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NON-STANDARD ANALYSIS: AN EXPOSITION

by Hilbert LEvITZ

In 1960 Abraham Robinson solved the age old problem of producing a
calculus involving infinitely small (infinitesimal) and infinitely large quan-
tities. As is well known, Leibnitz and the early developers of the Calculus
freely used infinitesimals, but this usage was abandoned during the last
century because of its apparent lack of a logical foundation. The need for
infinitesimals was completely circumvented by the familiar ¢ — 6 methods
of Cauchy and Weirstrass. In this way logical rigor was obtained but at the
expense of having to tolerate a certain indirectness of expression. Now
Robinson has shown that we can have rigor and infinitesimals too. Within
the framework in which he has set up the Calculus, it is meaningful to refer
to the values that a function f(x) assumes for x values infinitely close to,
yet not equal, a given point x in its domain.

During the past decade under the leadership of Robinson and W. A. J.
Luxemburg a small but growing number of researchers have been applying
these methods to other mathematical disciplines among them algebra,
topology, number theory, and probability. The mathematical community
at large has only recently begun to take note of this work, and the number
of persons who can employ infinitesimals with confidence is still not very
great. This may have something to do with the fact that this development
has taken place within the context of mathematical logic, a subject whose
methods many mathematicians find uncongenial and whose most funda-
mental results have not yet become common knowledge for mathematics
graduates.

In this article we will play down the precise terminology of mathematical
logic in favor of a kind of informal usage which should be adequate for
conveying the ideas involved. To be sure, we won’t prove the key existence
theorem on which Robinson’s “Non-Standard Analysis” is based. Our aim
is simply to give you a good operational feel for what is legitimate in doing
analysis with infinitesimals and infinites. Anyone who has survived ¢ — &
proofs should be able to pick up some technical facility here for correctly
apply these concepts to problem solving and theorem proving in the Calculus.
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1. ORDERED FIELDS

In this section we shall review some well known results about ordered
fields and state (and prove) some not so well known ones.

1. Every ordered field contains the rational number system Q as a

subordered field.

The real number system R constitutes a complete (in the upper

bound sense) ordered field.

3. Any two complete ordered fields are isomorphic with respect to +,
x,and <.

4. Any complete ordered field R’ is Archimedean; that is, to each
a € R’ there exists a natural number » such that n > a.

5. There exists ordered fields which contain the real number system as
a proper subordered field.

6. Any ordered field F which contains the reals as a proper subordered
field must be non-Archimedean and, consequently, cannot be
complete.

[\

PROOFS:

The first four are to be found in most advanced calculus books.

In 5 the existence of the desired field can be shown by considering
R (X), the field of rational functions in one indeterminate with real coef-
ficients. R can be identified with the polynomials of degree 0. To define an
ordering on R (X) it is sufficient to specify the positive members, then we
can define the ordering < by the rule: & < f iff « — f is positive. Take for
the positive elements those rational functions which can be represented as a
quotient of two polynomials both of which have positive leading coefficient.
This particular ordered field will play no role, however, in our subsequent
discussions.

We prove 6 by contradiction. Suppose F is Archimedean. Choose «
such that x € F and « ¢ R. Since F is Archimedean there exists a natural
number n such that | « | < n. (Recall that the notion of absolute value is
meaningful in any ordered field.) Let 4 = { xe R|x = | «|}. 4 is bounded
above by n, so A has a smallest real upper bound s. Now since s is real and
2 isn’t, we have that s # | o | and we can form the reciprocal of s — | .
Since F is assumed to be Archimedean, there exists a natural number k
such that
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Case 1. 5 — I o | > . In this case s — % > l o |, but then by definition

1 1.
of A we see that s — . is a real upper bound of 4. Moreover, s — p is smaller

than the Jeast upper bound s, which is absurd.

1 1 1 e
CaseZ.]cx[—-s>~k.Then|oc|>s+%,sos+%eAbydeﬁn1tlonof

1
A. But s is an upper bound for 4 so s + % = s from which follows k = 0;

but this cohtradicts the fact that k is a natural number.

(Q.E.D.)

2. ORDERED FIELDS WHICH PROPERLY CONTAIN THE REALS

In this section we shall assume that F is an ordered field which has the
real numbers R as a proper subordered field. We have already seen that F

must be non-Archimedean. N will be used to denote the set of natural
numbers.

An element u € F is said to be
infinitesimal if [ a | < r for each positive real r.
finite if | a | =r for some real r.
infinite if | a| > r for every real r.
The number O is certainly infinitesimal, but it is easy to see that there
are also non-zero infinitesimals and infinites as follows:

F being non-Archimedean must contain an element b such that n = b for
all ne N. This implies that n < b all ne N and, in fact, r < b all re R.

1
Thus b is infinite and 7 1s infinitesimal.
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Whenever o and f differ by an infinitesimal we say that « is near f or
o is infinitely close to . We symbolize this o &~ f. The relation = is easily
seen to be an equivalence relation. The infinitesimals are precisely those
numbers which are infinitely close to 0.

A crude picture of F appears below.

infinitesimal
e
0
| | |
| | |
[ — - . - — \ e — —
infinite finite infinite

Note that infinitesimals are finite, and reals are finite; in fact, all numbers
of the form real + infinitesimal are finite. It turns out that the finite num-
bers can always be written this way and we formulate this as a theorem
below.

THEOREM 2.1. Every finite number can be written in the form
real + infinitesimal.
Moreover, this representation is unique. Put differently, every finite number
is infinitely close to a uniquely determined real number.
PROOF:
Uniqueness of representation—suppose that
r{ +ée =r, + &,
where r,, r, € R and &, ¢, are infinitesimal. Then

l‘l-—l’2=82-—81.

Now the left side is real and it is easy to see that the right side is infinitesimal.
But the only real which is infinitesimal is zero, so both sides are zero; thus

r, = ryand g; = ¢,.
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Existence of representation—let « be finite, to show that o = a + ¢
where a is real and ¢ is infinitesimal. Let A = { xe R| x < « }. Since a is
finite there exists r € R such that o« < r. Now A is bounded by r, so it has
a real least upper bound a.

Case 1. |0 — a| = s for some s € R. Then « has the desired represen-
tationo = (@ +s) + 0.

Case 2. [ o —a [ is not real. Now assert (and will show) that & — a is
infinitesimal ; then « would have the desired representationx = a + (¢ — a).
We show that o« — a is infinitesimal by contradiction. Suppose not, then
|o — a|=s > 0for someseR.

Case 2.1. a — a > 5. Then a — s > « so a — s is a real upper bound
for A. But a is the least upper bound, so a = a — 5. From this follows
0 = s which contradicts s being positive.

Case 2.2. « —a > s. Then a« > a + s, so a + s € A. But a is an upper
bound for 4, so @ = a + 5. Thus 0 = s which contradicts s being positive.

(Q.E.D))

The following rules are all easy to verify:

finite + finite

finite

infinitesimal + infinitesimal = infinitesimal

finite + infinite = infinite
finite - finite = finite
infinitesimal - finite = infinitesimal
infinite - infinite = infinite
1 e
- . = infinitesimal
infinite
1 i :
= infinite

non-zero infinitesimal

These rules tell us, among other things, that the finite numbers constitute a
ring and the infinitesimals constitute an ideal in this ring.

The situations below are indeterminate:
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infinite + infinite = ?
finite - infinite = ?

infinitesimal

infinitesimal

infinite

infinite

finite
finite

= 1

Note that since we are working in a field, 0 - infinite is actually defined
and has the value 0.

The infinitely close symbol &~ can be manipulated as follows:

If « ~ fand u ~ v, then
a+uxpf+v

*C—uUuxf—-v

o - u~xf - v(provided o, u are finite)

Q™

® IR
2

(provided « is finite and u ins’t infinitesimal)

The hint to proving the last two is to write « = f + ¢, and u = v + 6
where ¢, 0 are infinitesimals.

We have already seen that every finite number « is infinitely close to a

uniquely determined real number; we call this real number the standard
part of « and denote it by °a.

The following are obtained from the rules just given («, § are assumed to
be finite):

(a+p) = “a + °p
(=) = %~
(o f) = “u - P

I

(;) % (provided f isn’t infinitesimal).

Remember now! The symbol °a only makes sense when « is finite.



3. THE MAIN THEOREM

All that has been said here so far was known long before the advent of
Non-Standard Analysis. Now we come to the heart of the matter—the key
theorem. It was first obtained by Robinson as a corollary to the so-called
Compactness Theorem of mathematical logic. Later proofs were given by
means of the ultraproduct construction which also has its roots in math-
ematical logic. We shall content ourselves with a mere statement of the
result. R as usual denotes the real number system and N the natural num-
ber system.

THEOREM 3.1 (MAIN THEOREM). There is a set R* for which all of the
following hold:

1. R is a proper subset of R*.

2. To each n-place function f (x4, ..., x,) from R" to R (n = 1), there
corresponds a certain function f* (x4, ..., x,) from (R*)" to R*
which agrees with f(x, ..., x,) on R".

3. To each m-place relation 4 (x4, ..., x,) on R (n=1), there cor-
responds a certain relation A* (x,, ..., x,) on R* which agrees with
A (xy, ..., x,) on R. The relation corresponding to the equality
relation on R is the equality relation on R*.

4. Every statement % formulated in terms of

1) particular (fixed) real numbers
i) particular (fixed) real functions
iii) particular (fixed) real relations
1v) variables ranging over R
v) logical operations and quantifiers
is true about R if and only if the statement &%* obtained from it by

a) replacing each f(xy, ..., x,) by f* (x4, ..., x,)
b) replacing each 4 (x4, ..., x,) by 4* (x4, ..., x,)
c) letting the variables range over R*

1s true about R¥*.

It turns out that there are many such R*. From here on out it will be
assumed that we are fixing on one of them.

The theorem is quite a mouthful and it must be admitted that our for-
mulation of it suffers from a little imprecision owing to the fact that we
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never said what a statement is 1). A few examples, however, should nail the
idea down. Let us add for emphasis that we are only allowing statements of
finite length.

Example 3.1. Consider the statement

(%) (0 +x =x)

which is true when the variables range over R; it asserts that the particular
real number O is a left identity for the + operation. By the Main Theorem,
the statement

(vx) (0+* x=x)

must be true when the variables range over R*; thus 0 is also a left identity
for the +* operation on R*. :

Example 3.2. Let f be a particular function from R to R which is an
“onto” function. Then the statement

(vy) 3% (f(x) =)

is true when the variables range over R. Therefore by the Main Theorem
the statement

(vy) 3% (f*(x) = )

is true when the variables range over R*; that is, the function f * is onto R*.

Henceforth instead of saying “true when the variables range over R”,
we shall simply say “true in R”.

In subsequent discussions members of R will be called standard numbers,
while members of R* — R will be called non-standard numbers. Likewise
functions from R” to R (n = 1), relations on R, and subsets of R will be
called standard functions, relations and subsets. Some writers refer to
members of R* as real numbers, but we shall reserve the term for members
of R. Thus standard number and real number have the same meaning here.

Statements which can be formulated in the manner prescribed in the
hypothesis of the Main Theorem are called admissible statements. You
should convince yourself, by writiﬁ%’%lgem out if necessary, that all the axioms
of an ordered field are admissible; mo;féq_yer, they are true about R (because

1) Using the terminology of formal logic the class of statements in question can be
defined as the class of closed well-formed formulae of a generalized first-order language
having distinct individual, function, and relation constants corresponding to each real,
real function and real relation. |
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R is an ordered field). Now by the Main Theorem they are all true about R*
if we put the stars on the symbols +, X, <. But this is just a way of saying
that R* is an ordered field with respect to +*, x *, <*. Moreover since the
theorem provided that these agree with +, x, < respectively on R, we can
say that R* is an ordered field which has R as a proper subordered field.
Now recalling results from our review on ordered fields we have that R*
is non-Archimedean and is not complete.

Now at this point you might be getting a bit suspicious. You might ask:
“Why not show the completeness of R* (and thus get a paradox) by taking
the assertion that R is complete, and then use the Main Theorem to conclude
that R* is complete?” The catch is that the Completeness Axiom has a
logical structure fundamentally different from the ordered field axioms.
It’s not an admissible statement! Its form is

(vS) (S bounded — -+ --- -+ )

- that is, it has a variable ranging over the family of subsets of R. Recall, the
 variables in an admissible statement must range over R.

| With respect to the Archimedean property the catch is a little different.
- Using the symbols N () to denote the particular one-place relation—"“y is a
natural number,” we can assert that R is Archimedean by the admissible
. statement

(vx) (3») (N () Ax <y);
 thus

(vx) (3y) (N*(p) Ax <*y)

. is true in R*, but it doesn’t necessarily say that R* is Archimedean. The y
- which is asserted to exist, and for which N* (») holds, might be in R* — R;
that 1s, it might be non-standard. To be sure, it does say that R* has some
- sort of formal Archimedean-like property, but if in the definition of Archi-
' medean one requires that y actually be a member of N (and we shall), then
R* isn’t Archimedean. '

In the sequel it may at times be too repetitious to write statements first
without the stars *, and then with them. It will usually be clear from the

context whether the stars are intended. Thus if we were to say that

(v) (79) (x <y () < f(3)

is true in R*, then you are to understand that we are really talking about
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<*, f* and the variables are to range over R*. Sometimes we shall put on
some of the stars for emphasis.

4. FIXED SUBSETS

Let S be a particular (fixed) subset of R. We can identify S with the
one-place relation S (x) which holds for a given x if and only if x e S;
that is,

S={xeR|Sx}.
We can now define a set S * < R* by
S*={xeR*|S*(x)].
Clearly S = S * because S * (x) agrees with S (x) on R. We shall often write
x € S instead of S (x)

and
x € S * instead of S * (x).

The upshot of the above is that the Main Theorem also provides for an
extension S * for each S = R and that we can allow as admissible state-
ments those which involve the sentence fragment xe S ; in “lifting”
statements from R to R* we replace the fragment xe S by xe S *.
Warning! The requirement that admissible statements be permitted only
variables ranging over R hasn’t been altered. In a given statement the func-
tions, relations, and subsets must remain fixed!

Example 4.1. Let S = { xe R

X < 6}. Now
(vx) (xeS e x < 6)is truein R
o)
(yx) (x € S* > x <*6) is true in R*.
Thus
S*={xeR¥|x <*6).

Furthermore S * is a proper extension of S, because for any infinitesimal e,
the number 5 + ¢ is a member of S *, but not being a standard number, it
can’t be a member of S.
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For any finiteset T = Rwe canshow T = T *. Suppose T = {ay, .., a,}
then

(yx) (xe Te[x=a; Vx=a,V .. Vx=4a,])
is true in R, thus

(yx) (xe T* o [x=a; Vx=a,V ..Vx=a,l)
is true in R*; thatis, T* = { ay, ..., a, }.

Although the Main Theorem makes no mention of functions f whose
domain is a proper subset D = R. We can define a function f'* : D* — R*
in a natural way. Arbitrarily extend f to a function g which is defined on
all of R; then let f* be the restriction of g * to D*. This definition is easily
seen to be independent of the way f'is extended.

5. INFINITE NATURAL NUMBERS

We have seen in the last section that each particular S < R has associ-
 ated with it a certain extension S * < R*. We now consider the case when
~ we take S to be N, the set of natural numbers. One can see that N * actually
 has some non-standard members as follows. The statement “N is un-
- bounded” is true in R and can be formulated as the admissible statement

(vx) (3y) (yeN Ay >X);

~ therefore

(vx) (3y) (yeN* Ay >x)

| Is true in R*. It asserts that N * is an unbounded subset of R*. If we let «
- be an infinite member of R*, then N * must have an even larger member
- which, of course, is also infinite and non-standard.

We can show that all the non-standard members of N * are infinite in

 the following way. Formulate as admissible statements each of the infinitely
. many assertions:

“All natural numbers are greater than 0.”
“No natural numbers lie between 0 and 1.”
“No natural numbers lie between 1 and 2.”
etc.
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Each of those statements then must be true in R* when we read N * instead
of N, so each member of N * — N must be greater than all the real numbers.

In view of the above we call the non-standard members of N * infinite
natural numbers. ,

Now it is easy to show that each infinite natural number has an im-
mediate successor in N * (because of the corresponding result for N), and
each infinite natural number has an infinite immediate predecessor in N *.
N * 1sn’t well ordered because if o is an infinite natural number, the chain

«e>0—1>a—2> -

has no least member. Here again one might be tempted to use the Main
Theorem to infer that N * is well ordered because N is; however, the state-
ment that N is well ordered is not admissible by virtue of its having a
variable ranging over subsets. It reads:

“Every non-empty subset of N ...”

Concepts such as even number, odd number, and prime number are all
meaningful for infinite natural numbers; indeed, if E = N is the set of even
numbers, then E * is the set of even numbers of N *.

It will be shown later that N * is uncountably infinite.

6. Livits, CONTINUITY, BOUNDEDNESS, AND COMPACTNESS

Now we show that R* provides the appropriate machinery for formu-
lating concepts from the Calculus in an intuitive and direct way. Consider,

for example, the limit concept. The ¢ — ¢ definition of lim f(x) = L seems

to be a roundabout way of saying that for x infinitely close to but not equal
to ¢, f(x) will be infinitely close to L. Now it makes sense to say it just that
way provided we are talking about f* (x). It not only makes sense, but as
the next theorem shows, saying it that way actually gives a correct charac-
terization of lim f(x) = L.

THEOREM 6.1. Let f be a standard function defined on a standard open
interval (a, b) having ¢ as an interior point. Suppose further that L is
standard, then

(@) lim f(x) = L if and only if ¢ # x = ¢ implies f* (x) = L.

X—=c
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(b) f(x)is continuous at ¢ if and only if x =~ ¢ implies f *(x) = f(c).

PrOOF. At this point there should be no confusion if we sometimes
omit the symbol *. Part (b) follows immediately from part (a).

‘Part (a), direction =. Suppose lim f(x) = L. To show that ¢ # x = ¢
implies f (x) & L. Let x, be given such that ¢ # x, = ¢, to show [ (x,) = L
we must show that f(x,) — L is infinitesimal; that is, we must show that
| f(xo) — L | < ¢ for each positive real ¢. Let arbitrary but fixed positive
real ¢, be given. Must show that the statement

(1) |f(xo) — L| < &g

is true in R*. By definition of limit we know that there exists a positive real
0 such that 0 <lx - c| < 0 implies that ]f(x) —-Ll < &o. Let 0, be
such a o, then the statement

(vx) (O<[x—c| <dg— [f(x)—L| <&)

. 1s true in R; therefore, it’s true in R*. In particular then the statement

e 0< [xo—c | <= |/ (xo) — L| <o

| istrueinR*.Nonromc#xozcweknowthat0<|x0—c| < r for

- each positive real r, so in particular 0 < ] Xog — C [ < 0, 1s true in R*. This

with (2) gives [ f(xo) — L ] < &, which is the statement (1) we needed to
show.

Part (a), direction <. The argument is rather novel. Assume that

(3 ¢ # x ~ cimplies f(x) ~ L.

- Let arbitrary but fixed positive real ¢, be given, must show that the state-
- ment

(30) (0> 0A(v0)[0<[x—c| < [f(x)—L]| <eo])

is true in R. Now this is an admissible statement, so it suffices to show that
it is true in R*. As a statement about R it is an assertion that there exists a
real 6 with certain properties. In showing it to be true in R* we are permitted
to seek the 6 from among the positive infinitesimals if we so desire. We now
show that any positive infinitesimal ¢ will do. Let 5, be a positive infini-
tesimal. Must show that the statement

(7)) [0<[x—c| <o~ |f(x)—L| < &]
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is true in R*. Let arbitrary x, € R* be given, must show that

4) O<]x0——cl<50—>|f(x0)-—L|<80

is true. Assume that the left side of the arrow is true; that is, assume
(5) 0<|xo—c| < do;

we want to show under this assumption that the right side is true. Since J,
i5 infinitesimal we can infer from (5) that ¢ # x, & ¢, but then by (3)
f(xo) = L, that is, f(x,) — L is infinitesimal. Since &, is positive real,
| f(xo) — L| < &, which is the right side of the arrow in (4)

(Q.E.D))

Example 6.1. Suppose we want to show that the composition of two
continuous functions is continuous. The standard proof is easy enough,
but the following non-standard proof is more direct and intuitive. Let g (x)
be continuous at ¢ and f (x) continuous at g (¢). Let x ~ ¢ be given. Since g
is continuous at ¢, g (x) ~ g (¢). Since f is continuous at g (c),
F(g@) ~f(g).

For functions whose domain is not an interval but some set S, appropriate
modifications of the argument in the preceding theorem gives the theorem
below.

THEOREM 6.2. The standard function f(x) with standard domain S is
continuous at the standard point c¢ if and only if whenever x is a point
of S * infinitely close to ¢, f* (x) = f(c).

The notion of a function being bounded has a very useful non-standard

characterization. By bounded we mean, as usual, that there is a standard
bound.

THEOREM 6.3. A standard function f is bounded on a standard set S
if and only if f* (x) is finite for each x e S *.

Proor. Direction =-. Suppose f is bounded on S. Then there exists a
standard number r, such that the sentence

(vx) (xeS— |[f(x) | =To)
is true in R and therefore also in R*. Thus if x, € S * we have that
| £* (xo) | = ro. By definition of finite this means f* (x,) is finite.
~ Direction <. Suppose f* (x) is finite all x e S *. We want to show that
the statement

(6) 30 (vx) (xeS> [f(x) [=1)
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is true in R. If suffices to show that it is true in R*, but in R* we can take
the t to be any positive infinite number. Then since each f* (x) is finite we
have that | /* (x) | =1 all xe S*, that is (6) is true in R*.

(Q.E.D.)

Note that if [¢, d] is a standard closed interval, then [c, d]* is the
closed interval { x € R*|c = x =d}; this is because the statement

(vx) (xe[ec,d] < (c=x A x=d))

is true in R and, therefore, in R*. A similar result holds for the other types
of intervals.

Compare the following non-standard proof of a well known theorem
with the standard proofs you know!

THEOREM 6.4. If the standard function f is continuous at each point of
the standard closed interval [c, d ], then f'is bounded there.

Proor. In view of the preceding theorem we have only to show that

 f*(x) is finite for all x € [¢, d]*. Let x € [c, d]* be given. Clearly x is finite

~ and according to Theorem 2.1 it is infinitely close to a standard point x,.
It is easy to see that x, € [¢, d ]. By continuity f* (x) &~ f(x,). Since f'is a
standard function, f(x,) is finite, but then f* (x) being infinitely close, is
also finite.

(Q.E.D.)

As is well known, the above theorem fails for open intervals. An at-
tempted proof would break down when we try to assert that x, € (¢, d). It
might just happen that x is one of the end points.

Note that in the above proof, the only property of the closed interval

~ used there is:

“Every point of [c, d]* is infinitely closed to some point of [c, d].”
Thus the theorem can be generalized by replacing [c, d ] with a set S having
the same property, namely

- (7) “Every point of S * is infinitely close to some point of S.”
We show further that this property of S is a necessary condition on S for
- all continuous functions on S to be bounded. By contrapositive assume (7)
fails; under this assumption we will produce a continuous function on S
which takes on an infinite value at a point in S * from which it would follow
that the function isn’t bounded on S. To say that (7) fails would mean that
~ there exists x, € S * such that for all ye S, x, ~ y. If x, is infinite, then
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f(x) = xis a continuous function which is infinite at x = x,. On the other
hand, if x, were finite then x, is infinitely close to some standard number

Yo, and since (7) fails y, ¢ S. Thus the function f (x) = is continuous

X—Jo
on S (the denominator can’t be zero for x € S because y, ¢ S); moreover,
f(x,) is infinite since x, — y, is a non-zero infinitesimal.

It is known in the study of the topology of the real line that a necessary
and sufficient condition for a set S to have the property that all continuous
functions on it be bounded is that S be compact. We’ve just shown that (7)
is also necessary and sufficient, so this establishes the following theorems.

THEOREM 6.5. A set S < R is compact if and only if every point of
S * is infinitely close to a point of S.

THEOREM 6.6 If the standard function f(x) is continuous on a standard
compact set S, then f(x) is bounded there.

It turns out that in applying the methods of Non-standard Analysis to
the subject of General Topology, the characterization of compactness given
by Theorem 6.5 still holds.

The theorem below gives a very nice characterization of the notion
of a uniformly continuous function. We shall not deny you the pleasure of
trying to prove it yourself. The proof of Theorem 6.1 should provide the
inspiration.

THEOREM 6.7. A standard function is uniformly continuous on the
standard set S if and only if x &~ y implies f * (x) ~ f* (y) forall x, ye S *.
Using the above theorem we can quickly dispatch the following.

THEOREM 6.8. A standard function f continuous on a compact standard
set S is uniformly continuous on S.

Proor. Let x, y € S * be given such that x ~ y. By compactness of S
there exists x, € S such that x ~ x,. Since &~ is an equivalence relation
X~ xo~y. Now by continuity f*(x) = f(xy) = f*(y), therefore
fEE) =)

7. . INFINITE SEQUENCES
An infinite sequence {a,} can be thought of as a function from N into

R. Accordingly the Main Theorem provides for an extension function
from N * into R*. Put differently, after we exhaust all the terms with finite
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subscripts, the sequence continues on with infinite subscripts as follows:

A1y Aoy eeey Ay - e Oy 1y Oy Ay q oo
N g —— o— | S— -
terms with terms with
finite infinite
subscripts . subscripts

It is easy to see that the sequence
0,0,..0..

continues to have the value 0 when we look at its extension because the
statement
(yx) (xeN—-a,=0)

is true in R and therefore in R*. Likewise the sequence
1,0,1,0,..,1,0, ..

continues to alternate, and the sequence of Primes py, Pa, Pss «-es Pus -
when extended “enumerates” the primes of N *.

Various properties of standard sequences can be characterized in terms
of what happens to the terms with infinite subscripts (intuitively—when
you get out to infinity). |

In what follows { a, }, {b,} will be standard sequences and a, b will be
standard numbers. The proof of the following theorem runs along lines
which by now should be familiar to you.

THEOREM 7.1.

(i) { a,} is bounded iff a, is finite for all infinite natural numbers o.

(i1) lim a, = a iff a, ~ a for all infinite natural numbers .

n—co

(iif) lim g, = oo iff g, is infinite for all infinite natural numbers «.

(iv) {a,} is a Cauchy sequence iff a, ~ ag for all infinite natural
numbers «, f.
Example 7.1. Suppose

lim a, = aand lim b, = b

n— o0 n— o0

b

and we want to show

lim (a,+b,) = a + band lim a, b, = ab.

n— o0 n—oo
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Let « be an infinite natural number. By the above theorem we have a, ~ a
and b, ~ b. From this we see easily that g, and b, are finite. Now using the
rules given in Section 2 for manipulating the ~ symbol,

a, + b,~a+ banda,b, ~ ab.
Thus by the above theorem, the desired results are established.

Example 7.2. Suppose we wanted to calculate

lim (n*—n) = ?

n—aw

We can proceed directly— let o be an arbitrary infinite natural number, then
x* — a2 = a (x—1) = (infinite) (infinite)
= infinite
thus

lim (n*—n) = 0.

n— o

8. INFINITELY FINE PARTITIONS OF AN INTERVAL

Consider the familiar process of partitioning an interval [a, b] into n
subintervals of equal length by means of the partition points

a=ay<a, < "<a,=0>b.

If we let a/ denote the i partition point when the interval is divided into
J subintervals of equal length, it is easily seen that
b—a

al =a + . .
(=)

Now the right side of this expression is a function from I x [ into R, where
I = R is the set of integers. By the Main Theorem this function extends to
a function from I* x I* into R*. We continue to use @} for the image
under this extended function. If we let « be a fixed infinite natural number,
then for 0 =i = a, a’ must lie in the interval [a, b]*. Note that the i sub-

b—a . ,
interval [af, a} , ;] has the infinitesimal —— as its length. Two such intervals
(04

can intersect only if they have an end point in common, and the intersection
is that end point. Each partition point a; (other than a, ) has an immediately
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preceding partition point af_, on its left and an immediately succeeding
partition point af,; on its right. One can show that each point of [a, b]*
appears in some subinterval [a?, a § . ] asfollows. Formulate as an admissible
statement (true in R) the assertion:

“For every j € N, every point of [a, b] is in the subinterval [a!, al , ] for

someiel where 0 =i < j.”

Putting in appropriate stars *, it becomes true in R*. Particularizing it to
the case where j = « we get:

“Every point of [a, b]* is in the subinterval [a], ¢ ] for some iel*

where 0 =i < a.”

Using the above we can now show that the partition described there has
uncountably many points from which it also follows that { f € N * [ B=o}
and N * are uncountable. We do this by showing a mapping from
{ a5, a3, ..., a; } onto the standard interval [a, ] which is known to be un-
countable. Each partition point af being finite is infinitely close (Theorem
2.1) to a uniquely determined real. Let the image of af be that real. Clearly
the image is in [a, b]. Moreover the mapping is onto because we saw that
each real c in [a, b] is a member of [af, af , ;] some 0 =/ < «, and since
ai = af ,;, we must also have ¢ ~ af.

Consider the following novel proof of a famous theorem.

THEOREM 8.1. If the standard function fis continuous on the standard
interval [a, b] and is negative at ¢ and positive at b, then at some standard
point ¢ in the interval, f(¢) = 0.

PrROOF. Let o be an infinite natural number and form the infinitely fine
partition { a5, @3, ..., a; } described earlier in this section. Now the following
assertion can be formulated as an admissible statement true in R:

“For each je N there exists a least ie N such that 0 < i =, and
fla) =07 |
Putting in stars this becomes true in R*. Now particularizing it to the case
J = o we get (leaving off some stars for brevity):
“Exists least ie N * such that 0 < i =<z and f(a?) = 0.”
For this 7 then we must have f(af_;) < 0. Now a7 is finite and must be
infinitely close to a standard number ¢ in the interval. Since fis a standard
function, f'(c) is standard. Now from af_; ~ a* we get

o

c~ajand c x af_ .

Then by continuity we see that
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f(e) = f(af) and f (c) = f(a}- ).
Taking this together with the fact (seen already) that
f(@)=0and f(a]) <O

we have (in summary) that f'(c) is a standard number infinitely close to a
negative number and a non-negative number. Thus f(c) = 0.

(Q.E.D.)

9. DERIVATIVES

Let f(x) be a standard function defined on a standard open interval
(¢, b) and having the point x, as an interior point. Using the non-standard
characterization of limit, the condition that f(x) be differentiable at x, is
that there exist a standard number L such that

J(xo +dx) — f(xo) _
dx ~

L

for all non-zero infinitesimals dx. L, of course, will be the derivative. If
f(x) is differentiable, then writing dy = f(x,+dx) — f(x,) we have

d
(using the notation for “standard part” introduced in Section 2) °( 1__)/)
; ax

= f' (x,). This says that the quotient of the infinitesimal increments need
not in general be the derivative, but it must be infinitely close to it.

Example 9.1. Suppose we wish to calculate the derivative of f(x) = x2.
Let dx be an arbitrary non-zero infinitesimal, then

dy  (x+4dx)*—x*
dx dx

d
After squaring and cancelling we get, ;{X = 2 Xx + dx ~ 2 x therefore
x .
dy
(=) =2x

That is, the function x? is differentiable with derivative 2 x.

Example 9.2. Let’s see how to prove the Chain Rule! Suppose f(x) and
g (x) are differentiable at the appropriate places and we wish to show
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~ that the function % (x) = f(g (x)) is differentiable with derivative
B (x)=f"(g(x))g’(x). For any non-zero infinitesimal dx, write
dg = g(x+dx) —g(x)and dh = h(x+dx) — h(x) then

dh = f(g(x + dx) — (g (@) = f(g x) + dg) — f(g ().
We want to show that for any non-zero infinitesimal dx,

dh

(1) - ~f'(g(x)g" (x).

Let non-zero infinitesimal dx be given. By continuity of g (x), dg is also
infinitesimal.

PR T2

d dh
Case 1. dg = 0. Then dh = 0, so °(d—g) =g’ (x)= Oandzz— = (. Thus
b X

both sides of (1) are zero, so (1) holds.

dn dh dg

Case 2. dg # 0. Then — = — - — that is

] dx dg dx

dh (g () +dg) = f(g () g(x+dx) —g(x)

1 (2 —— = ‘ :

dx dg dx

The two factors of the right side of (2) are infinitely close to f' (g (x)) and
g’ (x) respectively. Now using the rules given in Section 2 for manipulating
% the symbol ~ we get

Pl e@) g @

, dx ~ g x) g

as desired.

10. INTEGRATION

Let f(x) be a standard function integrable on the standard interval
1 é la, b]. For each standard » let

a=a,<dy<-* - <a,=5b

be a partition of the interval into n subintervals of equal length. The Rie-

¥ mann sums

?i Sy = ¥ f(a) (@i —aiy)
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constitute an infinite sequence, and by the Main Theorem this sequence can
be extended to a sequence defined on N *. For an infinite natural number
o it seems natural to denote the o' term S, by

) [
(1) 2 f(af) (af —ai_y) .
i=1
We might think of this as a “Riemann sum” on an infinitely fine net. The
use of ) notation seems appropriate because the “sum” shares (by virtue
of the Main Theorem) many properties of standard finite sums. For example,
the property (omitting the summands for brevity)

a

iia :i§: * E:

—1 i=ﬂ+l.
Now since
n b
lim ) f(a}) (af —ai_y) = | f(x)dx,
n-o i=1 a

we see, using the non-standard characterization of the notion of limit of a
sequence, that if o is an infinite natural number

Pﬂ&

b
(@) (@i —diy) ~ | f(x)dx.

i=1

I

A further development of the theory of Integration and in particular a
non-standard characterization of the Riemann integrable functions requires
more machinery than we are prepared to set up here.

11. THeE MAIN THEOREM REVISITED

The version of the Main Theorem which we gave you in Section 3 is a
specialization of a considerably more general result. While we stated it in
terms of the real number system R, it happens to be true of any non-empty
set X whatsoever. This opens the way for a penetration of the methods of
Non-Standard Analysis to other branches of mathematics. For example,
one might extend the complex number system C to a field C*. There one
could have “polygons” with sides of infinitely small length and vertices
indexed by the initial segment of N* determined by some infinite natural
number.



What is also true is that R* is even more closely related to R than we’ve
suggested so far. Our version of the Main Theorem didn’t permit as ad-
missible statements those which had variables ranging over the functions
on R, the relations on R or the subsets of R. A generalization of the theorem
to include such statements is impossible. If it were possible, the Axiom
of Completeness would be admissible and we’d have that R* is complete,
which contradicts a result seen previously. 1t turns out, however, that there
exists a distinguished class of functions on R*, a distinguished class of
relations on R*, and a distinguished class of subsets of R* such that all
statements with function, relation, and set variables can now be allowed in
applications of the theorem provided that in R* these variables are con-
strained to vary only over these distinguished classes. Robinson calls the
functions, relations, and subsets of R* in these classes internal functions,
relations and subsets. Expressed differently what we are saying is that if
you wore spectacles which were opaque to all functions, relations, and sub-
sets of R* other than the internal ones, you’d swear that R* is complete,
N* 1s well ordered, etc. Your glasses wouldn’t let you see the counter-
examples! What is remarkable is that one pair of spectacles can be made to
work for all the new statements. If only the Axiom of Completeness were
at 1ssue, we could simply choose a pair of spectacles which blocks out the
bounded subsets of R* which don’t have least upper bounds. Using the
improvement of the Main Theorem just mentioned the Theory of Inte-
gration, for exampie, becomes more susceptible to the methods of Non-
Standard Analysis, and some of the argumentation elsewhere in this article
could be simplified.

CONCLUSION

At the turn of the century Bertrand Russell wrote:

“... hence infinitesimals as explaining continuity must be regarded as
unnecessary, erroneous, and self contradictory.”

This remark gives some indication of the degree of disrepute into which the
use of infinitesimals had fallen, and it serves to underscore the achievement
In its eventual vindication by Robinson. Russell’s work in logic, it should
be mentioned, constituted one of the important steps along the way. Such
- 1s the unexpected path the development of ideas sometimes follows!
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EXERCISES

Functions, relations, and subsets are assumed to be standard.

1. Prove that a continuous one-one function on a compact set has a
continuous inverse.

2. Prove that a continuous image of a compact set is compact.

3. Give a non-standard characterization of:
(a) “The set S'is open.”
(b) “Point p (standard) is a limit point of the set 7.”

4. Prove that a set is compact if and only if it is closed and bounded.
5. Show that S is a proper subset of S* if and only if S is infinite.
a; +a, + - +a,

6. Show that if lim a, = 0, then lim = 0.
n—0 n—0 n
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