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BEGRUNDUNG DER EULERSCHEN CHARAKTERISTIK
INNERHALB DER EBENEN ELEMENTARGEOMETRIE *

von H. HADWIGER

Im ersten allgemeinen Teil wird gezeigt, wie sich ein Miteinbezug der
Eulerschen Charakteristik innerhalb einer Elementargeometrie im Rahmen

~ der Schulmathematik vom hoheren Standpunkt aus rechtfertigen ldsst. Die
- sachliche Motivation ist vor allem durch den Hauptsatz gegeben, der ohne
. Beweis erldutert wird, der erkennbar macht, dass die drei Masszahlen,

Flicheninhalt, Umfang und Charakteristik zusammengehdren. Diese
bilden eine Basis im linearen Raum der additiven und invarianten Funktionen
ebener Figuren.

Im zweiten speziellen Teil wird eine elementare Begriindung, also
Existenz- und Eindeutigkeitsnachweis, fiir die Eulersche Charakteristik als
Funktion iiber dem Verband der Polygone der Ebene gegeben.

1. ALLGEMEINER TEIL

1.1 POLYGONVERBAND

E bezeichne die euklidische Ebene. Eine kompakte Punktmenge I < E
heisst polygonale Linie, wenn I eine disjunkte Zerlegung 3 in endlich viele
Punkte, genannt Eckpunkte, und in endlich viele eigentliche offene Strecken,
genannt Kanten, so gestattet, dass die Endpunkte aller Kanten der Eck-

- punktsmenge angehoOren. Die leere Menge @ ist eine polygonale Linie.
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Eine polygonale Linie erlaubt beliebig viele derartige Zerlegungen. Man
beachte, dass I eine Punktmenge, (I, 3) ein ebener, endlicher, schlichter
und geradliniger Graph ist. — Eine kompakte Punktmenge A < FE heisst
Polygon, wenn der Rand 6 4 eine polygonale Linie ist. Die Eckpunkte
beziiglich einer Zerlegung 3 von J§ 4 sind die Eckpunkte, die Kanten die
Randstrecken von A. Der offene Kern int 4, die Randstrecken und die

1 Referat an der vom Mathematischen Institut der Universitit Bern und der Zentral-
Syelle fir Lehrerfortbildung des Kantons Bern veranstalteten Tagung ,,Geometrieunter-
richt auf neuer Basis® am 7. Mirz 1973 im Institut fiir exakte Wissenschaften.

L’Enseignement mathém., t. XX, fasc. 1-2. 3
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Eckpunkte reprisentieren eine von J abhingige disjunkte Zerlegung des
Polygons 4. — Eine Randstrecke S von A heisst einseitig, wenn S N cl int 4
= S5, zweiseitig wenn S nclint A = ¢ ausfillt. P bezeichne die Klasse
aller Polygone der Ebene E, wobei noch @ € P gelten soll. Es gilt der
wichtige Tatbestand

(1.1) A,Be3 = AUB, AnBe'}},

wonach ‘} beziiglich der Bund- und Schnittbildung geschlossen ist. Struktur-
" missig ist (, U, N> ein distributiver Verband, so dass wir mit kurzer
Andeutung dieses mit (1.1) verbundenen Sachverhalts § auch Polygonver-
band nennen. — Ein konvexes Polygon ist ein Eipolygon und & < P soll
die Unterklasse aller Eipolygone anzeigen. — Ein Polygon C heisst im

Sinne der Elementargeometrie (kurz iSE) in die Polygone A, B zerlegt,
| symbolisch durch C = 4 @ B angeschricben, wenn C = A4 U B und
int (4 n B) = & ist. Ist CiSE in A4, B zerlegt, so ist A N B eine polygonale
Linie. Jedes Polygon A e P ldsst sich iSE in endlich viele Eipolygone
A; e R (1 = 1,..,n) zerlegen, symbolisch 4 = X7 4;. Eine kompakte
Punktmenge 4 < F ist genau dann ein Polygon, wenn sie sich als Vereini-
gung endlich vieler Eipolygone A4;e & (i = 1, ..., n) darstellen ldsst, so
das A = U A, gilt. Der Polygonverband ‘3 ist demnach auch deutbar als
der von den Elementen von & erzeugte Konvexring.

1.2 ADDITIVE FUNKTIONALE

Es bezeichne ¢ eine reellwertige Funktion ¢: 8 — R die jedem Polygon
A e P den Wert ¢ (A) zuordnet. Generell wird die Nullkonvention ¢ (&)
= 0 getroffen. Wir stellen ein der Verbandstruktur von 9P angepasstes
Additionstheorem ins Zentrum der zu entwickelnden Theorie. Ein Polygon-
funktional ¢ heisst additiv, wenn die Beziehung

(1.2) A, BeP = ¢ (A) + ¢ (B) = ¢(AUB) + ¢ (ANB)

uneingeschrinkt gilt. Von dieser Additivitit ausgehend lédsst sich in einheit-
licher Weise eine axiomatische Begriindung der drei iiber dem Polygon-
verband ‘B definierten fundamentalen Masszahlen gewinnen, wovon zwei
im Rahmen der schulmissigen Elementargeometrie der Ebene wohlbekannt,
die dritte aber bisher kaum erwidhnt oder gar in den Geometricunterricht
der Mittelschule miteinbezogen werden konnte. Es handelt sich um die drei
additiven Funktionale, die mit dem Fldcheninhalt F (A), der Randlinge
(Umfang) L (4) und durch die Eulersche Charakteristik y (A) fiir Polygone
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A € P gegeben sind. Es ist das Hauptziel dieser Ausfiihrungen, die elementare
Begriindbarkeit der Eulerschen Charakteristik y nachzuweisen, und erkenn-
bar zu machen, dass alle drei Funktionen F, L und y, vom passenden hdheren
Standpunkt aus betrachtet, zusammengehoren. In geeigneter Sicht lassen
sie sich als die bis auf unwesentliche Normierung einzigen verniinftigen
additiven invarianten Polygonfunktionale gewinnen. Das einfachste Unter-
scheidungsmerkmal ist ihr Homogenititsgrad. Ist 4 > 0 und zeigt 4 4 das
aus 4 vermdge Dilatation mit A aus 4 hervorgehende Polygon an, so heisst
o homogen vom Grade k, wenn ¢ (1 A) = A* ¢ (A) gilt. Es sind nur die
Grade k = 0, 1, 2 moglich, die den Funktionen y, L, F zukommen.

1.3 HAUPTKLASSE

Um eine sich schliessende Theorie additiver Polygonfunktionen auf-
bauen zu konnen, miissen zum Additionstheorem (1.2) noch zwei weitere
Bedingungen hinzutreten, die einerseits die wichtige, aber fast selbstverstind-
liche Invarianz garantieren, andererseits unerwiinschte pathalogische
Funktionen auszuschliessen vermogen. Ein Polygonfunktional ¢ heisst
bewegungsinvariant, wenn die Aussage

(1.3) A,Be3, A ~B = ¢@(A) = ¢(B)

gilt, wo die Aequivalenzbeziehung ~ die Kongruenz von Figuren in E
‘anzeigt. '

Ferner nennen wir ¢ bedingt beschrinkt, wenn
(1.4) A, CeR,AcC = |p(A)] < w(C)

‘gilt, so dass sich also eine nur vom Eipolygon C abhingige reelle Konstante
‘o (C) so angeben ldsst, dass fiir jedes in der Rahmenfigur C enthaltene
‘weitere Eipolygon A4 die angegebene Einschriankung besteht. Man beachte,
:dass beispielsweise fiir die Randlédnge L eine solche Beschrinktheit lediglich
‘bei Restriktion von B auf & giiltig ist, so dass L bedingt beschrinkt, nicht
‘aber beschriankt ist.

Die Hauptklasse $) sei die Menge aller additiven, bewegungsinvarianten
und bedingt beschriankten Polygonfunktionale.

Die drei kennzeichnenden Forderungen sind so gewihlt, dass sich ihr
‘Erfiilitsein von zwei Funktionalen o, Y offensichtlich auf eine Linear-
"ékombination o ¢ + i mit reellen Koeffizienten iibertrigt. Die Haupt-
‘Eklasse H: = {;(1.2), (1.3), (1.4) } ist ein Vektorraum iiber R.

R SR
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1.4 HAUPTSATZ

Die Hauptklasse $ verdient im Zusammenhang mit den drei funda-
mentalen Masszahlen y ,L, F ganz besonderes Interesse dadurch, dass der
folgende Hauptsatz gilt:

Ist ¢ € $ ein additives, bewegungsinvariantes und bedingt beschrinktes
Polygonfunktional, so lassen sich drei reelle Konstanten a, 5, y so angeben,
dass iiber dem Polygonverband ‘B die Identitit

(1.5) @ (A) = ay(A4) + BL(A) + yF(4)
besteht.

Die drei Funktionen y ,L, F bilden also eine Basis des Vektorraumes $
und es gilt dim $H = 3.

Es geniigen die drei Eigenschaften (1.2), (1.3), (1.4) eines Funktionals
¢, um den Schluss ziehen zu konnen, dass eine Darstellung (1, 5) giiltig ist,
wonach ¢ durch die drei fundamentalen Masszahlen ausdriickbar wird.

2. SPEZIELLER TEIL

2.1 KENNZEICHNUNG EINER CHARAKTERISTIK

Unter einer Charakteristik fiir Polygone verstehen wir eine Funktion
x: P — R, welche die nachfolgenden drei Forderungen erfiillt:

(2.1) x (@) = 0;
(2.2) Aef, A#¢ = y(4) = 1;
(2.3) A, BeP = y(A) + x(B) = y(AUB) + x(ANB).

Eine Charakteristik ist demnach ein liber dem Polygonverband definiertes
additives Funktional, das der Nullkonvention entspricht und so normiert
ist, dass jedem nichtleeren Eipolygon der Wert 1 zugeordnet wird.

Mit der Additivitdt und Berlicksichtigung der Sachlage, wonach jedes
Polygon als Vereinigung endlich vieler Eipolygone dargestellt werden kann,
folgt unmittelbar, dass y ganzwertig ist, so dass also y eine Funktion
y: P — Z darstellt. Es ist keineswegs selbstverstdndlich, dass eine derartige
Charakteristik, welche die drei aufgestellten Axiome (2.1), (2.2), (2.3)
befriedigt, existiert. Nachfolgend zeigen wir, dass dies in der Tat der Fall ist.
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2.2  EXISTENZBEWEIS

Wir weisen nach, dass wenigstens eine Charakteristik existiert. Vorbe-
reitend werden zunidchst Hilfsfunktionen @:E x B — R konstruiert, die
einem Punkt p € E und einem Polygon A4 € P den reellen Wert @ (p, 4) so
zuordnen, dass das Additionstheorem

(2.4) ®(p,A) + @(p,B) = @(P, AUB) + @ (p, AnB)

uneingeschriankt gilt. Diesem Zwecke dienend, stellen wir mit dem Begriff
Umgebungsbild U (p, A) eines Punktes p € E beziiglich eines Polygons
A € P ein niitzliches Hilfsmittel bereit.

Mit Inanspruchnahme der elementargeometrischen Stuktur der kompak-
ten, polygonalen Punktmenge A € ‘P ldsst sich zu jedem beliebig gewdhlten
PunktpeEeino = o (p, A) > 0so festlegen, dass die Punktmenge U (p, A)
= (1/p) (Kp (p) 0 A) fiir alle p, 0 < p < o, nicht von p abhingig ist, wenn
" Kp (p) einen abgeschlossenen Kreisbereich mit Zentrum p und Radius p
i anzeigt. Die fiir alle p des Intervalls (0, o) festbleibende Figur U (p, A4) ist
offensichtlich eine abgeschlossene Teilmenge des Einheitskreisbereiches
K, (p); wir nennen sie das Umgebungsbild von p bezliglich 4. Je nach der
 Lage von p relativ zu A4 lassen sich sechs Typen bilden, deren Unterscheidung
- in unserem Zusammenhang relevant sein wird.

Fall I:pecmpl 4

Fall II: p eint 4

Fall I1I: p e relint S, S einseitige Randstrecke von 4

Fall IV: p erelint S, S zweiseitige Randstrecke von A

Fall V: p nicht unter den Féllen I bis IV und nicht isoliert
Fall VI: p isoliert.

~ Die sechs Lagen von p beziiglich 4 sind in Abbildung 1 aufgewiesen und
gdie zugehorigen Umgebungsbilder U (p, A) in Abbildung 2 dargestellt. Im
‘Fall T ist U(p, A) leer. In den Fillen II bis V besteht U(p, A) aus n
' = n(p) e N Einheitskreissektorbereichen mit dem gemeinsamen Scheitel
p und den Zentriwinkeln 0, (i = 1, ..., n). Insbesondere ist im Fall II
| U(p, A) ein Vollkreis,n = 1,8, = 2z Im Fall I ist U (p, 4) ein Halbkreis,

n=1, 0, = n. Im Fall IV besteht U(p, A) aus zwei Strecken, n = 2
01 = 02 = O.

9

Im allgemeinen Fall V ist U(p, A) die Vereinigung von n Sektoren
(n=1)0=0,<2rn( = 1,..,n). Im Fall VI ist U(p, A) mit dem Punkt p
identisch. |
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Mit den nachfolgenden Ansitzen bilden wir drei Hilfsfunktionen, deren
Werte sich nach den vorliegenden sechs Féllen richten, nimlich:

(2.5 oa(p,A) = 0bzw 1 (Fall I bzw Fille 11, 111, IV, V, VI);
(2.6) PB(p, A) = 0bzw n(p) (Fille I, 11, VI bzw Fille I1I, 1V, V);
2.7) vy (p, A) = 0bzw 27 0, (Félle I, VI bzw Fille II, 111, IV, V).

. Mit @ (p, A) = a(p, A), B (p, A), v(p, A) sind nun drei spezielle
 Losungen des Additionstheorems (2.4) gegeben. Die Additivitit von «
'~ und y ist nahezu trivial; ihr Nachweis bei f sei hier als kombinatorisch-
geometrische Uebungsaufgabe gedacht. Nun setzen wir

28 w4 =alp,A) — 12 p, A — (1)20) 7 (p, A),

und haben durch Linearkombination offensichtlich eine weitere Losung
®(p, A) = w(p, A) von (2.4) konstruiert.

i In der nachfolgenden Tabelle sind die Werte der drei Hilfsfunktionen

~a B 7 und von w eingetragen, die sich fiir Punkte mit den Umgebungs-

- bildern der Typen I bis IV ablesen lassen:

o p Y 0

I 0 0 0 0
IT 1 0 27 0
III 1 1 s 0
v 1 2 0 0

Wie wir also festellen, gilt

.8) o (p, A) = 0 (Fille I, 11, IIL, IV).

Nichtverschwindende Werte der Funktion w ergeben sich demnach nur
- in den Fillen V, VI, d.h. fiir Punkte p € E, die nicht im ‘Aeussern, nicht im
 Innern, nicht im relativen Innern von einseitigen Randstrecken und auch
nicht von zweiseitigen Randstrecken des Polygons 4 liegen. Nach Definition
sind das genau die Eckpunkte von 4. Da es aber lediglich endlich viele
%Eckpunkte gibt, existiert die formal iiber alle Punkte p der Ebene E zu

| erstreckende Summe
i

(2-9) x(4) = Zw (p, 4),

da nur endlich viele Summanden nicht verschwinden. Mit diesem Ansatz
erglbt sich eine nur von 4 abhingige reelle Zahl. Damit wird eine iiber dem

|
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Polygonverband P definierte Funktion erzielt, die im Hinblick auf die fiir
o (p, A) als giiltig erkannte Beziechung (2.4) evidenterweise eine Losung des
fiir uns entscheidenden Additionstheorems (2.3) sein muss. Es sei nun p
ein Eckpunkt von 4 (Fille V, VI). Es gilt dann |

(2.10) a(p, A) = 1.

Bezeichnet k (p) = 2 n(p) die Anzahl der in p einmiindenden Randstrecken
von A, wobei jede zweiseitige Randstrecke mit der Vielfachheit 2 mitzu-
zdhlen ist, so ergibt sich

(2.11) p(p,A) = (1/2)k(p).
Zeigt schliesslich g (p) die Summe der Innenwinkel von A4 in p an, so ist

(2.12) y(p, 4) = g(p).

Fiir einen isolierten Eckpunkt ist naturgemiss k (p) = g(p) = 0 zu setzen.
- Beachten wir, dass sich die Sumimation (2.9) de facto iiber die Eckpunkte
von A erstreckt, so resultiert mit (2.8), (2.10), (2.11), (2.12) die Darstellung

(2.13) x(4) = P(4) —(1/2) K(4) — (1/27) G (4) ,

wobei P die Eckpunktzahl, K die Randstreckenzahl und G die totale Innen-
winkelsumme bedeuten. Hierbei ist zu bedenken, dass bei der Summierung
aller Beitrdge k (p) jede Randstrecke doppelt gezdhlt wird, da diese durch
zwei Eckpunkte begrenzt ist. Ferner ist bei der Verwendung dieser Dar-
stellung darauf zu achten, dass jede zweiseitige Randstrecke mit der Viel-
fachheit 2 in Rechnung zu stellen ist.

Ist nun 4 leer (P = K = G = 0), so ergibt sich y (@) = 0, womit die
Nullkonvention (2.1) erfiillt wird. Ist A ein eigentliches Eipolygon, also ein
nichtentartetes m-Eck (P = m, K = m, G = (m—2) n), so folgt y (4) = 1,
ein Resultat, das sich auch fiir ein uneigentliches Eipolygon, also fiir eine
Strecke (P = 2, K = 2,G = 0) und fir einen Punkt (P =1,K=0,G
= 0) bestdtigt. Demnach ist auch die Forderung (2.2) befriedigt. Fassen
wir zusammen: Das durch die Eckpunktzahl, Randstreckenzahl und Innen-
winkelsumme gemdiss (2.13) gebildete Polygonfunktional y ist somit eine
Charakteristik, da die drei kennzeichnenden Postulate (2.1), (2.2) und (2.3)
erfullt sind. Damit ist der Existenzbeweis beendent.
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2.3  EINDEUTIGKEITSBEWEIS

Wir zeigen nun, dass es andererseits hochstens eine Charakteristik geben

kann. Sei also y eine Polygonfunktion, welche den Forderungen (2.1),
(2.2), (2.3) geniigt. Ist A € P ein beliebiges Polygon, so gibt es eine Darstel-
lung 4 = U 4, als Vereinigung der n Eipolygone 4; € K (i=1, ..., n). Mit
[teration des Additionstheorems (2.3) resultiert die induktiv leicht nach-
weisbare Formel :

(2.14) 1(4) = Y g (A4) = Y2r(AinA) + ..

n

wobei sich die Summation )™ iiber alle () Kombinationen der Indizes
{1, ..., n} der m-ten Klasse zu erstrecken hat. Natiirlich gilt die gleiche
Formel ebenso fiir die im vorstehenden Abschnitt konstruierte Charak-
teristik y, so dass auch

(2.15) 1(A) = Y x(4) — Y (A4ind) + ...

gelten muss. Mit Riicksicht auf (2.1), (2.2) und Beriicksichtigung der

Tatsache, dass die Fipolygonklasse & beziiglich der Schnittbildung ge-
schlossen ist, sind nun die rechts von (2.14) und (2.15) auftretenden Therme
bei den Durchschnitten gleicher Indizeskombinationen gleich, so dass auf

(2.16) 1 (4) = 7(A4)

geschlossen werden kann. Damit ist der Eindeutigkeitsbeweis beendet.

2.4 Die EULERSCHE CHARAKTERISTIK

Die mit der Darstellungsformel (vgl. (2.13))

(2.17) x(A) = P(A) — (1/2) K (4) — (1/21) G (A)

gegebene Polygonfunktion ist, wie gezeigt wurde, die einzig mogliche Charak-
teristik. Es handelt sich um die in sachlich- und historischer Bezichung
ausgezeichnete Eulersche Charakteristik.

Abbildung 3 zeigt einige einfache Polygone mit einer Tabelle, welche der
Ermittlung von y gemdss (2.17) dient. Naturgemiss hat y noch andere
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nennenswerte Figenschaften, deren Erlduterungen wir hier unterlassen
miissen. Es sei lediglich die bedeutsame und niitzliche Bezichung

(2.18) v (A) = c(4) — c*(4) + 1

genannt, wo ¢ die Anzahl der Komponenten von 4 und ¢* die Anzahl der
Komponenten von A* = cmpl 4 anzeigt (Komponente einer Punktmenge
ist kurz gesagt eine grosste zusammenhingende Teilmenge). Diese Relation
lisst die enge Beziehung erkennen, die zwischen Euler-Charakteristik und
topologischen Sachverhalten besteht, und sie deutet offenkundig darauf hin,
dass y eine topologische Invariante darstellt. Ihre Begriindung und Anwend-
barkeit innerhalb der Elementarmathematik liegt im Grenzgebiet zwischen
metrischer Geometrie und Topologie. Wie ersichtlich befindet sich die
Formel (2.17) diesseits und (2.18) schon jenseits der angedeuteten Grenze.
Hier ist auch die Grenzschicht, wo sich die schulmaissige Elementargeo-
metrie sehr leicht mit Problemen in Kontakt bringen ldsst, die in die wissen-
schaftliche Forschung hineinweisen, vor allem dann, wenn man sich vom
ebenen Fall, mit dem wir uns hier ausschliesslich befasst haben, loslost.

Hier sind zahlreiche Verwendungsmoglichkeiten der Eulerschen Charak-
teristik in der kombinatorischen Geometrie, der diskreten Geometrie, der
stochastischen Geometrie uam. zu nennen, doch miissen wir uns hier mit
einem fliichtigen Hinweis begniigen.

( Recu le 21 mai 1973)

H. Hadwiger
Mathematisches Institut
Universitit Bern

Sidlerstrasse 5
3000 Bern
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