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Extrait de L'Enseignement mathématique, T. XX, fasc. 3-4, 1974

PROBLÈMES ACTUELS
DE THÉORIE DES REPRÉSENTATIONS

par Pierre Gabriel

1. Quelques rappels historiques

La notion d'anneau et de module s'est dégagée au cours de la deuxième

moitié du 19e siècle et c'est alors qu'ont été publiés les premiers énoncés

de classification. De tous ces énoncés, qui étaient intimement liés à des

problèmes géométriques ou matriciels, nous ne voulons retenir ici que les

deux suivants:
Le théorème de Jordan classifïe les matrices complexes à similitude près

ou, si l'on veut, les modules de C-dimension finie sur l'algèbre des polynômes
C [T], En fait, le « noyau » de la démonstration consiste en une classification
des matrices nilpotentes, c'est-à-dire des modules de dimension finie sur
les algèbres C [T)/(Tn).

Un problème de classification un peu plus général a été proposé par
Weierstrass et finalement résolu par Kronecker vers 1900: deux couples
de matrices complexes (A, B) et (A', B') de même type m x n sont dits

équivalents s'il existe des matrices inversibles P et Q telles que A' PAQ
et B' PBQ. Kronecker a déterminé les classes d'équivalence de tels

couples. Comme on le voit assez facilement, son problème se ramène à la
classification des modules de C-dimension finie sur l'anneau C [X, Y]/
(X2, X Y, Y2): associer au couple {A, B) le module d'espace sous-jacent
kn © km tel que X (;u, v) (0, Au) et Y (w, v) (0, Bu). Nous donnons

plus loin la liste des classes d'isomorphisme de tels modules.
Aux résultats expérimentaux de la fin du 19e siècle a succédé de 1920 à

1950 une vague de «théories». C'est alors qu'à été dégagée la notion
d'anneau artinien et qu'ont été démontrés les premiers énoncés généraux
non triviaux: l'anneau des endomorphismes d'un module indécomposable
est local (Fitting), la décomposition d'un module de longueur finie en
somme directe d'indécomposables est unique « à isomorphisme près »

(Krull-Remak-Schmidt)... La fin de cette vague de théoriciens est marquée
par la formulation des conjectures de Brauer-Thrall, dont il sera de nouveau
question plus loin.
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Le processus (dialectique d'alternance de périodes expérimentales et

théoriques se poursuit avec quelques interruptions, car la question ne

passionne vraiment les mathématiciens que par intermittence. En 1968

Gelfand et Ponomarev classifient les modules de dimension finie sur l'anneau
C [X, Y\/(X Y). S'appuyant sur des résultats de Dade, Kupisch et Janusz

construisent en 1969 les représentations modulaires indécomposables des

groupes finis à sous-groupes de Sylow cycliques... En 1974 enfin, Nazarova
et Roiter publient une démonstration de la conjecture de Brauer-Thrall
fondée sur une quantité appréciable de résultats de nature expérimentale
obtenus auparavant. Ce sont ces résultats expérimentaux que nous voulons
aborder ici.

2. Modules de dimension finie sur k [X, Y]/(Xm, X Y, Yn).

Nous désignons par k un corps commutatif, et nous nous intéressons

en fait aux modules de /^-dimension finie sur l'anneau k [[X, Y]~j/(X Y).
Un tel module consiste en la donnée d'un ^-espace vectoriel de dimension
finie M et de deux endomorphismes x, y tels que xy yx 0 et

xm y11 — 0 pour m tin assez grands.

x x
e0 ye1 ye2

y
Y

e3

i X *e -—— ec >• e0 —>
4 5 6 i 7

y

er

On peut associer à toute suite nu n2,nr d'entiers naturels >1 un
module dit de première espèce et d'espace sous-jacent k1+ni + ---+nrm Nous

explicitons les endomorphismes pour l'exemple de la suite 2,2,3,1. Si

e0, eu e8 est la base naturelle de A:1 + 2 + 2 + 3 + 1, x envoie e0 sur el9 ex sur e2,

e2 sur 0, e3 sur 0, e4 sur e5,..., e7 sur 0, e8 sur 0, tandis que y envoie e0 sur 0,

e1 sur 0, e2 sur e3, e3 sur e4, e4 sur 0, e7 sur e8 et e8 sur 0 (se reporter à

la figure ci-dessus). Les modules ainsi obtenus sont tous indécomposables,

c'est-à-dire qu'ils ne s'écrivent pas comme somme directe de sous-modules

non nuls.
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On peut construire des modules de 2e espèce à partir d'un monôme

« non commutatif » en x et y-1et d'un espace vectoriel V muni d'un auto-

morphisme a. Au monôme x2 y'1xy~2 correspond par exemple le module

d'espace sous-jacent j/2 +1 + 1 + 2 V6, xet y opérant sur les différents

facteurs de V comme l'indique la figure suivante

lïid ^ v

(ne pas perdre de vue que xy yx 0). Si l'on tient à obtenir une liste

irrédondante de modules indécomposables de 2e espèce, il faut évidemment

supposer que V n'est pas somme directe de 2 sous-espaces non nuls stables

sous a. Des monômes admissibles il faut en outre exclure les puissances,

par exemple y~1 xy'1 x - (y~1x)2, et il convient de ne pas distinguer entre
2 monômes déduits l'un de l'autre par permutation cyclique, par exemple
entre x2 y'1 xy~2 et y'1 x2 y'1 xy'1.

Gelfand et Ponomarev ont pu démontrer que tout module de dimension
finie sur k [[X, 7]]/(X Y) est une somme directe de modules indécomposables,

de première ou de deuxième espèce [2]. L'intérêt de cet énoncé réside

en particulier dans le fait que, d'après Drozd, tout quotient de dimension
finie de k [[X, 7]] a lui-même un quotient de la forme k [X, Y]/
(X2, X Y2, Y3), à moins qu'il ne soit isomorphe à l'un des anneaux
suivants

k[X, Y]/(Xm,X Y, Y") ou k [X, 7] / (Xm, X 7, 7", Xm-Â Yn).

(Nous supposons ici k algébriquement clos de caractéristique ^ 2). Dans
le deuxième cas, Gelfand et Ponomarev nous fournissent une classification
complète des modules de dimension finie. Dans le premier cas, Drozd peut
montrer qu'une telle classification est hors de notre portée, dans la mesure
où la connaissance des modules sur k [X, 7]/(X2, X Y2, Y3) impliquerait
celle des modules sur toute algèbre de type fini.
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3. Représentations modulaires
DES GROUPES FINIS ([3], [5])

Soient k un corps algébriquement clos et G un groupe fini. On sait que
l'algèbre k [G] du groupe G contient comme base sur k les éléments de G,

le produit de deux tels éléments dans k [G] étant le même que dans G. De

plus, toute structure de k [G]-module sur un espace vectoriel Vest déterminée

par la donnée des automorphismes v !-> g • v de V, g e G ; elle équivaut par
conséquent à la donnée d'un homomorphisme de groupes G -» GL (V),
si GL (V) désigne comme d'habitude le groupe des automorphismes
linéaires de V.

Lorsque k est de caractéristique 0, le théorème de Maschke nous dit
que tout k [G]-module est une somme directe de k [G]-modules simples.
Dans ce cas, les modules indécomposables coïncident donc avec les modules

simples, c'est-à-dire les modules S n'ayant pas d'autres sous-modules que 0

ou S. La détermination explicite de ces modules simples peut soulever des

difficultés considérables, mais que nous voulons taire ici Du point de vue
de la classification des indécomposables, nous considérons notre problème
comme résolu si nous pouvons le ramener au problème de la classification
des modules simples.

Supposons donc k de caractéristique p > 0. On sait que tout groupe
fini G d'ordre n pa q, avec q premier à p, contient des sous-groupes S

d'ordrepa et que tous ces sous-groupes sont conjugués entre eux; ce sont les

sous-groupes de Sylow. Par exemple, si G GL (m, ¥ps) est le groupe
linéaire d'ordre m à coefficients dans le corps fini à ps éléments, les matrices

triangulaires (at7) telles que aa 1 et a{j 0 pour i > j forment un

/?-sous-groupe de Sylow de G.

Kasch, Kneser et Kupisch ont pu montrer en 1957 que le nombre des

classes d'isomorphisme de k [G]-modules indécomposables est fini si et

seulement si les />-sous-groupes de Sylow de G sont cycliques. Ce résultat
est relativement facile. Mais on a dû attendre jusque 1969 pour une description

précise des indécomposables dans le cas cyclique (Kupisch, Janusz).

Dans le cas du groupe linéaire, cette description s'applique au cas m 2

et s — 1.

Comme la description générale est assez ardue, nous ne voulons expliciter

que le cas particulier où G contient seulement un /7-sous-groupe de Sylow S,

nécessairement normal dans G. Ceci a lieu par exemple lorsque G est le

J à coefficients dans Fp Z/pZ. Il y a alors un
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complément K de S dans G, c'est-à-dire un sous-groupe tel que S n K
{1} et S - K G. Si g désigne un générateur de S {1, cr, cr2,..., crpa_1}

<rz/pöZ, l'opération de X sur S par automorphismes intérieurs est donnée

par une formule du type

xax'1 <jx(x) avec xeK et /(x)eZ I paZ.

L'opération induite de sur k [S] laisse stable le drapeau

k [S] => k [S] (cr — 1) zd k [5] (a — l)2

d'où l'on déduit l'existence d'un élément n g k [S] (cr— 1), congru à

g — 1 modulo (cr — l)2 et tel que

xnx~1 i(x)n pour tout xeK

(choisir un supplémentaire de k [£] (cr — l)2 dans k [S] (cr — 1) stable sous K).
Considérons maintenant l'ensemble S des classes d'isomorphisme de

^-modules simples. Pour tout eeê nous choisissons un module simple
E (ie) dans la classe e et nous notons XE (e) le X-module ayant même espace

sous-jacent que E (.e), la nouvelle opération * de K étant reliée à l'ancienne

au moyen de la formule

x * m x (x) x • m

On obtient ainsi une opération (n, e) \-+ xC • e de Z sur S telle E {y?e)

X JE ()C~le). Les orbites de Z dans ê sont, comme nous allons le voir,
reliées aux C-modules indécomposables.

Partons d'une orbite e yj • e, x ' e> X2 ' e, •••> f1 ' e de Z dans S et
d'une « couronne » de hauteur ^ pa de r espaces vectoriels. Une telle
couronne est par définition un diagramme d'espaces vectoriels de la forme
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avec fpa — fof o of= 0. A ces données nous associons un G-module
d'espace sous-jacent

i r— 1

© E (fe) ®k Vt.
i 0

L'opération de K est induite par celles de K sur les modules simples
E (xle). L'opération de a e S sur les différents facteurs E (fé) ®k Vt est
déterminée si l'on connaît celle de n, qui est elle-même décrite par la figure
ci-dessous

E s)®Vq
ir

E )&V^

jug>F ir

E(X.2e)®V2

où les u : XE (x le) X E (y*+1e) sont des iT-isomorphismes choisis une fois

pour toutes.
Le G-module ainsi construit est indécomposable si et seulement si notre

couronne d'espaces vectoriels est indécomposable. Ceci a lieu s'il existe un
v e Vt dont les itérés non nuls v, f (v), f2 (v),... forment une base de

r— 1

© Vj. On peut montrer qu'on obtient ainsi tous les G-modules indé-
j=o
composables.

4. Espaces vectoriels
MUNIS DE SOUS-ESPACES. ([4], [6])

Soit O un ensemble ordonné, Une ^-représentation linéaire de O
consiste en la donnée d'un k-zspace vectoriel de dimension finie V et d'une
famille de sous-espaces (V(i))ie0 tels que V (i) a V (j) si i ^ /. La somme
directe de deux représentations V' et V" a pour espace sous-jacent
V ' © V " et est telle que

(L'©F")(0 » V' (i) © V" (i)

TT ü©f

E(^r_2e)®Vr_2
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pour tout i. Nous nous intéressons ici aux représentations indécomposables,

c'est-à-dire aux représentations non nulles qui ne sont pas somme directe

de 2 sous-représentations non nulles.

Kleiner, Nazarova et Roiter ont pu montrer que le nombre de classes

d'isomorphisme de représentations indécomposables était infini si et

seulement si O contenait un sous-ensemble ordonné plein (c'est-à-dire

muni de l'ordre induit) de l'un des types suivants:

{1, 2, 3, 4} (4 points incomparables deux à deux)

{1 < 2, 3 < 4, 5 < 6} (3 couples incomparables d'éléments compa¬

rables)

{1 < 2 < 3, 4 < 5 < 6, 7}

{1 < 2 < 3 < 4 < 5, 6 < 7, 8}

{1 < 2 < 3 < 4, 5<6>7<8}.
Cet énoncé joue un rôle essentiel dans leur démonstration des conjectures

de Brauer-Thrall, dont nous allons donner le principe.

5. Le conjecture-théorème
de Brauer/Thrall-Nazarova/Roiter ([7]).

Soit A une algèbre de dimension finie sur un corps algébriquement clos k.

Pour tout entier naturel n, nous posons vA (n) nombre de classes d'isomorphisme

de ^(-modules indécomposables de ^-dimension n. La conjecture de

Brauer-Thrall dit que, si X vA (n) est infini, il y a une infinité de n tels que
ne N

va (n) 00 • En 1968 Roiter a pu fournir un premier élément de réponse à

cette conjecture en montrant de manière simple et élégante que si

X va (n) est infini, il y a une infinité de n tels que vA (n) / 0. Une
ne N

démonstration complète de la conjecture de Brauer-Thrall n'a été pùbliée
qu'en 1974 par Nazarova et Roiter. La démonstration reste technique et
épineuse. Nous en développons seulement le principe:

Raisonnant par récurrence sur la dimension de A, nous pouvons supposer
que X vb (n) < 00 Pour tout vrai quotient B de A, et que vA (n) < oo pour

n

presque tout n. Il s'agit alors de montrer que X vA (n) < oo.
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Pour cela nous choisissons un idéal à gauche minimal S de A et, pour
tout ^-module M, nous notons S (M) la somme des sous-modules de M
isomorphes à S. Dans la suite exacte

0 > S (M) > M > M/S{M) 0

M/S (M) est un module sur l'anneau résiduel A' A/S (A). Si nous
fixons la classe d'isomorphisme T de S (M) et la classe M ' de M/S (M),
nous obtenons ainsi une injection

\ classes d'iso. de ^-modules M telles 1 _ _ <
A\ „ ^ li/rl %jr,\ > Autr\Exti(Mr, T) AutM\

[ que S (M) X T et M/s (M) X M'j ^ A v ' Jt

où l'ensemble d'arrivée est l'ensemble des orbites du groupe Aut T
x (Aut M ')op dans le groupe des extensions de T par M L'image de

l'injection est formée des classes d'extensions E telles que T X S (E). On
a donc

f classes d'iso. de ^(-modules M telles 1

^
o ^ f _2L> Aut Ext A

y que S (M) z T et M/S M) z MJ ^ * A v 11

lorsque 5" (M ') 0, ce qui est toujours le cas si Ext \ (S, S) 0.

Pour simplifier nous supposons dans toute la suite du raisonnement que
Ext i (S, S) 0.

Le module semi-simple T peut s'écrire sous la forme T S ®k V, où
V est un espace vectoriel de dimension finie. On a alors Aut T Aut V et

Extj(M',T) Exti(M',S®F)îiExti(M',S)
Z Homt(E*,Ext \{M',S)).

Cette dernière formule a l'avantage de bien mettre en évidence l'opération
de Aut V. On voit par exemple que deux applications linéaires

f g g Homfc (V *, Ext \ (.M S)) appartiennent à la même orbite de Aut V
si et seulement si Im (/) Im (g).

Pour pouvoir également tenir compte de l'action de Aut M ' Nazarova
et Roiter sont amenés à introduire la catégorie « vectorielle » V qui suit :

les objets de V sont les yL-modules de longueur finie; si M ' et M \ sont
deux tels objets, Homv(M/, M\) est l'image de Homi? (MM') dans

Homk (E E lorsque l'on pose E M, Ext \ (Mr, S).
La catégorie Y est additive, k est contenu dans l'anneau des endomor-

phismes du foncteur identique, chaque objet de Y est une somme directe

finie d'indécomposables, le nombre de classes d'isomorphisme d'indé-
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composables est fini, et l'anneau des endomorphismes d'un indécomposable
est local. En outre, la catégorie Y est reliée à celle des ^-espaces vectoriels
de dimension finie par un foncteur ^-linéaire fidèle E : M ' E M>. Nous
résumerons ces propriétés en disant avec Nazarova et Roiter que le couple

(V, E) est une catégorie vectorielle.

Lorsque (V, E) est une catégorie vectorielle, nous pouvons considérer
les couples (M ', V) formée d'un objet M ' de V et d'un sous-espace vectoriel
V dq E (M '). On obtient un tel couple en associant par exemple à tout

/ e Homk (V *, Ext^ (M ', S)) le sous-espace Imf de EM, Ext \ (M ', S).
Ces couples forment eux-mêmes une catégorie additive. Pour tout M ' g V,
nous désignons par v (M j le nombre de classes d'isomorphisme de couples

indécomposables de la forme (.M ', V).
La conjecture de Brauer-Thrall résulte alors de l'énoncé suivant de

Nazarova et Roiter:

Théorème. Soit (Y, E) une catégorie vectorielle telle que v (M ') < oo

pour presque tout objet M' de V. Alors £ v (M j < oo.
M' e V

Pour démontrer ce théorème, Nazarova et Roiter montrent d'abord
combien l'hypothèse est draconienne. Elle implique par exemple que
dimfc E (M j ^ 3 pour tout indécomposable M' e Y. Il réduisent ensuite
le problème au cas où dimk E (M ') ^ 1. Dans ce dernier cas on retrouve le

problème du paragraphe 4. Soit en effet O l'ensemble des classes

d'indécomposables de Y. Pour tout i g O, soient Mt un représentant de la classe

i et kt E (Mi). On définit une relation d'ordre sur O en posant i ^ j
lorsque Homv (Mh M 7) ^ 0.

A tout couple (M V) est alors associé une représentation linéaire de
O d'espace sous-jacent V. Il suffit de poser

VU) - VnE(Mj(j) et E(Mj(j) £ImE(f),
où / parcourt les morphismes M-t M ' de V tels que j < i. Il reste alors
à voir, ce qui est relativement facile, que l'application (M\ V) |-> (V(jj) j e 0
induit une bijection

classes d'isomorphisme classes d'isomorphisme
de couples indécompo- I de représentations liné-
sables (M ', V) tels que aires indécomposables
V A 0 de O
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