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Extrait de L Enseignement mathématique, T. XX, fasc. 3-4, 1974

PROBLEMES ACTUELS
DE THEORIE DES REPRESENTATIONS

par Pierre GABRIEL

1. QUELQUES RAPPELS HISTORIQUES

La notion d’anneau et de module s’est dégagée au cours de la deuxiéme
moitié du 19¢ siécle et c’est alors qu’ont été publiés les premiers énonces
de classification. De tous ces énoncés, qui étaient intimement liés a des
problémes géométriques ou matriciels, nous ne voulons retenir ici que les
deux suivants:

Le théoréme de Jordan classifie les matrices complexes & similitude pres
ou, si I’on veut, les modules de C-dimension finie sur I’algebre des polynomes
C [T]. En fait, le « noyau » de la démonstration consiste en une classification
des matrices nilpotentes, c’est-a-dire des modules de dimension finie sur
les algebres C [T7/(T").

Un probléme de classification un peu plus général a été¢ proposé par
Weierstrass et finalement résolu par Kronecker vers 1900: deux couples
de matrices complexes (4, B) et (4, B') de méme type m X n sont dits
équivalents s’il existe des matrices inversibles P et QO telles que A" = PAQ
et B = PBQ. Kronecker a déterminé les classes d’équivalence de tels
couples. Comme on le voit assez facilement, son probléme se raméne a la
classification des modules de C-dimension finie sur I’anneau C[X, Y]/
(X2, XY, Y?): associer au couple (4, B) le module d’espace sous-jacent
kK" & k™ tel que X (u,v) = (0, Au) et Y (u,v) = (0, Bu). Nous donnons
plus loin la liste des classes d’isomorphisme de tels modules.

Aux résultats expérimentaux de la fin du 19¢ siécle a succédé de 1920 a
1950 une vague de « théories ». Cest alors qu’a été dégagée la notion
d’anneau artinien et qu'ont été démontrés les premiers énoncés généraux
non triviaux: I'anneau des endomorphismes d’un module indécomposable
est local (Fitting), la décomposition d’un module de longueur finie en
somme directe d’indécomposables est unique «a isomorphisme prés »
~ (Krull-Remak-Schmidt)... La fin de cette vague de théoriciens est marquée
- par la formulation des conjectures de Brauer-Thrall, dont il sera de nouveau
question plus loin.
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Le processus (dialectique !) d’alternance de périodes expérimentales et
théoriques se poursuit avec quelques interruptions, car la question ne
passionne vraiment les mathématiciens que par intermittence. En 1968
Gelfand et Ponomareyv classifient les modules de dimension finie sur ’anneau
C[X, Y]/(X Y). Sappuyant sur des résultats de Dade, Kupisch et Janusz
construisent en 1969 les représentations modulaires indécomposables des
groupes finis a sous-groupes de Sylow cycliques... En 1974 enfin, Nazarova
et Roiter publient une démonstration de la conjecture de Brauer-Thrall
fondée sur une quantité appréciable de résultats de nature expérimentale
obtenus auparavant. Ce sont ces résultats expérimentaux que nous voulons
aborder ici.

2. MODULES DE DIMENSION FINIE SUR k£ [X, Y](X™ X Y, Y"),

Nous désignons par k£ un corps commutatif, et nous nous intéressons
en fait aux modules de k-dimension finie sur 'anneau k [[X, YTI(X Y).
Un tel module consiste en la donnée d’un k-espace vectoriel de dimension
finie M et de deux endomorphismes x,y tels que xy = yx = 0 et
x™ = y" = 0 pour m et n assez grands.
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On peut associer a toute suite ny, n,, ..., n, d’entiers naturels >1 un
module dit de premisre espéce et d’espace sous-jacent k' *"17 ¥ Nous
explicitons les endomorphismes pour I'exemple de la suite 2,2, 3, 1. Si
€o, €5, ..., €g est 1a base naturelle de k' 2723 %1 x envoie e, sur ey, e; sur e,,
e, sur 0, e; sur 0, ¢, sur es, ..., e; sur 0, eg sur 0, tandis que y envoie ¢, sur 0,
e, sur 0, e, sur e, e; sur ey, e, sur 0, ..., e; sur eg et eg sur 0 (se reporter a
la figure ci-dessus). Les modules ainsi obtenus sont tous indécomposables,
c’est-a-dire qu’ils ne s’écrivent pas comme somme directe de sous-modules
non nuls.
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On peut construire des modules de 2¢ espéce a partir d’un mondme
« non commutatif » en x et y~! et d’un espace vectoriel /' muni d’un auto-
morphisme ¢. Au monéme x? y~ ! xy~2 correspond par exemple le module
d’espace sous-jacent V2t1¥1¥2 = 6 x et y opérant sur les différents
facteurs de ¥ comme I’indique la figure suivante

v y=id 4y

x=1id M/// \\\¥= 0
\I

V

X | 7
y=id \ /x=id

e
v x=id * u

(ne pas perdre de vue que xy = yx = 0). Si 'on tient & obtenir une liste
irrédondante de modules indécomposables de 2¢ espéce, il faut évidemment
supposer que ¥ n’est pas somme directe de 2 sous-espaces non nuls stables
~sous o. Des mondmes admissibles il faut en outre exclure les puissances,
par exemple y ™1 xp~! x = (3~ 1x)?, et il convient de ne pas distinguer entre
- 2 mondmes déduits I'un de 'autre par permutation cyclique, par exemple
entre x2y txy 2et y i x2y txyT L

Gelfand et Ponomarev ont pu démontrer que tout module de dimension
finie sur k [[X, Y]]/(X Y) est une somme directe de modules indécompo-
sables, de premiere ou de deuxiéme espéce [2]. L’interét de cet énonceé réside
en particulier dans le fait que, d’apreés Drozd, tout quotient de dimension
finie de k [[X, Y]] a lui-méme un quotient de la forme k[X, Y]/
(X2, X Y? Y?), & moins qu’il ne soit isomorphe & 'un des anneaux
suivants

k[X,Y]/(X™, XY, Y") ou k[X,Y]/(X™ XY,Y" X"—AY").

- (Nous supposons ici k algébriquement clos de caractéristique # 2). Dans
le deuxiéme cas, Gelfand et Ponomarev nous fournissent une classification
- compléte des modules de dimension finie. Dans le premier cas, Drozd peut
“montrer qu’une telle classification est hors de notre portée, dans la mesure
- ol la connaissance des modules sur k [X, Y1/(X?, X Y2, Y3) impliquerait
celle des modules sur toute algébre de type fini.
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3. REPRESENTATIONS MODULAIRES
DES GROUPES FINIS ([3], [5])

Soient k£ un corps algébriquement clos et G un groupe fini. On sait que
I'algébre k [G] du groupe G contient comme base sur k les éléments de G,
le produit de deux tels éléments dans k [G] étant le méme que dans G. De
plus, toute structure de £ [G]-module sur un espace vectoriel V' est déterminée
par la donnée des automorphismes v |- g - v de V, g € G ; elle équivaut par
conséquent a la donnée d’'un homomorphisme de groupes G — GL (V),
si GL (V) désigne comme d’habitude le groupe des automorphismes
linéaires de V.

Lorsque k est de caractéristique 0, le théoréeme de Maschke nous dit
que tout k [G]-module est une somme directe de k [G]-modules simples.
Dans ce cas, les modules indécomposables coincident donc avec les modules
simples, c’est-a-dire les modules S n’ayant pas d’autres sous-modules que 0
ou §. La détermination explicite de ces modules simples peut soulever des
difficultés considérables, mais que nous voulons taire ici ! Du point de vue
de la classification des indécomposables, nous considérons notre probléme
comme résolu si nous pouvons le ramener au probléeme de la classification
des modules simples.

Supposons donc k de caractéristique p > 0. On sait que tout groupe
fini G d’ordre n = p®¢q, avec g premier a p, contient des sous-groupes S
d’ordre p® et que tous ces sous-groupes sont conjugués entre eux; ce sont les
sous-groupes de Sylow. Par exemple, si G = GL (m, F,,) est le groupe
linéaire d’ordre m a coefficients dans le corps fini & p® éléments, les matrices
triangulaires (a;;) telles que a; = 1 et q;; = 0 pour i > j forment un
p-sous-groupe de Sylow de G.

Kasch, Kneser et Kupisch ont pu montrer en 1957 que le nombre des
classes d’isomorphisme de k [G]-modules indécomposables est fini si et
seulement si les p-sous-groupes de Sylow de G sont cycliques. Ce résultat
est relativement facile. Mais on a dii attendre jusque 1969 pour une descrip-
tion précise des indécomposables dans le cas cyclique (Kupisch, Janusz).
Dans le cas du groupe linéaire, cette description s’applique au cas m = 2
ets = 1.

Comme la description générale est assez ardue, nous ne voulons expliciter
que le cas particulier ou G contient seulement un p-sous-groupe de Sylow S,
nécessairement normal dans G. Ceci a lieu par exemple lorsque G est le |

a b |
groupe des matrices (O d) a coefficients dans ¥, = Z/pZ. Il y a alors un
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complément K de S dans G, c’est-2-dire un sous-groupe tel que S N K
= {1} et S- K = G. Si o désigne un générateur de S = {1,0,0% ..., 71}
= ¢Z/P*Z Popération de K sur S par automorphismes intérieurs est donnce
par une formule du type

xox ! =" avec xeK et y(x)eZ | p°Z.
L’opération induite de K sur k [S] laisse stable le drapeau
k[S] 2 k[S](c—1) o k[S](e—1)*...

d’ott I'on déduit lexistence d’un élément n ek [S](e—1), congru a
¢ — 1 modulo (¢ —1)* et tel que

xnx™! = y(x)n pour tout xe K

(choisir un supplémentaire de k [S] (6 —1)? dans k [S] (6 — 1) stable sous K).

Considérons maintenant I’ensemble & des classes d’isomorphisme de
K-modules simples. Pour tout e e & nous choisissons un module simple
E (e) dans la classe e et nous notons ,E (e) le K-module ayant méme espace

sous-jacent que E (e), la nouvelle opération * de K étant reliée a I’ancienne
au moyen de la formule

xX*m = y(x)x -m.

On obtient ainsi une opération (n,e)l— x"-e de Z sur & telle E (x"e)
5 E (1" 'e). Les orbites de Z dans & sont, comme nous allons le voir,
reliées aux G-modules indécomposables.

Partons d’une orbite e = y" - e, x e, x> e, ..., x" 1 -e de Z dans & et
d’une « couronne » de hauteur < p? de r espaces vectoriels. Une telle
couronne est par définition un diagramme d’espaces vectoriels de la forme
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a - , "
avec f¥ = fo fo..of=0. A ces données nous associons un G-module
d’espace sous-jacent

i=r—1

S E(Xie) R Vi
i=0

L’opération de K est induite par celles de K sur les modules simples
E (x'e). L’opération de o e S sur les différents facteurs E (y'e) ®, V; est
déterminée si ’on connait celle de 7, qui est elle-méme décrite par la figure
ci-dessous

Elel@V,
T = u ®f = T
e edav__, E(XelaV,
T o= ugF T lu@F -
_ .
X" Celev £ ((Ce)eV,

ol les u: E (y'e) 3 E (y'"'e) sont des K-isomorphismes choisis une fois
pour toutes.

Le G-module ainsi construit est indécomposable si et seulement si notre
couronne d’espaces vectoriels est indécomposable. Ceci a lieu s’il existe un

v eV, dont les itérés non nuls v, f (v), f? (v),... forment une base de
r—1

@ V;. On peut montrer qu’on obtient ainsi tous les G-modules indé-
Jj=0

composables.

4. ESPACES VECTORIELS
MUNIS DE SOUS-ESPACES. ([4], [6])

Soit O un ensemble ordonné, Une k-représentation linéaire de O
consiste en la donnée d’un k-espace vectoriel de dimension finie V et d’une
famille de sous-espaces (V(i))ieo tels que V(i) =V (j) sii £j. La somme
directe de deux représentations V'’ et V" a pour espace sous-jacent
V'@ V7" etest telle que

V'evHi =V 3o e v i
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pour tout i. Nous nous intéressons ici aux représentations indécomposables,
cest-a-dire aux représentations non nulles qui ne sont pas somme directe
de 2 sous-représentations non nulles.

Kleiner, Nazarova et Roiter ont pu montrer que le nombre de classes
d’isomorphisme de représentations indécomposables était infini si et
seulement si O contenait un sous-ensemble ordonné plein (c’est-a-dire
muni de Pordre induit) de I'un des types suivants:

{1, 2, 3, 4} (4 points incomparables deux a deux)

{1 <2,3<4,5<6} (3 couples incomparables d’¢léments compa-
rables)

{1<2<3,4<5<6,7}
{1<2<3<4<5,6<7,8}
{1<2<3<4,5<6>7<38}.

Cet énoncé joue un role essentiel dans leur démonstration des conjectures
de Brauer-Thrall, dont nous allons donner le principe.

5. LE CONJECTURE-THEOREME
DE BRAUER/THRALL-NAZAROVA/ROITER ([7]).

Soit 4 une algébre de dimension finie sur un corps algébriquement clos k.
Pour tout entier naturel n, nous posons v, (n) = nombre de classes d’isomor-
phisme de A-modules indécomposables de k-dimension »n. La conjecture de

Brauer-Thrall dit que, si Y. v, (n) est infini, il y a une infinité de n tels que
neN

v, (n) = oo. En 1968 Roiter a pu fournir un premier élément de réponse a
cette conjecture en montrant de maniére simple et élégante que si

Y v, (n) est infini, il y a une infinité de n tels que v, (1) # 0. Une
neN

démonstration compléte de la conjecture de Brauer-Thrall n’a été publiée
qu’en 1974 par Nazarova et Roiter. La démonstration reste technique et
épineuse. Nous en développons seulement le principe:

Raisonnant par récurrence sur la dimension de 4, nous pouvons supposer
que Y vy (n) < oo pour tout vrai quotient B de 4, et que v, (1) < oo pour

presque tout #. Il s’agit alors de montrer que ) v, (1) < co.

n
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Pour cela nous choisissons un idéal a gauche minimal S de A4 et, pour
tout 4-module M, nous notons S (M) la somme des sous-modules de M
isomorphes a S. Dans la suite exacte

O— S(M)— M—> M/S(M)— 0

M/[S (M) est un module sur ’anneau résiduel A" = A/S (4). Si nous
fixons la classe d’isomorphisme T de S (M) et la classe M ' de M/S (M),
nous obtenons ainsi une injection

{ classes d’iso. de A-modules M telles

que S (M) 3T et Mjs (M) = M’} —— Aut T\Ext 4 (M, T)/Aut M,

ou Pensemble d’arrivée est Iensemble des orbites du groupe AutT
X (Aut M ")°? dans le groupe des extensions de 7 par M ’. L’'image de
I'injection est formée des classes d’extensions E telles que 7= S (E). On
a donc

[ classes d’iso. de 4-modules M telles

)

lque S (M) T et M/S(M)5 M } =, Aut T\ Ext (M ', T)/Aut M’

lorsque S (M ) = 0, ce qui est toujours le cas si Ext § (S,.S) = 0.

Pour simplifier nous supposons dans toute la suite du raisonnement que
Ext ; (S, S) = 0.
Le module semi-simple 7 peut s’écrire sous la forme 7" = § ®, V, ou
V est un espace vectoriel de dimension finie. On a alors Aut 77 = Aut V et

Ext;(M',T) = Exti(M',S®V)zExt;(M",S) ®,V 3
5 Hom, (V*,Ext, (M, S)).

Cette derniére formule a ’avantage de bien mettre en évidence ['opération
de AutV. On voit par exemple que deux applications linéaires
f, g€ Hom, (V *, Ext 4 (M, S)) appartiennent a la méme orbite de Aut V'
si et seulement si Im () = Im (g).

Pour pouvoir également tenir compte de I’action de Aut M ' Nazarova
et Roiter sont amenés a introduire la catégorie « vectorielle» V qui suit:
les objets de V sont les A’-modules de longueur finie; si M’ et M 'y sont
deux tels objets, Homy (M ', M ;) est 'image de Hom,, (M ', M’) dans
Homy, (E p, E py) lorsque Pon pose £, = Ext T S).

La catégorie V est additive, k est contenu dans ’anneau des endomor-
phismes du foncteur identique, chaque objet de V est une somme directe
finie d’indécomposables, le nombre de classes d’isomorphisme d’indé-
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composables est fini, et ’anneau des endomorphismes d’un indécomposable
est local. En outre, la catégorie V est reliée a celle des k-espaces vectoriels
de dimension finie par un foncteur k-linéaire fidéle E : M " — E ;.. Nous
résumerons ces propriétés en disant avec Nazarova et Roiter que le couple
(V, E) est une catégorie vectorielle.

Lorsque (V, E) est une catégorie vectorielle, nous pouvons considérer
les couples (M ', V) formée d’un objet M ' de V et d’un sous-espace vectoriel
V de E (M'). On obtient un tel couple en associant par exemple a tout
feHom, (V*, Exty (M, §)) le sous-espace Imf de E,, = Ext j (M, S).
Ces couples forment eux-mémes une catégorie additive. Pour tout M "€V,
nous désignons par v (M ') le nombre de classes d’isomorphisme de couples
indécomposables de la forme (M ', V).

La conjecture de Brauer-Thrall résulte alors de 1’énoncé suivant de
Nazarova et Roiter:

THEOREME. Soit (V, E) une catégorie vectorielle telle que v (M ') < oo

pour presque tout objet M " de V. Alors ), v(M') < oo.
M eV

Pour démontrer ce théoréme, Nazarova et Roiter montrent d’abord
combien I’hypotheése est draconienne. Elle implique par exemple que
dim, £ (M ') £ 3 pour tout indécomposable M’ V. Il réduisent ensuite
le probléme au cas ou dim, E (M ") < 1. Dans ce dernier cas on retrouve le
probleme du paragraphe 4. Soit en effet O I’ensemble des classes d’indé-
composables de V. Pour tout i/ € O, soient M; un représentant de la classe
i et k; = E (M;). On définit une relation d’ordre sur O en posant i > j
lorsque Homy, (M;, M ;) # 0.

A tout couple (M ', V) est alors associé une représentation linéaire de
O d’espace sous-jacent V. Il suffit de poser

V(i) =VoEM)()) et E(IM)(j) = . ImE(f),

ou f parcourt les morphismes M; - M ' de V tels que j < 7. Il reste alors
a voir, ce qui est relativement facile, que I"application (M ', V) |- (V( M)
induit une bijection

jeO

o—

classes d’isomorphisme | classes d’isomorphisme |

de couples indécompo- ~ de représentations liné-

sables (M ', V) tels que aires indécomposables I
J

V #0 d kdeO
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