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<*,/* and the variables are to range over R*. Sometimes we shall put on
some of the stars for emphasis.

4. Fixed Subsets

Let S be a particular (fixed) subset of R. We can identify S with the

one-place relation S (x) which holds for a given x if and only if xeS;
that is,

S { x e R I S (x)}.

We can now define a set S * ç R* by

S * - { x e R* | 5 * (x) }.

Clearly S ^ S * because S * (x) agrees with S (x) on R. We shall often write

x e S instead of S (x)

and

x e S * instead of S * (x).

The upshot of the above is that the Main Theorem also provides for an
extension S * for each S S, R and that we can allow as admissible
statements those which involve the sentence fragment x e S ; in "lifting"
statements from R to R* we replace the fragment x e S by x e S *.

Warning! The requirement that admissible statements be permitted only
variables ranging over R hasn't been altered. In a given statement the
functions, relations, and subsets must remain fixed!

Example 4.1. Let S={xei?|x<6}. Now

(yx) (x g S x < 6) is true in R

so

(yx) (x g 5* <-» x < * 6) is true in

Thus

S * {xei?*|x<*6}.
Furthermore S * is a proper extension of S, because for any infinitesimal e,

the number 5 + s is a member of S *, but not being a standard number, it
can't be a member of S.
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For any finite set T R we can show T — T "\ Suppose T — { a±, an}

then

(x g T<-->• [x V x CI2 V V x

is true in R, thus

(\/x) (x s T* [x at V x=a2 V V x =an~\)

is true in !£*; that is, T* — { au an }.

Although the Main Theorem makes no mention of functions / whose

domain is a proper subset D c R. We can define a function/* : D* i?*

in a natural way. Arbitrarily extend / to a function g which is defined on

all of R ; then let/* be the restriction of g * to jD*. This definition is easily

seen to be independent of the way/ is extended.

5. Infinite Natural Numbers

We have seen in the last section that each particular S ç R has associated

with it a certain extension S * Ç R*. We now consider the case when

we take S to be N, the set of natural numbers. One can see that N * actually
has some non-standard members as follows. The statement "N is

unbounded" is true in R and can be formulated as the admissible statement

(VX)(3J0 (y eN

therefore

(V*) (3 y)(yeNais true in R'\ It asserts that N * is an unbounded subset of R'\ If we let a

be an infinite member of R*, then N * must have an even larger member
which, of course, is also infinite and non-standard.

We can show that all the non-standard members of N * are infinite in
the following way. Formulate as admissible statements each of the infinitely
many assertions:

"All natural numbers are greater than 0."
"No natural numbers lie between 0 and 1."
"No natural numbers lie between 1 and 2."
etc.
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