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Let a be an infinite natural number. By the above theorem we have aa » a
and ba » b. From this we see easily that aa and ba are finite. Now using the
rules given in Section 2 for manipulating the « symbol,

aa + ba & a + b and aaba & a b.

Thus by the above theorem, the desired results are established.

Example 7.2. Suppose we wanted to calculate

lim {n2 — n)
n-+ co

We can proceed directly— let a be an arbitrary infinite natural number, then

a2 — a a(a — 1) (infinite) (infinite)
infinite

thus

lim {n2 — n) oo.

8. Infinitely Fine Partitions of an Interval

Consider the familiar process of partitioning an interval [a, b] into n
subintervals of equal length by means of the partition points

a a0 < a1 < - • • < an b.

If we let aj denote the Ith partition point when the interval is divided into

j subintervals of equal length, it is easily seen that

/ rb~a\ •

a i a + —— i

Now the right side of this expression is a function from / x /into R, where

I ç R is the set of integers. By the Main Theorem this function extends to
a function from /* x I* into R*. We continue to use aj for the image
under this extended function. If we let a be a fixed infinite natural number,
then for 0 ^ i ^ a, aj must lie in the interval [a, b]*. Note that the ith sub-

b—a
interval [aj, aj + J has the infinitesimal as its length. Two such intervals

a

can intersect only if they have an end point in common, and the intersection
is that end point. Each partition point aj (other than a, b) has an immediately
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preceding partition point t on its left and an immediately succeeding

partition point c/+1 on its right. One can show that each point of [a, è]*

appears in some subinterval [af, a f + J as follows. Formulate as an admissible

statement (true in R) the assertion:

"For every j g N, every point of [a, b] is in the subinterval [a{, aj+ J for
some i e I where 0 ^ i < /"

Putting in appropriate stars *, it becomes true in R** Particularizing it to
the case where j a we get :

"Every point of [a, &]* is in the subinterval [a*, aai + J for some i e I *

where 0 ^ i < a."

Using the above we can now show that the partition described there has

uncountably many points from which it also follows that { ß e N* \ ß
and N* are uncountable. We do this by showing a mapping from
{ a* } onto the standard interval [a, b] which is known to be

uncountable. Each partition point a* being finite is infinitely close (Theorem
2.1) to a uniquely determined real. Let the image of a* be that real. Clearly
the image is in [a, b\. Moreover the mapping is onto because we saw that
each real c in [a, b] is a member of [</, a*+1] some 0 -C / < a, and since

af & aal + l5 we must also have c « a*.

Consider the following novel proof of a famous theorem.

Theorem 8.1. If the standard function/is continuous on the standard
interval [a, b] and is negative at a and positive at è, then at some standard
point c in the interval,/(c) 0.

Proof. Let a be an infinite natural number and form the infinitely fine
partition { aa0, a\, oaa } described earlier in this section. Now the following
assertion can be formulated as an admissible statement true in R:

"For each j e N there exists a least / g N such that 0 < i and
tJ-

Putting in stars this becomes true in Ä*, Now particularizing it to the case

j a we get (leaving off some stars for brevity) :

"Exists least ie N* such that 0 < i ^ a and/(a-) > 0."
For this i then we must have/^-.J < 0. Now a* is finite and must be
infinitely close to a standard number c in the interval. Since/is a standard
function,/(c) is standard. Now from </_ l « a* we get

c » a* and c « a*_1.

Then by continuity we see that
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f(c) «/(ûf) and/(c) «/(a?_i).

Taking this together with the fact (seen already) that

/(ö?) — 0 and/(a?) < 0

we have (in summary) that f (c) is a standard number infinitely close to a

negative number and a non-negative number. Thus / (c) 0.

(Q.E.D.)

9. Derivatives

Let /(x) be a standard function defined on a standard open interval
(a, Z>) and having the point x0 as an interior point. Using the non-standard
characterization of limit, the condition that /(x) be differentiate at x0 is

that there exist a standard number L such that

f(x0+dx) -f(x0) ~ ^
dx

for all non-zero infinitesimals dx. L, of course, will be the derivative. If
fix) is differentiate, then writing dy f{x0 + dx) —f(x0) we have

dy
(using the notation for "standard part" introduced in Section 2) °( —

dx

— f (x0). This says that the quotient of the infinitesimal increments need

not in general be the derivative, but it must be infinitely close to it.

Example 9.1. Suppose we wish to calculate the derivative of /(x) x2.

Let dx be an arbitrary non-zero infinitesimal, then

dy (x+dx)2—x2
dx dx

dy
After squaring and cancelling we get, — 2 x + dx & 2 x therefore

dx

'A -2,dx

That is, the function x2 is differentiate with derivative 2 x.

Example 9.2. Let's see how to prove the Chain Rule! Suppose/(x) and

g (x) are differentiate at the appropriate places and we wish to show
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