drei spezielle

Lösungen des Additionstheorems (2.4) gegeben. Die Additivität von a

und y ist nahezu trivial; ihr Nachweis bei ß sei hier als kombinatorischgeometrische

Uebungsaufgabe gedacht. Nun setzen wir

(2.8) co(p, A) a (p, Ä) — (1/2) ß(p, A)

und haben durch Linearkombination offensichtlich eine weitere Lösung
<P (p, A) co (p, A) von (2.4) konstruiert.

In der nachfolgenden Tabelle sind die Werte der drei Hilfsfunktionen
a ß y und von co eingetragen, die sich für Punkte mit den Umgebungsbildern

der Typen I bis IV ablesen lassen :

OL p y CO

I 0 0 0 0

II 1 0 2n 0

III 1 1 71 0

IV 1 2 0 0

: Wie wir also festellen, gilt

: (2.8) CO (p, A)0 (Fälle I, II, III, IV).

Nichtverschwindende Werte der Funktion co ergeben sich demnach nur
1 in den Fällen V, VI, d.h. für Punkte pedie nicht im Aeussern, nicht im
j Innern, nicht im relativen Innern von einseitigen Randstrecken und auch
i nicht von zweiseitigen Randstrecken des Polygons liegen. Nach Definition
j sind das genau die Eckpunkte von ADaes aber lediglich endlich viele
I Eckpunkte gibt, existiert die formal über alle Punkte p der Ebene E zu
I erstreckende Summe
j

(2-9) x(4>Z® Ob >

I P

l da nur endlich viele Summanden nicht verschwinden. Mit diesem Ansatz
I ergibt sich eine nur von A abhängige reelle Zahl. Damit wird eine über dem
i
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Polygonverband ^ definierte Funktion erzielt, die im Hinblick auf die für
co (p, Ä) als gültig erkannte Beziehung (2.4) evidenterweise eine Lösung des

für uns entscheidenden Additionstheorems (2.3) sein muss. Es sei nun p
ein Eckpunkt von A (Fälle V, VI). Es gilt dann

(2.10) ct(p,Ä) 1

Bezeichnet k (p) 2 n (p) die Anzahl der in p einmündenden Randstrecken

von A, wobei jede zweiseitige Randstrecke mit der Vielfachheit 2

mitzuzählen ist, so ergibt sich

(2.11) ß(p,A) (1/2) k(p).

Zeigt schliesslich g (p) die Summe der Innenwinkel von A in p an, so ist

(2.12) y (p, A) g (p).

Für einen isolierten Eckpunkt ist naturgemäss k(p) g (p) — 0 zu setzen.

Beachten wir, dass sich die Summation (2.9) de facto über die Eckpunkte
von A erstreckt, so resultiert mit (2.8), (2.10), (2.11), (2.12) die Darstellung

(2.13) x(A) P04)— (1/2) K(^4)— (i/2n) (^4),

wobei P die Eckpunktzahl, K die Randstreckenzahl und G die totale
Innenwinkelsumme bedeuten. Hierbei ist zu bedenken, dass bei der Summierung
aller Beiträge k (p) jede Randstrecke doppelt gezählt wird, da diese durch
zwei Eckpunkte begrenzt ist. Ferner ist bei der Verwendung dieser

Darstellung darauf zu achten, dass jede zweiseitige Randstrecke mit der
Vielfachheit 2 in Rechnung zu stellen ist.

Ist nun A leer (P K G 0), so ergibt sich % (0) 0, womit die

Nullkonvention (2.1) erfüllt wird. Ist A ein eigentliches Eipolygon, also ein

nichtentartetes m-Eck (P m, K m, G (m —2) 71), so folgt % (A) 1,

ein Resultat, das sich auch für ein uneigentliches Eipolygon, also für eine

Strecke (P 2, K 2, G 0) und für einen Punkt (P \,K 0, G

— 0) bestätigt. Demnach ist auch die Forderung (2.2) befriedigt. Fassen

wir zusammen : Das durch die Eckpunktzahl, Randstreckenzahl und
Innenwinkelsumme gemäss (2.13) gebildete Polygonfunktional % ist somit eine

Charakteristik, da die drei kennzeichnenden Postulate (2.1), (2.2) und (2.3)

erfüllt sind. Damit ist der Existenzbeweis beendent.
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2.3 Eindeutigkeitsbeweis

Wir zeigen nun, dass es andererseits höchstens eine Charakteristik geben

kann. Sei also x eine Polygonfunktion, welche den Forderungen (2.1),

(2.2), (2.3) genügt. Ist A eP ein beliebiges Polygon, so gibt es eine Darstellung

A u" At als Vereinigung der n Eipolygone At e ft (i= 1, n). Mit
Iteration des Additionstheorems (2.3) resultiert die induktiv leicht
nachweisbare Formel

(2.14) x(A) - X2z(4-nA) + -,
wobei sich die Summation über alle (,") Kombinationen der Indizes

n] der ra-ten Klasse zu erstrecken hat. Natürlich gilt die gleiche
Formel ebenso für die im vorstehenden Abschnitt konstruierte Charakteristik

x, so dass auch

(2.15) x(Ä)XXX(^) - l2x(AnAk) +

gelten muss. Mit Rücksicht auf (2,1), (2.2) und Berücksichtigung der
Tatsache, dass die Eipolygonklasse ft bezüglich der Schnittbildung
geschlossen ist, sind nun die rechts von (2.14) und (2.15) auftretenden Therme
bei den Durchschnitten gleicher Indizeskombinationen gleich, so dass auf

(2.16) x(A) x(A)

geschlossen werden kann. Damit ist der Eindeutigkeitsbeweis beendet.

2.4 Die Eulersche Charakteristik

Die mit der Darstellungsformel (vgl. (2.13))

(2.17) x(A) P(A)-(1/2)*04) -(1/2*) G04)

gegebene Polygonfunktion ist, wie gezeigt wurde, die einzig mögliche Charakteristik.

Es handelt sich um die in sachlich- und historischer Beziehung
ausgezeichnete Eulersche Charakteristik.

Abbildung 3 zeigt einige einfache Polygone mit einer Tabelle, welche der
Ermittlung von % gemäss (2.17) dient. Naturgemäss hat y noch andere
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P K G X

a 3 3 71 1

b 3 6 0 0

c 8 8 8tc 0

d 8 8 47T 2

e 12 36 0 — 6

Abb. 3
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nennenswerte Eigenschaften, deren Erläuterungen wir hier unterlassen

müssen. Es sei lediglich die bedeutsame und nützliche Beziehung

(2.18) X(Ä) c(A) - c*(A) + 1

genannt, wo c die Anzahl der Komponenten von A und c* die Anzahl der

Komponenten von A* cmpl A anzeigt (Komponente einer Punktmenge
ist kurz gesagt eine grösste zusammenhängende Teilmenge). Diese Relation
lässt die enge Beziehung erkennen, die zwischen Euler-Charakteristik und

topologischen Sachverhalten besteht, und sie deutet offenkundig darauf hin,
dass x eine topologische Invariante darstellt. Ihre Begründung und Anwendbarkeit

innerhalb der Elementarmathematik liegt im Grenzgebiet zwischen
metrischer Geometrie und Topologie. Wie ersichtlich befindet sich die
Formel (2.17) diesseits und (2.18) schon jenseits der angedeuteten Grenze.

Hier ist auch die Grenzschicht, wo sich die schulmässige Elementargeometrie

sehr leicht mit Problemen in Kontakt bringen lässt, die in die
wissenschaftliche Forschung hineinweisen, vor allem dann, wenn man sich vom
ebenen Fall, mit dem wir uns hier ausschliesslich befasst haben, loslöst.

Hier sind zahlreiche Verwendungsmöglichkeiten der Eulerschen Charakteristik

in der kombinatorischen Geometrie, der diskreten Geometrie, der
stochastischen Geometrie uam. zu nennen, doch müssen wir uns hier mit
einem flüchtigen Hinweis begnügen.

Reçu le 21 mai 1973)

H. Hadwiger
Mathematisches Institut
Universität Bern
Sidlerstrasse 5

3000 Bern



Jr
Of

&/©
*


	2. Spezieller Teil

