Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 20 (1974)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: NON-STANDARD ANALYSIS: AN EXPOSITION

Autor: Levitz, Hilbert

Kapitel: 6. LIMITS, CONTINUITY, BOUNDEDNESS, AND COMPACTNESS
DOI: https://doi.org/10.5169/seals-46892

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-46892
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

20 —

Each of those statements then must be true in R* when we read N * instead
of N, so each member of N * — N must be greater than all the real numbers.

In view of the above we call the non-standard members of N * infinite
natural numbers. ,

Now it is easy to show that each infinite natural number has an im-
mediate successor in N * (because of the corresponding result for N), and
each infinite natural number has an infinite immediate predecessor in N *.
N * 1sn’t well ordered because if o is an infinite natural number, the chain

«e>0—1>a—2> -

has no least member. Here again one might be tempted to use the Main
Theorem to infer that N * is well ordered because N is; however, the state-
ment that N is well ordered is not admissible by virtue of its having a
variable ranging over subsets. It reads:

“Every non-empty subset of N ...”

Concepts such as even number, odd number, and prime number are all
meaningful for infinite natural numbers; indeed, if E = N is the set of even
numbers, then E * is the set of even numbers of N *.

It will be shown later that N * is uncountably infinite.

6. Livits, CONTINUITY, BOUNDEDNESS, AND COMPACTNESS

Now we show that R* provides the appropriate machinery for formu-
lating concepts from the Calculus in an intuitive and direct way. Consider,

for example, the limit concept. The ¢ — ¢ definition of lim f(x) = L seems

to be a roundabout way of saying that for x infinitely close to but not equal
to ¢, f(x) will be infinitely close to L. Now it makes sense to say it just that
way provided we are talking about f* (x). It not only makes sense, but as
the next theorem shows, saying it that way actually gives a correct charac-
terization of lim f(x) = L.

THEOREM 6.1. Let f be a standard function defined on a standard open
interval (a, b) having ¢ as an interior point. Suppose further that L is
standard, then

(@) lim f(x) = L if and only if ¢ # x = ¢ implies f* (x) = L.

X—=c
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(b) f(x)is continuous at ¢ if and only if x =~ ¢ implies f *(x) = f(c).

PrOOF. At this point there should be no confusion if we sometimes
omit the symbol *. Part (b) follows immediately from part (a).

‘Part (a), direction =. Suppose lim f(x) = L. To show that ¢ # x = ¢
implies f (x) & L. Let x, be given such that ¢ # x, = ¢, to show [ (x,) = L
we must show that f(x,) — L is infinitesimal; that is, we must show that
| f(xo) — L | < ¢ for each positive real ¢. Let arbitrary but fixed positive
real ¢, be given. Must show that the statement

(1) |f(xo) — L| < &g

is true in R*. By definition of limit we know that there exists a positive real
0 such that 0 <lx - c| < 0 implies that ]f(x) —-Ll < &o. Let 0, be
such a o, then the statement

(vx) (O<[x—c| <dg— [f(x)—L| <&)

. 1s true in R; therefore, it’s true in R*. In particular then the statement

e 0< [xo—c | <= |/ (xo) — L| <o

| istrueinR*.Nonromc#xozcweknowthat0<|x0—c| < r for

- each positive real r, so in particular 0 < ] Xog — C [ < 0, 1s true in R*. This

with (2) gives [ f(xo) — L ] < &, which is the statement (1) we needed to
show.

Part (a), direction <. The argument is rather novel. Assume that

(3 ¢ # x ~ cimplies f(x) ~ L.

- Let arbitrary but fixed positive real ¢, be given, must show that the state-
- ment

(30) (0> 0A(v0)[0<[x—c| < [f(x)—L]| <eo])

is true in R. Now this is an admissible statement, so it suffices to show that
it is true in R*. As a statement about R it is an assertion that there exists a
real 6 with certain properties. In showing it to be true in R* we are permitted
to seek the 6 from among the positive infinitesimals if we so desire. We now
show that any positive infinitesimal ¢ will do. Let 5, be a positive infini-
tesimal. Must show that the statement

(7)) [0<[x—c| <o~ |f(x)—L| < &]
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is true in R*. Let arbitrary x, € R* be given, must show that

4) O<]x0——cl<50—>|f(x0)-—L|<80

is true. Assume that the left side of the arrow is true; that is, assume
(5) 0<|xo—c| < do;

we want to show under this assumption that the right side is true. Since J,
i5 infinitesimal we can infer from (5) that ¢ # x, & ¢, but then by (3)
f(xo) = L, that is, f(x,) — L is infinitesimal. Since &, is positive real,
| f(xo) — L| < &, which is the right side of the arrow in (4)

(Q.E.D))

Example 6.1. Suppose we want to show that the composition of two
continuous functions is continuous. The standard proof is easy enough,
but the following non-standard proof is more direct and intuitive. Let g (x)
be continuous at ¢ and f (x) continuous at g (¢). Let x ~ ¢ be given. Since g
is continuous at ¢, g (x) ~ g (¢). Since f is continuous at g (c),
F(g@) ~f(g).

For functions whose domain is not an interval but some set S, appropriate
modifications of the argument in the preceding theorem gives the theorem
below.

THEOREM 6.2. The standard function f(x) with standard domain S is
continuous at the standard point c¢ if and only if whenever x is a point
of S * infinitely close to ¢, f* (x) = f(c).

The notion of a function being bounded has a very useful non-standard

characterization. By bounded we mean, as usual, that there is a standard
bound.

THEOREM 6.3. A standard function f is bounded on a standard set S
if and only if f* (x) is finite for each x e S *.

Proor. Direction =-. Suppose f is bounded on S. Then there exists a
standard number r, such that the sentence

(vx) (xeS— |[f(x) | =To)
is true in R and therefore also in R*. Thus if x, € S * we have that
| £* (xo) | = ro. By definition of finite this means f* (x,) is finite.
~ Direction <. Suppose f* (x) is finite all x e S *. We want to show that
the statement

(6) 30 (vx) (xeS> [f(x) [=1)
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is true in R. If suffices to show that it is true in R*, but in R* we can take
the t to be any positive infinite number. Then since each f* (x) is finite we
have that | /* (x) | =1 all xe S*, that is (6) is true in R*.

(Q.E.D.)

Note that if [¢, d] is a standard closed interval, then [c, d]* is the
closed interval { x € R*|c = x =d}; this is because the statement

(vx) (xe[ec,d] < (c=x A x=d))

is true in R and, therefore, in R*. A similar result holds for the other types
of intervals.

Compare the following non-standard proof of a well known theorem
with the standard proofs you know!

THEOREM 6.4. If the standard function f is continuous at each point of
the standard closed interval [c, d ], then f'is bounded there.

Proor. In view of the preceding theorem we have only to show that

 f*(x) is finite for all x € [¢, d]*. Let x € [c, d]* be given. Clearly x is finite

~ and according to Theorem 2.1 it is infinitely close to a standard point x,.
It is easy to see that x, € [¢, d ]. By continuity f* (x) &~ f(x,). Since f'is a
standard function, f(x,) is finite, but then f* (x) being infinitely close, is
also finite.

(Q.E.D.)

As is well known, the above theorem fails for open intervals. An at-
tempted proof would break down when we try to assert that x, € (¢, d). It
might just happen that x is one of the end points.

Note that in the above proof, the only property of the closed interval

~ used there is:

“Every point of [c, d]* is infinitely closed to some point of [c, d].”
Thus the theorem can be generalized by replacing [c, d ] with a set S having
the same property, namely

- (7) “Every point of S * is infinitely close to some point of S.”
We show further that this property of S is a necessary condition on S for
- all continuous functions on S to be bounded. By contrapositive assume (7)
fails; under this assumption we will produce a continuous function on S
which takes on an infinite value at a point in S * from which it would follow
that the function isn’t bounded on S. To say that (7) fails would mean that
~ there exists x, € S * such that for all ye S, x, ~ y. If x, is infinite, then
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f(x) = xis a continuous function which is infinite at x = x,. On the other
hand, if x, were finite then x, is infinitely close to some standard number

Yo, and since (7) fails y, ¢ S. Thus the function f (x) = is continuous

X—Jo
on S (the denominator can’t be zero for x € S because y, ¢ S); moreover,
f(x,) is infinite since x, — y, is a non-zero infinitesimal.

It is known in the study of the topology of the real line that a necessary
and sufficient condition for a set S to have the property that all continuous
functions on it be bounded is that S be compact. We’ve just shown that (7)
is also necessary and sufficient, so this establishes the following theorems.

THEOREM 6.5. A set S < R is compact if and only if every point of
S * is infinitely close to a point of S.

THEOREM 6.6 If the standard function f(x) is continuous on a standard
compact set S, then f(x) is bounded there.

It turns out that in applying the methods of Non-standard Analysis to
the subject of General Topology, the characterization of compactness given
by Theorem 6.5 still holds.

The theorem below gives a very nice characterization of the notion
of a uniformly continuous function. We shall not deny you the pleasure of
trying to prove it yourself. The proof of Theorem 6.1 should provide the
inspiration.

THEOREM 6.7. A standard function is uniformly continuous on the
standard set S if and only if x &~ y implies f * (x) ~ f* (y) forall x, ye S *.
Using the above theorem we can quickly dispatch the following.

THEOREM 6.8. A standard function f continuous on a compact standard
set S is uniformly continuous on S.

Proor. Let x, y € S * be given such that x ~ y. By compactness of S
there exists x, € S such that x ~ x,. Since &~ is an equivalence relation
X~ xo~y. Now by continuity f*(x) = f(xy) = f*(y), therefore
fEE) =)

7. . INFINITE SEQUENCES
An infinite sequence {a,} can be thought of as a function from N into

R. Accordingly the Main Theorem provides for an extension function
from N * into R*. Put differently, after we exhaust all the terms with finite
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