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a - , "
avec f¥ = fo fo..of=0. A ces données nous associons un G-module
d’espace sous-jacent

i=r—1

S E(Xie) R Vi
i=0

L’opération de K est induite par celles de K sur les modules simples
E (x'e). L’opération de o e S sur les différents facteurs E (y'e) ®, V; est
déterminée si ’on connait celle de 7, qui est elle-méme décrite par la figure
ci-dessous

Elel@V,
T = u ®f = T
e edav__, E(XelaV,
T o= ugF T lu@F -
_ .
X" Celev £ ((Ce)eV,

ol les u: E (y'e) 3 E (y'"'e) sont des K-isomorphismes choisis une fois
pour toutes.

Le G-module ainsi construit est indécomposable si et seulement si notre
couronne d’espaces vectoriels est indécomposable. Ceci a lieu s’il existe un

v eV, dont les itérés non nuls v, f (v), f? (v),... forment une base de
r—1

@ V;. On peut montrer qu’on obtient ainsi tous les G-modules indé-
Jj=0

composables.

4. ESPACES VECTORIELS
MUNIS DE SOUS-ESPACES. ([4], [6])

Soit O un ensemble ordonné, Une k-représentation linéaire de O
consiste en la donnée d’un k-espace vectoriel de dimension finie V et d’une
famille de sous-espaces (V(i))ieo tels que V(i) =V (j) sii £j. La somme
directe de deux représentations V'’ et V" a pour espace sous-jacent
V'@ V7" etest telle que

V'evHi =V 3o e v i
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pour tout i. Nous nous intéressons ici aux représentations indécomposables,
cest-a-dire aux représentations non nulles qui ne sont pas somme directe
de 2 sous-représentations non nulles.

Kleiner, Nazarova et Roiter ont pu montrer que le nombre de classes
d’isomorphisme de représentations indécomposables était infini si et
seulement si O contenait un sous-ensemble ordonné plein (c’est-a-dire
muni de Pordre induit) de I'un des types suivants:

{1, 2, 3, 4} (4 points incomparables deux a deux)

{1 <2,3<4,5<6} (3 couples incomparables d’¢léments compa-
rables)

{1<2<3,4<5<6,7}
{1<2<3<4<5,6<7,8}
{1<2<3<4,5<6>7<38}.

Cet énoncé joue un role essentiel dans leur démonstration des conjectures
de Brauer-Thrall, dont nous allons donner le principe.

5. LE CONJECTURE-THEOREME
DE BRAUER/THRALL-NAZAROVA/ROITER ([7]).

Soit 4 une algébre de dimension finie sur un corps algébriquement clos k.
Pour tout entier naturel n, nous posons v, (n) = nombre de classes d’isomor-
phisme de A-modules indécomposables de k-dimension »n. La conjecture de

Brauer-Thrall dit que, si Y. v, (n) est infini, il y a une infinité de n tels que
neN

v, (n) = oo. En 1968 Roiter a pu fournir un premier élément de réponse a
cette conjecture en montrant de maniére simple et élégante que si

Y v, (n) est infini, il y a une infinité de n tels que v, (1) # 0. Une
neN

démonstration compléte de la conjecture de Brauer-Thrall n’a été publiée
qu’en 1974 par Nazarova et Roiter. La démonstration reste technique et
épineuse. Nous en développons seulement le principe:

Raisonnant par récurrence sur la dimension de 4, nous pouvons supposer
que Y vy (n) < oo pour tout vrai quotient B de 4, et que v, (1) < oo pour

presque tout #. Il s’agit alors de montrer que ) v, (1) < co.

n
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