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3. REPRESENTATIONS MODULAIRES
DES GROUPES FINIS ([3], [5])

Soient k£ un corps algébriquement clos et G un groupe fini. On sait que
I'algébre k [G] du groupe G contient comme base sur k les éléments de G,
le produit de deux tels éléments dans k [G] étant le méme que dans G. De
plus, toute structure de £ [G]-module sur un espace vectoriel V' est déterminée
par la donnée des automorphismes v |- g - v de V, g € G ; elle équivaut par
conséquent a la donnée d’'un homomorphisme de groupes G — GL (V),
si GL (V) désigne comme d’habitude le groupe des automorphismes
linéaires de V.

Lorsque k est de caractéristique 0, le théoréeme de Maschke nous dit
que tout k [G]-module est une somme directe de k [G]-modules simples.
Dans ce cas, les modules indécomposables coincident donc avec les modules
simples, c’est-a-dire les modules S n’ayant pas d’autres sous-modules que 0
ou §. La détermination explicite de ces modules simples peut soulever des
difficultés considérables, mais que nous voulons taire ici ! Du point de vue
de la classification des indécomposables, nous considérons notre probléme
comme résolu si nous pouvons le ramener au probléeme de la classification
des modules simples.

Supposons donc k de caractéristique p > 0. On sait que tout groupe
fini G d’ordre n = p®¢q, avec g premier a p, contient des sous-groupes S
d’ordre p® et que tous ces sous-groupes sont conjugués entre eux; ce sont les
sous-groupes de Sylow. Par exemple, si G = GL (m, F,,) est le groupe
linéaire d’ordre m a coefficients dans le corps fini & p® éléments, les matrices
triangulaires (a;;) telles que a; = 1 et q;; = 0 pour i > j forment un
p-sous-groupe de Sylow de G.

Kasch, Kneser et Kupisch ont pu montrer en 1957 que le nombre des
classes d’isomorphisme de k [G]-modules indécomposables est fini si et
seulement si les p-sous-groupes de Sylow de G sont cycliques. Ce résultat
est relativement facile. Mais on a dii attendre jusque 1969 pour une descrip-
tion précise des indécomposables dans le cas cyclique (Kupisch, Janusz).
Dans le cas du groupe linéaire, cette description s’applique au cas m = 2
ets = 1.

Comme la description générale est assez ardue, nous ne voulons expliciter
que le cas particulier ou G contient seulement un p-sous-groupe de Sylow S,
nécessairement normal dans G. Ceci a lieu par exemple lorsque G est le |

a b |
groupe des matrices (O d) a coefficients dans ¥, = Z/pZ. Il y a alors un
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complément K de S dans G, c’est-2-dire un sous-groupe tel que S N K
= {1} et S- K = G. Si o désigne un générateur de S = {1,0,0% ..., 71}
= ¢Z/P*Z Popération de K sur S par automorphismes intérieurs est donnce
par une formule du type

xox ! =" avec xeK et y(x)eZ | p°Z.
L’opération induite de K sur k [S] laisse stable le drapeau
k[S] 2 k[S](c—1) o k[S](e—1)*...

d’ott I'on déduit lexistence d’un élément n ek [S](e—1), congru a
¢ — 1 modulo (¢ —1)* et tel que

xnx™! = y(x)n pour tout xe K

(choisir un supplémentaire de k [S] (6 —1)? dans k [S] (6 — 1) stable sous K).

Considérons maintenant I’ensemble & des classes d’isomorphisme de
K-modules simples. Pour tout e e & nous choisissons un module simple
E (e) dans la classe e et nous notons ,E (e) le K-module ayant méme espace

sous-jacent que E (e), la nouvelle opération * de K étant reliée a I’ancienne
au moyen de la formule

xX*m = y(x)x -m.

On obtient ainsi une opération (n,e)l— x"-e de Z sur & telle E (x"e)
5 E (1" 'e). Les orbites de Z dans & sont, comme nous allons le voir,
reliées aux G-modules indécomposables.

Partons d’une orbite e = y" - e, x e, x> e, ..., x" 1 -e de Z dans & et
d’une « couronne » de hauteur < p? de r espaces vectoriels. Une telle
couronne est par définition un diagramme d’espaces vectoriels de la forme
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a - , "
avec f¥ = fo fo..of=0. A ces données nous associons un G-module
d’espace sous-jacent

i=r—1

S E(Xie) R Vi
i=0

L’opération de K est induite par celles de K sur les modules simples
E (x'e). L’opération de o e S sur les différents facteurs E (y'e) ®, V; est
déterminée si ’on connait celle de 7, qui est elle-méme décrite par la figure
ci-dessous

Elel@V,
T = u ®f = T
e edav__, E(XelaV,
T o= ugF T lu@F -
_ .
X" Celev £ ((Ce)eV,

ol les u: E (y'e) 3 E (y'"'e) sont des K-isomorphismes choisis une fois
pour toutes.

Le G-module ainsi construit est indécomposable si et seulement si notre
couronne d’espaces vectoriels est indécomposable. Ceci a lieu s’il existe un

v eV, dont les itérés non nuls v, f (v), f? (v),... forment une base de
r—1

@ V;. On peut montrer qu’on obtient ainsi tous les G-modules indé-
Jj=0

composables.

4. ESPACES VECTORIELS
MUNIS DE SOUS-ESPACES. ([4], [6])

Soit O un ensemble ordonné, Une k-représentation linéaire de O
consiste en la donnée d’un k-espace vectoriel de dimension finie V et d’une
famille de sous-espaces (V(i))ieo tels que V(i) =V (j) sii £j. La somme
directe de deux représentations V'’ et V" a pour espace sous-jacent
V'@ V7" etest telle que

V'evHi =V 3o e v i
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