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f(x) x is a continuous function which is infinite at x x0. On the other
hand, if x0 were finite then x0 is infinitely close to some standard number

j0, and since (7) fails j0 £ S. Thus the function f (x) is continuous
x—Jo

on S (the denominator can't be zero for x e S because j0 S); moreover,
/(x0) is infinite since x0 — j0 is a non-zero infinitesimal.

It is known in the study of the topology of the real line that a necessary
and sufficient condition for a set S to have the property that all continuous
functions on it be bounded is that S be compact. We've just shown that (7)
is also necessary and sufficient, so this establishes the following theorems.

Theorem 6.5. A set S ç R is compact if and only if every point of
S * is infinitely close to a point of S.

Theorem 6.6 If the standard function/(x) is continuous on a standard

compact set S, then / (x) is bounded there.

It turns out that in applying the methods of Non-standard Analysis to
the subject of General Topology, the characterization of compactness given

by Theorem 6.5 still holds.
The theorem below gives a very nice characterization of the notion

of a uniformly continuous function. We shall not deny you the pleasure of
trying to prove it yourself. The proof of Theorem 6.1 should provide the

inspiration.

Theorem 6.7. A standard function is uniformly continuous on the

standard set S if and only if x « j implies/* (x) « /* (j) for all x, j e S *.

Using the above theorem we can quickly dispatch the following.

Theorem 6.8. A standard function/continuous on a compact standard

set S is uniformly continuous on S.

Proof. Let x, j e S * be given such that x « j. By compactness of S

there exists x0 e S such that x ^ x0. Since « is an equivalence relation

x « x0 « j. Now by continuity /* (x) ~/(x0) ^ /* (j), therefore

/*O)

7., Infinite Sequences

An infinite sequence {an} can be thought of as a function from N into
R. Accordingly the Main Theorem provides for an extension function
from A* into R*. Put differently, after we exhaust all the terms with finite



subscripts, the sequence continues on with infinite subscripts as follows:

^1? ^2? •••? Clfi — 1> *7x + 1
N —v- ' v —V~ ' '

terms with terms with
finite infinite

subscripts subscripts

It is easy to see that the sequence

0, 0, 0

continues to have the value 0 when we look at its extension because the

statement

(Vx) (xeN^>a* 0)

is true in R and therefore in R*. Likewise the sequence

1,0, 1,0,..., 1,0,

continues to alternate, and the sequence of primes PuPiiPs* —> Pn> —

when extended "enumerates" the primes of N *.
Various properties of standard sequences can be characterized in terms

of what happens to the terms with infinite subscripts (intuitively—when
you get out to infinity).

In what follows { an }, {bn} will be standard sequences and a, b will be

standard numbers. The proof of the following theorem runs along lines
which by now should be familiar to you.

Theorem 7.1.

(i) { an} is bounded iff aa is finite for all infinite natural numbers a.

(ii) lim an a iff aa « a for all infinite natural numbers a.
«->00

(iii) lim anco iff arj is infinite for all infinite natural numbers a.
«->oo

(iv) { an } is a Cauchy sequence iff aa « aß for all infinite natural
numbers a, ß.

Example 7.1. Suppose

lim an a and lim bn b,
«—>00 «->00

and we want to show

lim an +b„) a+ bandlim an bn a b.
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Let a be an infinite natural number. By the above theorem we have aa » a
and ba » b. From this we see easily that aa and ba are finite. Now using the
rules given in Section 2 for manipulating the « symbol,

aa + ba & a + b and aaba & a b.

Thus by the above theorem, the desired results are established.

Example 7.2. Suppose we wanted to calculate

lim {n2 — n)
n-+ co

We can proceed directly— let a be an arbitrary infinite natural number, then

a2 — a a(a — 1) (infinite) (infinite)
infinite

thus

lim {n2 — n) oo.

8. Infinitely Fine Partitions of an Interval

Consider the familiar process of partitioning an interval [a, b] into n
subintervals of equal length by means of the partition points

a a0 < a1 < - • • < an b.

If we let aj denote the Ith partition point when the interval is divided into

j subintervals of equal length, it is easily seen that

/ rb~a\ •

a i a + —— i

Now the right side of this expression is a function from / x /into R, where

I ç R is the set of integers. By the Main Theorem this function extends to
a function from /* x I* into R*. We continue to use aj for the image
under this extended function. If we let a be a fixed infinite natural number,
then for 0 ^ i ^ a, aj must lie in the interval [a, b]*. Note that the ith sub-

b—a
interval [aj, aj + J has the infinitesimal as its length. Two such intervals

a

can intersect only if they have an end point in common, and the intersection
is that end point. Each partition point aj (other than a, b) has an immediately


	7. Infinité Sequences

