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For any finite set T R we can show T — T "\ Suppose T — { a±, an}

then

(x g T<-->• [x V x CI2 V V x

is true in R, thus

(\/x) (x s T* [x at V x=a2 V V x =an~\)

is true in !£*; that is, T* — { au an }.

Although the Main Theorem makes no mention of functions / whose

domain is a proper subset D c R. We can define a function/* : D* i?*

in a natural way. Arbitrarily extend / to a function g which is defined on

all of R ; then let/* be the restriction of g * to jD*. This definition is easily

seen to be independent of the way/ is extended.

5. Infinite Natural Numbers

We have seen in the last section that each particular S ç R has associated

with it a certain extension S * Ç R*. We now consider the case when

we take S to be N, the set of natural numbers. One can see that N * actually
has some non-standard members as follows. The statement "N is

unbounded" is true in R and can be formulated as the admissible statement

(VX)(3J0 (y eN

therefore

(V*) (3 y)(yeNais true in R'\ It asserts that N * is an unbounded subset of R'\ If we let a

be an infinite member of R*, then N * must have an even larger member
which, of course, is also infinite and non-standard.

We can show that all the non-standard members of N * are infinite in
the following way. Formulate as admissible statements each of the infinitely
many assertions:

"All natural numbers are greater than 0."
"No natural numbers lie between 0 and 1."
"No natural numbers lie between 1 and 2."
etc.
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Each of those statements then must be true in R* when we read TV * instead
of TV, so each member of TV * — TV must be greater than all the real numbers.

In view of the above we call the non-standard members of TV * infinite
natural numbers.

Now it is easy to show that each infinite natural number has an
immediate successor in TV * (because of the corresponding result for TV), and
each infinite natural number has an infinite immediate predecessor in TV *.
TV * isn't well ordered because if a is an infinite natural number, the chain

a > a — 1 > a — 2 > • •

has no least member. Here again one might be tempted to use the Main
Theorem to infer that TV * is well ordered because TV is ; however, the statement

that TV is well ordered is not admissible by virtue of its having a

variable ranging over subsets. It reads:

"Every non-empty subset of TV. ."

Concepts such as even number, odd number, and prime number are all
meaningful for infinite natural numbers ; indeed, if E Ç TV is the set of even

numbers, then E * is the set of even numbers of TV *.

It will be shown later that TV * is uncountably infinite.

6. Limits, Continuity, Boundedness, and Compactness

Now we show that R* provides the appropriate machinery for formulating

concepts from the Calculus in an intuitive and direct way. Consider,

for example, the limit concept. The s — ô definition of lim /(x) L seems
x-*c

to be a roundabout way of saying that for x infinitely close to but not equal

to c,/(x) will be infinitely close to L. Now it makes sense to say it just that

way provided we are talking about /* (x). It not only makes sense, but as

the next theorem shows, saying it that way actually gives a correct
characterization of lim / (x) L.

x->c

Theorem 6.1. Let/ be a standard function defined on a standard open
interval (a, b) having c as an interior point. Suppose further that L is

standard, then

(a) lim f{x) L if and only if c # x « c implies /* (x) « L.
x-*c
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