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For any finiteset T = Rwe canshow T = T *. Suppose T = {ay, .., a,}
then

(yx) (xe Te[x=a; Vx=a,V .. Vx=4a,])
is true in R, thus

(yx) (xe T* o [x=a; Vx=a,V ..Vx=a,l)
is true in R*; thatis, T* = { ay, ..., a, }.

Although the Main Theorem makes no mention of functions f whose
domain is a proper subset D = R. We can define a function f'* : D* — R*
in a natural way. Arbitrarily extend f to a function g which is defined on
all of R; then let f* be the restriction of g * to D*. This definition is easily
seen to be independent of the way f'is extended.

5. INFINITE NATURAL NUMBERS

We have seen in the last section that each particular S < R has associ-
 ated with it a certain extension S * < R*. We now consider the case when
~ we take S to be N, the set of natural numbers. One can see that N * actually
 has some non-standard members as follows. The statement “N is un-
- bounded” is true in R and can be formulated as the admissible statement

(vx) (3y) (yeN Ay >X);

~ therefore

(vx) (3y) (yeN* Ay >x)

| Is true in R*. It asserts that N * is an unbounded subset of R*. If we let «
- be an infinite member of R*, then N * must have an even larger member
- which, of course, is also infinite and non-standard.

We can show that all the non-standard members of N * are infinite in

 the following way. Formulate as admissible statements each of the infinitely
. many assertions:

“All natural numbers are greater than 0.”
“No natural numbers lie between 0 and 1.”
“No natural numbers lie between 1 and 2.”
etc.
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Each of those statements then must be true in R* when we read N * instead
of N, so each member of N * — N must be greater than all the real numbers.

In view of the above we call the non-standard members of N * infinite
natural numbers. ,

Now it is easy to show that each infinite natural number has an im-
mediate successor in N * (because of the corresponding result for N), and
each infinite natural number has an infinite immediate predecessor in N *.
N * 1sn’t well ordered because if o is an infinite natural number, the chain

«e>0—1>a—2> -

has no least member. Here again one might be tempted to use the Main
Theorem to infer that N * is well ordered because N is; however, the state-
ment that N is well ordered is not admissible by virtue of its having a
variable ranging over subsets. It reads:

“Every non-empty subset of N ...”

Concepts such as even number, odd number, and prime number are all
meaningful for infinite natural numbers; indeed, if E = N is the set of even
numbers, then E * is the set of even numbers of N *.

It will be shown later that N * is uncountably infinite.

6. Livits, CONTINUITY, BOUNDEDNESS, AND COMPACTNESS

Now we show that R* provides the appropriate machinery for formu-
lating concepts from the Calculus in an intuitive and direct way. Consider,

for example, the limit concept. The ¢ — ¢ definition of lim f(x) = L seems

to be a roundabout way of saying that for x infinitely close to but not equal
to ¢, f(x) will be infinitely close to L. Now it makes sense to say it just that
way provided we are talking about f* (x). It not only makes sense, but as
the next theorem shows, saying it that way actually gives a correct charac-
terization of lim f(x) = L.

THEOREM 6.1. Let f be a standard function defined on a standard open
interval (a, b) having ¢ as an interior point. Suppose further that L is
standard, then

(@) lim f(x) = L if and only if ¢ # x = ¢ implies f* (x) = L.

X—=c
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