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f(x) = xis a continuous function which is infinite at x = x,. On the other
hand, if x, were finite then x, is infinitely close to some standard number

Yo, and since (7) fails y, ¢ S. Thus the function f (x) = is continuous

X—Jo
on S (the denominator can’t be zero for x € S because y, ¢ S); moreover,
f(x,) is infinite since x, — y, is a non-zero infinitesimal.

It is known in the study of the topology of the real line that a necessary
and sufficient condition for a set S to have the property that all continuous
functions on it be bounded is that S be compact. We’ve just shown that (7)
is also necessary and sufficient, so this establishes the following theorems.

THEOREM 6.5. A set S < R is compact if and only if every point of
S * is infinitely close to a point of S.

THEOREM 6.6 If the standard function f(x) is continuous on a standard
compact set S, then f(x) is bounded there.

It turns out that in applying the methods of Non-standard Analysis to
the subject of General Topology, the characterization of compactness given
by Theorem 6.5 still holds.

The theorem below gives a very nice characterization of the notion
of a uniformly continuous function. We shall not deny you the pleasure of
trying to prove it yourself. The proof of Theorem 6.1 should provide the
inspiration.

THEOREM 6.7. A standard function is uniformly continuous on the
standard set S if and only if x &~ y implies f * (x) ~ f* (y) forall x, ye S *.
Using the above theorem we can quickly dispatch the following.

THEOREM 6.8. A standard function f continuous on a compact standard
set S is uniformly continuous on S.

Proor. Let x, y € S * be given such that x ~ y. By compactness of S
there exists x, € S such that x ~ x,. Since &~ is an equivalence relation
X~ xo~y. Now by continuity f*(x) = f(xy) = f*(y), therefore
fEE) =)

7. . INFINITE SEQUENCES
An infinite sequence {a,} can be thought of as a function from N into

R. Accordingly the Main Theorem provides for an extension function
from N * into R*. Put differently, after we exhaust all the terms with finite
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subscripts, the sequence continues on with infinite subscripts as follows:

A1y Aoy eeey Ay - e Oy 1y Oy Ay q oo
N g —— o— | S— -
terms with terms with
finite infinite
subscripts . subscripts

It is easy to see that the sequence
0,0,..0..

continues to have the value 0 when we look at its extension because the
statement
(yx) (xeN—-a,=0)

is true in R and therefore in R*. Likewise the sequence
1,0,1,0,..,1,0, ..

continues to alternate, and the sequence of Primes py, Pa, Pss «-es Pus -
when extended “enumerates” the primes of N *.

Various properties of standard sequences can be characterized in terms
of what happens to the terms with infinite subscripts (intuitively—when
you get out to infinity). |

In what follows { a, }, {b,} will be standard sequences and a, b will be
standard numbers. The proof of the following theorem runs along lines
which by now should be familiar to you.

THEOREM 7.1.

(i) { a,} is bounded iff a, is finite for all infinite natural numbers o.

(i1) lim a, = a iff a, ~ a for all infinite natural numbers .

n—co

(iif) lim g, = oo iff g, is infinite for all infinite natural numbers «.

(iv) {a,} is a Cauchy sequence iff a, ~ ag for all infinite natural
numbers «, f.
Example 7.1. Suppose

lim a, = aand lim b, = b

n— o0 n— o0

b

and we want to show

lim (a,+b,) = a + band lim a, b, = ab.

n— o0 n—oo
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Let « be an infinite natural number. By the above theorem we have a, ~ a
and b, ~ b. From this we see easily that g, and b, are finite. Now using the
rules given in Section 2 for manipulating the ~ symbol,

a, + b,~a+ banda,b, ~ ab.
Thus by the above theorem, the desired results are established.

Example 7.2. Suppose we wanted to calculate

lim (n*—n) = ?

n—aw

We can proceed directly— let o be an arbitrary infinite natural number, then
x* — a2 = a (x—1) = (infinite) (infinite)
= infinite
thus

lim (n*—n) = 0.

n— o

8. INFINITELY FINE PARTITIONS OF AN INTERVAL

Consider the familiar process of partitioning an interval [a, b] into n
subintervals of equal length by means of the partition points

a=ay<a, < "<a,=0>b.

If we let a/ denote the i partition point when the interval is divided into
J subintervals of equal length, it is easily seen that
b—a

al =a + . .
(=)

Now the right side of this expression is a function from I x [ into R, where
I = R is the set of integers. By the Main Theorem this function extends to
a function from I* x I* into R*. We continue to use @} for the image
under this extended function. If we let « be a fixed infinite natural number,
then for 0 =i = a, a’ must lie in the interval [a, b]*. Note that the i sub-

b—a . ,
interval [af, a} , ;] has the infinitesimal —— as its length. Two such intervals
(04

can intersect only if they have an end point in common, and the intersection
is that end point. Each partition point a; (other than a, ) has an immediately
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