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Let « be an infinite natural number. By the above theorem we have a, ~ a
and b, ~ b. From this we see easily that g, and b, are finite. Now using the
rules given in Section 2 for manipulating the ~ symbol,

a, + b,~a+ banda,b, ~ ab.
Thus by the above theorem, the desired results are established.

Example 7.2. Suppose we wanted to calculate

lim (n*—n) = ?

n—aw

We can proceed directly— let o be an arbitrary infinite natural number, then
x* — a2 = a (x—1) = (infinite) (infinite)
= infinite
thus

lim (n*—n) = 0.

n— o

8. INFINITELY FINE PARTITIONS OF AN INTERVAL

Consider the familiar process of partitioning an interval [a, b] into n
subintervals of equal length by means of the partition points

a=ay<a, < "<a,=0>b.

If we let a/ denote the i partition point when the interval is divided into
J subintervals of equal length, it is easily seen that
b—a

al =a + . .
(=)

Now the right side of this expression is a function from I x [ into R, where
I = R is the set of integers. By the Main Theorem this function extends to
a function from I* x I* into R*. We continue to use @} for the image
under this extended function. If we let « be a fixed infinite natural number,
then for 0 =i = a, a’ must lie in the interval [a, b]*. Note that the i sub-

b—a . ,
interval [af, a} , ;] has the infinitesimal —— as its length. Two such intervals
(04

can intersect only if they have an end point in common, and the intersection
is that end point. Each partition point a; (other than a, ) has an immediately
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preceding partition point af_, on its left and an immediately succeeding
partition point af,; on its right. One can show that each point of [a, b]*
appears in some subinterval [a?, a § . ] asfollows. Formulate as an admissible
statement (true in R) the assertion:

“For every j € N, every point of [a, b] is in the subinterval [a!, al , ] for

someiel where 0 =i < j.”

Putting in appropriate stars *, it becomes true in R*. Particularizing it to
the case where j = « we get:

“Every point of [a, b]* is in the subinterval [a], ¢ ] for some iel*

where 0 =i < a.”

Using the above we can now show that the partition described there has
uncountably many points from which it also follows that { f € N * [ B=o}
and N * are uncountable. We do this by showing a mapping from
{ a5, a3, ..., a; } onto the standard interval [a, ] which is known to be un-
countable. Each partition point af being finite is infinitely close (Theorem
2.1) to a uniquely determined real. Let the image of af be that real. Clearly
the image is in [a, b]. Moreover the mapping is onto because we saw that
each real c in [a, b] is a member of [af, af , ;] some 0 =/ < «, and since
ai = af ,;, we must also have ¢ ~ af.

Consider the following novel proof of a famous theorem.

THEOREM 8.1. If the standard function fis continuous on the standard
interval [a, b] and is negative at ¢ and positive at b, then at some standard
point ¢ in the interval, f(¢) = 0.

PrROOF. Let o be an infinite natural number and form the infinitely fine
partition { a5, @3, ..., a; } described earlier in this section. Now the following
assertion can be formulated as an admissible statement true in R:

“For each je N there exists a least ie N such that 0 < i =, and
fla) =07 |
Putting in stars this becomes true in R*. Now particularizing it to the case
J = o we get (leaving off some stars for brevity):
“Exists least ie N * such that 0 < i =<z and f(a?) = 0.”
For this 7 then we must have f(af_;) < 0. Now a7 is finite and must be
infinitely close to a standard number ¢ in the interval. Since fis a standard
function, f'(c) is standard. Now from af_; ~ a* we get

o

c~ajand c x af_ .

Then by continuity we see that
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f(e) = f(af) and f (c) = f(a}- ).
Taking this together with the fact (seen already) that
f(@)=0and f(a]) <O

we have (in summary) that f'(c) is a standard number infinitely close to a
negative number and a non-negative number. Thus f(c) = 0.

(Q.E.D.)

9. DERIVATIVES

Let f(x) be a standard function defined on a standard open interval
(¢, b) and having the point x, as an interior point. Using the non-standard
characterization of limit, the condition that f(x) be differentiable at x, is
that there exist a standard number L such that

J(xo +dx) — f(xo) _
dx ~

L

for all non-zero infinitesimals dx. L, of course, will be the derivative. If
f(x) is differentiable, then writing dy = f(x,+dx) — f(x,) we have

d
(using the notation for “standard part” introduced in Section 2) °( 1__)/)
; ax

= f' (x,). This says that the quotient of the infinitesimal increments need
not in general be the derivative, but it must be infinitely close to it.

Example 9.1. Suppose we wish to calculate the derivative of f(x) = x2.
Let dx be an arbitrary non-zero infinitesimal, then

dy  (x+4dx)*—x*
dx dx

d
After squaring and cancelling we get, ;{X = 2 Xx + dx ~ 2 x therefore
x .
dy
(=) =2x

That is, the function x? is differentiable with derivative 2 x.

Example 9.2. Let’s see how to prove the Chain Rule! Suppose f(x) and
g (x) are differentiable at the appropriate places and we wish to show



	8. Infinitely Fine Partitions of an interval

