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BEGRÜNDUNG DER EULERSCHEN CHARAKTERISTIK
INNERHALB DER EBENEN ELEMENTARGEOMETRIE 1

von H. Hadwiger

Im ersten allgemeinen Teil wird gezeigt, wie sich ein Miteinbezug der

Eulerschen Charakteristik innerhalb einer Elementargeometrie im Rahmen

der Schulmathematik vom höheren Standpunkt aus rechtfertigen lässt. Die

sachliche Motivation ist vor allem durch den Hauptsatz gegeben, der ohne

Beweis erläutert wird, der erkennbar macht, dass die drei Masszahlen,

Flächeninhalt, Umfang und Charakteristik zusammengehören. Diese

bilden eine Basis im linearen Raum der additiven und invarianten Funktionen
ebener Figuren.

Im zweiten speziellen Teil wird eine elementare Begründung, also

Existenz- und Eindeutigkeitsnachweis, für die Eulersche Charakteristik als

Funktion über dem Verband der Polygone der Ebene gegeben.

1. Allgemeiner Teil

1.1 Polygonverband

E bezeichne die euklidische Ebene. Eine kompakte Punktmenge I c= E
heisst polygonale, Linie, wenn / eine disjunkte Zerlegung 3 m endlich viele

Punkte, genannt Eckpunkte, und in endlich viele eigentliche offene Strecken,

genannt Kanten, so gestattet, dass die Endpunkte aller Kanten der
Eckpunktsmenge angehören. Die leere Menge 0 ist eine polygonale Linie.
Eine polygonale Linie erlaubt beliebig viele derartige Zerlegungen. Man
beachte, dass / eine Punktmenge, (/, 3) ein ebener, endlicher, schlichter
und geradliniger Graph ist. — Eine kompakte Punktmenge A c= E heisst

Polygon, wenn der Rand ô A eine polygonale Linie ist. Die Eckpunkte
bezüglich einer Zerlegung 3 von <5 A sind die Eckpunkte, die Kanten die
Randstrecken von A. Der offene Kern int A, die Randstrecken und die

1 Referat an der vom Mathematischen Institut der Universität Bern und der Zentralstelle

für Lehrerfortbildung des Kantons Bern veranstalteten Tagung „Geometrieunterricht
auf neuer Basis" am 7. März 1973 im Institut für exakte Wissenschaften.

L'Enseignement mathém., t. XX, fasc. 1-2. 3
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Eckpunkte repräsentieren eine von 3 abhängige disjunkte Zerlegung des

Polygons A. — Eine Randstrecke S von A heisst einseitig, wenn S n cl int A
S, zweiseitig wenn S n cl int A 0 ausfällt, bezeichne die Klasse

aller Polygone der Ebene E, wobei noch 0 e ^3 gelten soll. Es gilt der

wichtige Tatbestand

(1.1) A, B e ^ => A u B, AnBety,
wonach bezüglich der Bund- und Schnittbildung geschlossen ist. Struktur-
mässig ist <^, u, n> ein distributiver Verband, so dass wir mit kurzer
Andeutung dieses mit (1.1) verbundenen Sachverhalts ^3 auch Polygonverband

nennen. — Ein konvexes Polygon ist ein Eipolygon und R <= ^ soll
die Unterklasse aller Eipolygone anzeigen. — Ein Polygon C heisst im
Sinne der Elementargeometrie (kurz iSE) in die Polygone A, B zerlegt,
symbolisch durch C A © B angeschrieben, wenn C A u B und
int (A n B) 0 ist. Ist C iSE in A, B zerlegt, so ist A n B eine polygonale
Linie. Jedes Polygon Aety lässt sich iSE in endlich viele Eipolygone

At£R(i 1,...,«) zerlegen, symbolisch A Z" At. Eine kompakte
Punktmenge A c= E ist genau dann ein Polygon, wenn sie sich als Vereinigung

endlich vieler Eipolygone Ate R (i 1,..., n) darstellen lässt, so

das A u" At gilt. Der Polygonverband ^3 ist demnach auch deutbar als

der von den Elementen von R erzeugte Konvexring.

1.2 Additive Funktionale

Es bezeichne cp eine reellwertige Funktion (p: ^3 -> R die jedem Polygon
A g den Wert cp (A) zuordnet. Generell wird die Nullkonvention cp 0

0 getroffen. Wir stellen ein der Verbandstruktur von ^ angepasstes
Additionstheorem ins Zentrum der zu entwickelnden Theorie. Ein
Polygonfunktional cp heisst additiv, wenn die Beziehung

(1.2) A, B e ^3 => cp (A) + cp (B) cp (AuB) + cp (AnB)

uneingeschränkt gilt. Von dieser Additivität ausgehend lässt sich in einheitlicher

Weise eine axiomatische Begründung der drei über dem Polygonverband

^3 definierten fundamentalen Masszahlen gewinnen, wovon zwei

im Rahmen der schulmässigen Elementargeometrie der Ebene wohlbekannt,
die dritte aber bisher kaum erwähnt oder gar in den Geometrieunterricht
der Mittelschule miteinbezogen werden konnte. Es handelt sich um die drei

additiven Funktionale, die mit dem Flächeninhalt F (A), der Randlänge

(Umfang) L (A) und durch die Eulersche Charakteristik x (A) für Polygone
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A E ^ gegeben sind. Es ist das Hauptziel dieser Ausführungen, die elementare

Begründbarkeit der Eulerschen Charakteristik x nachzuweisen, und erkennbar

zu machen, dass alle drei Funktionen F, L und x, vom passenden höheren

Standpunkt aus betrachtet, zusammengehören. In geeigneter Sicht lassen

sie sich als die bis auf unwesentliche Normierung einzigen vernünftigen
additiven invarianten Polygonfunktionale gewinnen. Das einfachste

Unterscheidungsmerkmal ist ihr Homogenitätsgrad. Ist X > 0 und zeigt X A das

aus A vermöge Dilatation mit X aus A hervorgehende Polygon an, so heisst

cp homogen vom Grade k, wenn cp (X A) Xk <p (A) gilt. Es sind nur die

Grade k — 0, 1, 2 möglich, die den Funktionen x, A ^zukommen.

1.3 Hauptklasse

Um eine sich schliessende Theorie additiver Polygonfunktionen
aufbauen zu können, müssen zum Additionstheorem (1.2) noch zwei weitere

Bedingungen hinzutreten, die einerseits die wichtige, aber fast selbstverständliche

Invarianz garantieren, andererseits unerwünschte pathalogische
Funktionen auszuschliessen vermögen. Ein Polygonfunktional cp heisst

bewegungsinvariant, wenn die Aussage

(1.3) A~B => <p(A) cp{B)

gilt, wo die Aequivalenzbeziehung ~ die Kongruenz von Figuren in E
anzeigt.

Ferner nennen wir cp bedingt beschränkt, wenn

(1.4) A, Ce 5t, A c= C => \ <p (A) \ < co (C)

gilt, so dass sich also eine nur vom Eipolygon C abhängige reelle Konstante
co (C) so angeben lässt, dass für jedes in der Rahmenfigur C enthaltene
weitere Eipolygon A die angegebene Einschränkung besteht. Man beachte,

i dass beispielsweise für die Randlänge L eine solche Beschränktheit lediglich
bei Restriktion von auf R gültig ist, so dass L bedingt beschränkt, nicht

(aber beschränkt ist.
I Die Hauptklasse $ sei die Menge aller additiven, bewegungsinvarianten
j und bedingt beschränkten Polygonfunktionale.

Die drei kennzeichnenden Forderungen sind so gewählt, dass sich ihr
5 Erfülltsein von zwei Funktionalen <p, \jj offensichtlich auf eine Linear-
|{combination a q> + ß \jt mit reellen Koeffizienten überträgt. Die Haupt-
iklasse §: {cp; (1.2), (1.3), (1.4)} ist ein Vektorraum über R.
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1.4 Hauptsatz

Die Hauptklasse § verdient im Zusammenhang mit den drei
fundamentalen Masszahlen x ,L, F ganz besonderes Interesse dadurch, dass der
folgende Hauptsatz gilt :

Ist cp e § ein additives, bewegungsinvariantes und bedingt beschränktes

Polygonfunktional, so lassen sich drei reelle Konstanten a, ß, y so angeben,
dass über dem Polygonverband ^ die Identität

(1.5) (p(A) a%(A) + + yF (A)

besteht.

Die drei Funktionen / ,L, F bilden also eine Basis des Yektorraumes §
und es gilt dim 9) 3.

Es genügen die drei Eigenschaften (1.2), (1.3), (1.4) eines Funktionais
cp, um den Schluss ziehen zu können, dass eine Darstellung (1,5) gültig ist,
wonach cp durch die drei fundamentalen Masszahlen ausdrückbar wird.

2. Spezieller Teil

2.1 Kennzeichnung einer Charakteristik

Unter einer Charakteristik für Polygone verstehen wir eine Funktion
^3 -* R, welche die nachfolgenden drei Forderungen erfüllt:

(2.1) x{4>) 0;
(2.2) Â e Ä, A # <j) => x (Ä) 1 ;

(2.3) A,Be?ß => x(Ä) + x(B) '= x(AvB) + x(AnB).

Eine Charakteristik ist demnach ein über dem Polygonverband definiertes

additives Funktional, das der Nullkonvention entspricht und so normiert
ist, dass jedem nichtleeren Eipolygon der Wert 1 zugeordnet wird.

Mit der Additivität und Berücksichtigung der Sachlage, wonach jedes

Polygon als Vereinigung endlich vieler Eipolygone dargestellt werden kann,

folgt unmittelbar, dass % ganzwertig ist, so dass also x eine Funktion

X'. ^3 -> Z darstellt. Es ist keineswegs selbstverständlich, dass eine derartige
Charakteristik, welche die drei aufgestellten Axiome (2.1), (2.2), (2.3)

befriedigt, existiert. Nachfolgend zeigen wir, dass dies in der Tat der Fall ist.
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2.2 Existenzbeweis

Wir weisen nach, dass wenigstens eine Charakteristik existiert. Vorbereitend

werden zunächst Hilfsfunktionen $ : E x ^ R konstruiert, die

einem Punkt p e E und einem Polygon A 3 den reellen Wert <P (p, A) so

zuordnen, dass das Additionstheorem

(2.4) <2> (p, A) + <P(p,B) <f> (P, AkjB) + (p, AnP)

uneingeschränkt gilt. Diesem Zwecke dienend, stellen wir mit dem Begriff
Umgebungsbild U(p, A) eines Punktes peE bezüglich eines Polygons
A g ^ ein nützliches Hilfsmittel bereit.

Mit Inanspruchnahme der elementargeometrischen Stuktur der kompakten,

polygonalen Punktmenge A e ^ lässt sich zu jedem beliebig gewählten
Punkt p e E ein o a (p, A) > 0 so festlegen, dass die Punktmenge U (p, A)

(1 Ip) (Kp (p) n A) für alle p, 0 < p < <r, nicht von p abhängig ist, wenn

Kp (p) einen abgeschlossenen Kreisbereich mit Zentrum p und Radius p

anzeigt. Die für alle p des Intervalls (0, a) festbleibende Figur U (p, Ä) ist
offensichtlich eine abgeschlossene Teilmenge des Einheitskreisbereiches

Ki (p); wir nennen sie das Umgebungsbild von p bezüglich A. Je nach der

Lage von p relativ zu A lassen sich sechs Typen bilden, deren Unterscheidung
in unserem Zusammenhang relevant sein wird.

| Fall I : p e cmpl A
Fall II : p e int A
Fall III : p e relint S, S einseitige Randstrecke von A
Fall IV : p e relint S, S zweiseitige Randstrecke von A
Fall V : p nicht unter den Fällen I bis IV und nicht isoliert
Fall VI: p isoliert.

Die sechs Lagen von p bezüglich A sind in Abbildung 1 aufgewiesen und
j die zugehörigen Umgebungsbilder U (p, A) in Abbildung 2 dargestellt. Im
{Fall I ist U (p, A) leer. In den Fällen II bis V besteht U(p,A) aus n
\ n (p) e N Einheitskreissektorbereichen mit dem gemeinsamen Scheitel
j p und den Zentriwinkeln 0f (i 1, n). Insbesondere ist im Fall II
j U (p, A) ein Vollkreis, n 1, ^ In. Im Fall III ist U(p, A) ein Halbkreis,
j/? 1, 9L 7i. Im Fall IV besteht U (p, A) aus zwei Strecken, n 2,

jöi 02 0.

j Im allgemeinen Fall V ist U (p, Ä) die Vereinigung von n Sektoren
(n ^ 1) 0 ^ 0f < 2n (i 1,..., n). Im Fall VI ist U (p, A) mit dem Punkt p
identisch.



Abb. 2
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Mit den nachfolgenden Ansätzen bilden wir drei Hilfsfunktionen, deren

Werte sich nach den vorliegenden sechs Fällen richten, nämlich :

(2.5) a (p, A) 0bzw 1 (Fall I bzw Fälle II, III, IV, V, VI);
(2.6) ß p, Ä)0 bzw n (p) (Fälle I, II, VI bzw Fälle III, IV, V);
(2.7) yp, A)0 bzw ï{ 0, (Fälle I, VI bzw Fälle II, III, IV, V).

Mit & (p, A)a (p, A), ßp,A), y (p, A) sind nun drei spezielle

Lösungen des Additionstheorems (2.4) gegeben. Die Additivität von a

und y ist nahezu trivial; ihr Nachweis bei ß sei hier als kombinatorischgeometrische

Uebungsaufgabe gedacht. Nun setzen wir

(2.8) co(p, A) a (p, Ä) — (1/2) ß(p, A)

und haben durch Linearkombination offensichtlich eine weitere Lösung
<P (p, A) co (p, A) von (2.4) konstruiert.

In der nachfolgenden Tabelle sind die Werte der drei Hilfsfunktionen
a ß y und von co eingetragen, die sich für Punkte mit den Umgebungsbildern

der Typen I bis IV ablesen lassen :

OL p y CO

I 0 0 0 0

II 1 0 2n 0

III 1 1 71 0

IV 1 2 0 0

: Wie wir also festellen, gilt

: (2.8) CO (p, A)0 (Fälle I, II, III, IV).

Nichtverschwindende Werte der Funktion co ergeben sich demnach nur
1 in den Fällen V, VI, d.h. für Punkte pedie nicht im Aeussern, nicht im
j Innern, nicht im relativen Innern von einseitigen Randstrecken und auch
i nicht von zweiseitigen Randstrecken des Polygons liegen. Nach Definition
j sind das genau die Eckpunkte von ADaes aber lediglich endlich viele
I Eckpunkte gibt, existiert die formal über alle Punkte p der Ebene E zu
I erstreckende Summe
j

(2-9) x(4>Z® Ob >

I P

l da nur endlich viele Summanden nicht verschwinden. Mit diesem Ansatz
I ergibt sich eine nur von A abhängige reelle Zahl. Damit wird eine über dem
i
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Polygonverband ^ definierte Funktion erzielt, die im Hinblick auf die für
co (p, Ä) als gültig erkannte Beziehung (2.4) evidenterweise eine Lösung des

für uns entscheidenden Additionstheorems (2.3) sein muss. Es sei nun p
ein Eckpunkt von A (Fälle V, VI). Es gilt dann

(2.10) ct(p,Ä) 1

Bezeichnet k (p) 2 n (p) die Anzahl der in p einmündenden Randstrecken

von A, wobei jede zweiseitige Randstrecke mit der Vielfachheit 2

mitzuzählen ist, so ergibt sich

(2.11) ß(p,A) (1/2) k(p).

Zeigt schliesslich g (p) die Summe der Innenwinkel von A in p an, so ist

(2.12) y (p, A) g (p).

Für einen isolierten Eckpunkt ist naturgemäss k(p) g (p) — 0 zu setzen.

Beachten wir, dass sich die Summation (2.9) de facto über die Eckpunkte
von A erstreckt, so resultiert mit (2.8), (2.10), (2.11), (2.12) die Darstellung

(2.13) x(A) P04)— (1/2) K(^4)— (i/2n) (^4),

wobei P die Eckpunktzahl, K die Randstreckenzahl und G die totale
Innenwinkelsumme bedeuten. Hierbei ist zu bedenken, dass bei der Summierung
aller Beiträge k (p) jede Randstrecke doppelt gezählt wird, da diese durch
zwei Eckpunkte begrenzt ist. Ferner ist bei der Verwendung dieser

Darstellung darauf zu achten, dass jede zweiseitige Randstrecke mit der
Vielfachheit 2 in Rechnung zu stellen ist.

Ist nun A leer (P K G 0), so ergibt sich % (0) 0, womit die

Nullkonvention (2.1) erfüllt wird. Ist A ein eigentliches Eipolygon, also ein

nichtentartetes m-Eck (P m, K m, G (m —2) 71), so folgt % (A) 1,

ein Resultat, das sich auch für ein uneigentliches Eipolygon, also für eine

Strecke (P 2, K 2, G 0) und für einen Punkt (P \,K 0, G

— 0) bestätigt. Demnach ist auch die Forderung (2.2) befriedigt. Fassen

wir zusammen : Das durch die Eckpunktzahl, Randstreckenzahl und
Innenwinkelsumme gemäss (2.13) gebildete Polygonfunktional % ist somit eine

Charakteristik, da die drei kennzeichnenden Postulate (2.1), (2.2) und (2.3)

erfüllt sind. Damit ist der Existenzbeweis beendent.
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2.3 Eindeutigkeitsbeweis

Wir zeigen nun, dass es andererseits höchstens eine Charakteristik geben

kann. Sei also x eine Polygonfunktion, welche den Forderungen (2.1),

(2.2), (2.3) genügt. Ist A eP ein beliebiges Polygon, so gibt es eine Darstellung

A u" At als Vereinigung der n Eipolygone At e ft (i= 1, n). Mit
Iteration des Additionstheorems (2.3) resultiert die induktiv leicht
nachweisbare Formel

(2.14) x(A) - X2z(4-nA) + -,
wobei sich die Summation über alle (,") Kombinationen der Indizes

n] der ra-ten Klasse zu erstrecken hat. Natürlich gilt die gleiche
Formel ebenso für die im vorstehenden Abschnitt konstruierte Charakteristik

x, so dass auch

(2.15) x(Ä)XXX(^) - l2x(AnAk) +

gelten muss. Mit Rücksicht auf (2,1), (2.2) und Berücksichtigung der
Tatsache, dass die Eipolygonklasse ft bezüglich der Schnittbildung
geschlossen ist, sind nun die rechts von (2.14) und (2.15) auftretenden Therme
bei den Durchschnitten gleicher Indizeskombinationen gleich, so dass auf

(2.16) x(A) x(A)

geschlossen werden kann. Damit ist der Eindeutigkeitsbeweis beendet.

2.4 Die Eulersche Charakteristik

Die mit der Darstellungsformel (vgl. (2.13))

(2.17) x(A) P(A)-(1/2)*04) -(1/2*) G04)

gegebene Polygonfunktion ist, wie gezeigt wurde, die einzig mögliche Charakteristik.

Es handelt sich um die in sachlich- und historischer Beziehung
ausgezeichnete Eulersche Charakteristik.

Abbildung 3 zeigt einige einfache Polygone mit einer Tabelle, welche der
Ermittlung von % gemäss (2.17) dient. Naturgemäss hat y noch andere
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P K G X

a 3 3 71 1

b 3 6 0 0

c 8 8 8tc 0

d 8 8 47T 2

e 12 36 0 — 6

Abb. 3
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nennenswerte Eigenschaften, deren Erläuterungen wir hier unterlassen

müssen. Es sei lediglich die bedeutsame und nützliche Beziehung

(2.18) X(Ä) c(A) - c*(A) + 1

genannt, wo c die Anzahl der Komponenten von A und c* die Anzahl der

Komponenten von A* cmpl A anzeigt (Komponente einer Punktmenge
ist kurz gesagt eine grösste zusammenhängende Teilmenge). Diese Relation
lässt die enge Beziehung erkennen, die zwischen Euler-Charakteristik und

topologischen Sachverhalten besteht, und sie deutet offenkundig darauf hin,
dass x eine topologische Invariante darstellt. Ihre Begründung und Anwendbarkeit

innerhalb der Elementarmathematik liegt im Grenzgebiet zwischen
metrischer Geometrie und Topologie. Wie ersichtlich befindet sich die
Formel (2.17) diesseits und (2.18) schon jenseits der angedeuteten Grenze.

Hier ist auch die Grenzschicht, wo sich die schulmässige Elementargeometrie

sehr leicht mit Problemen in Kontakt bringen lässt, die in die
wissenschaftliche Forschung hineinweisen, vor allem dann, wenn man sich vom
ebenen Fall, mit dem wir uns hier ausschliesslich befasst haben, loslöst.

Hier sind zahlreiche Verwendungsmöglichkeiten der Eulerschen Charakteristik

in der kombinatorischen Geometrie, der diskreten Geometrie, der
stochastischen Geometrie uam. zu nennen, doch müssen wir uns hier mit
einem flüchtigen Hinweis begnügen.

Reçu le 21 mai 1973)

H. Hadwiger
Mathematisches Institut
Universität Bern
Sidlerstrasse 5

3000 Bern
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