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Ceci montre l'existence d'un isomorphisms entre le groupe VjU2d+1
et le groupe U2/U2d+La proposition sera alors une conséquence du lemme
de Herbrand:

Lemme de Herbrand. Soit cp : G -> Gf un homomorphisme de groupes et
soit H un sous-groupe de G.

1. Les deux assertions suivantes sont équivalentes :

a) le sous-groupe H est d 'indice fini dans G ;
b) les indices (cp (G) : cp (H)) et (Ker cp H n Ker cp) sont finis.

2. Si les assertions ci-dessus sont vraies, alors :

0G:H) (<p (G) : <p (H)). (Ker cp : H n Ker cp).

Pour une démonstration, voir [4] § 63.

Appliquons ce lemme au groupe U, à son sous-groupe Ud+ l et à l'homo-
morphisme <p : U -> l/2(xh>x2); puisque —1 appartient à Ud+l, on a

l'égalité

(U:Ud+t) (U2:U2d+1)
et les égalités:

(E/ : t/M+1) (£/ : ü„+1) (l/J+1 : l/2i+1) - (U : F) (F: £7M+I).

On en conclut:

(U:V) (Ud+1 : U2d+l) 2«.

4. Résultats propres au cas p - 2 et e impair

4.1. Théorème

Supposons e impair et soit ue U. Alors :

1. Si ô (u) > e, u est somme de deux carrés dans A ;

2. Si ô (u) e, il existe a, b e U tels que u a2 + 2b ; avec ces

notations, les trois assertions suivantes sont équivalentes :

a) l'unité u est somme de deux carrés dans A (ueV2) ;

b) la trace absolue de (b/a2) appartient à 2Z2 ;

c) il existe ceU tel que b a2 (c2 — c).

De plus :
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3. Si f est pair on a s (A) 2, V V3 et t (A) — 3;

4. Si f est impair on a s (A) 4, V V4 et t (A) 4; pour que u

appartienne à K4 mais non à V3, il faut et il suffit que — u soit un carré dans A.

La première assertion est une répétition de la seconde assertion de la

proposition (3.1.). Avant d'examiner les assertions suivantes faisons quelques

remarques. Tout d'abord -1 n'est pas un carré dans K puisqu'on a <5 (— 1)

e en vertu de la dernière assertion de la proposition (1.3.2.).
Ensuite remarquons que si v est une unité de Q2 (0 (i2=~l)> alors

NQ2(i)/Q2 (v) e 1 + 4Z2. En effet, une base d'entiers de Q2 (/) est { 1, i}
et si v a + iß, alors NQm/Q2 (v) <*2 + ß2, l'un et l'un seulement des

nombres a, ß étant une unité de Z2.
Signalons que relativement à l'extension résiduelle K/F2 la trace tr : K

-» F2 est un homomorphisme surjectif de groupes additifs dont le noyau est

{ u | ppy g K, u y2 —y } (cf. [2] page 8, prop. 9). Ceci étant dit, soit u

une unité de A dont le défaut quadratique est e. Si on a u a2 + 2b et si u

est somme de deux carrés d'entiers, alors la norme de u est, dans l'extension

K/Qi, la norme d'une unité de Q2 (/).
On a alors:

Nr/q2(w) — [^x/Q2(a)]2 [1 + ^ TrKjQ2 (b/a2) +4K] (he2Z).

Puisque a est une unité de A, on a [NK/Q2(a)]2 g 1 + 8Z2. La deuxième

remarque faite ci-dessus permet alors de conclure que TrK/Q2(b/a2) e Z22.
Maintenant, si l'unité u a2 + 2b, (beU), satisfait à TrKjQ.fbja2)

g2Z2, il existe c0eK tel que la classe de (b/a2) modulo ^3 soit cl~c0.
L'application du lemme de Hensel au polynôme X2 — X — (b/a2) permet
de conclure à l'existence d'une unité c de A telle que b a2 (c2-c).

Enfin, s'il existe c e U avec b — a2 {c2 - c) on peut écrire u — a2 + 2b

sous la forme u a2 [c2+ (c-l)2] et u e V2-

3. Si / est pair, on remarque que K contient une racine primitive
cubique j de l'unité. On a -1 ;4 + j2 et s (A) 2. Si u e U satisfait à
S (u) > £ on peut écrire u a2 + 2b (aeU, beA) et u » (a + b/a)2 - (b/a)2
eV3. L'assertion sur t (A) sera démontrée plus loin (cf. Proposition 4.2,
remarque).

4. Remarquons que TrK/Q2(-1) -ef$ 2Z2. Par conséquent -1
n'est pas somme de deux carrés dans A, ni même de trois (vérification
facile). Donc la forme quadratique X2 + X\ + X\ + X\ n'est pas
isotrope sur K. On a bien -1 - 1 + 1 + 4 - 7e F4, donc - U2 c VJV3.
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Maintenant soit u g V tel que u n'appartienne ni à U2 ni à - U2. Pour

toute v$K2 soit G (v) le sous-groupe de K formé par les normes dans

l'extension K(^Jv)/K. D'après la proposition (1.2.) les groupes G (u) et

G(-l) sont d'indice 2 dans K. Il existe donc x e G (u)/G (-1); puisque
— 1 ^ G (— 1), il existe y, v, w,1 g K non tous nuls tels que y2 — uv2

— (w2 + t2). On a v ^ 0 et on déduit de là que u est somme de trois carrés
dans K. Reste à montrer que u appartient à V3.

Dans un premier temps remarquons que si u appartient à V/V2, alors
— u appartient à V2. En effet, quitte à multiplier u par le carré d'une unité

on peut supposer que u 1 + 2b avec b e A et TrK/Q2 (b) g 1 + 2Z2 ; on a

alors -u 1 -2(6+1) et TrK/Q2(- (6+1)) -e/+ TrK/Q2{~b) e 2Z2.
Dans un second temps on peut écrire w sous les deux formes

u 7T
2" (ax + a2 + a3) — (6^ + 62)

avec öl5 ö2, a3, 6l5 62 g A. Si on suppose l'entier n minimum on peut
supposer que est une unité. Si a2 et a3 appartiennent à ^3 alors n 0 et on a

ueV3. Supposons donc que a1 et a2 sont des unités. De l'égalité ci-dessus on
déduit la suivante:

(äq +b17in + 627in)2 + al + a\ — 2nn(a1b1 +a1b2 — 61627i") — 0;

si on avait n > 1, l'entier a\ — 2Tcn (a1bi + aib2 — b1b2nn) serait somme de

deux carrés d'entiers et la forme X\ + X\ + X\ + X\ serait isotrope sur
K. Contradiction. On a donc n 0 et ueV3.

De tout ceci on déduit évidemment: V V4 et VJV3 —U2.

4.2. Proposition

Soit u une unité de A, On a les résultats suivants :

1. Le plus petit entier pair 2k tel que un2k appartienne à A2 est max
[0, e — ô (u)] ; pour tout entier pair 21 > max [0, e — S (m)], un21 est somme de n

carrés dans A si et seulement si u est somme de n carrés dans K;
2. Le plus petit entier impair 2k +1 tel que un2k+1 appartienne à A2

est e ; pour tout entier impair 2/+ 1 > e, un2l + 1 est somme de deux ou de trois
carrés dans A selon que un est ou n 'est pas somme de deux carrés dans K.

1. Si ô (u) > e on a u e V d'après le théorème (4.1.). Si ô (u) < e

on a une~~ô(u) a2ne~ô{u) + nev avec a, v g U et l'assertion initiale résulte
de l'assertion 1) de la proposition (3.1.).
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a) Le cas / pair: si/est pair, tout élément de A est somme de trois

carrés dans K puisque s (A) 2. Si S (u) > e, on a u e V2 ét il n'y a rien à

démontrer. Si ô (u) e, il suffit de montrer que si u est somme de deux

carrés dans K, alors u appartient à V2. Si u est somme de deux carrés dans K,

il existe v e N,a,v,xeU,yeA tels que: un2v a2n2v + 2vn2v x2+y2;
si on avait v > 0, y serait une unité et on aurait:

— 1 x~2 {(y +ay~1nv)2 — 2anv — 2a2n2v — 2nvv }

ce qui impliquerait <5 (— 1) > e. Contradiction puisque ö (— 1) e d'après
la dernière assertion de la proposition (1.3.2.). On a donc v 0 et u e V2.

Enfin, dans le cas où S (u) < e, on peut écrire de manière analogue

u a2 + ^7ia(") avec a,v e U ;

si w est somme de deux carrés dans K, soit v le plus petit entier tel que un2v

soit somme de deux carrés dans A. Il existe x,yeU tels que un2v x2

+ y2, et on obtient:

— 1 x~~2 { —y +a7iv)2 — V7ï2v+ô(u) — 2nv (ay —a27iv } ;

puisque <5 — 1) e, on a bien 2v + <5 (u) e.

b) Le cas / impair: la proposition est vraie pour n 1. En ce qui
concerne le cas n 2, elle se démontre comme dans a). Si w appartient à

V3\V2, il n'y a rien à démontrer. Si t/ e U\V est somme de trois carrés dans

K, soit 2v le plus petit entier pair tel que un2v soit somme de trois carrés dans

A. Il existe x e U, y, z e A tels que utl2v x2 + y2 + z2 et on a:

— 1 x~2 { (y + z +anv)2 — vn2v+ô(u) — 2yz — 2anv (y + z +anv) }

Si yz e ^j3, on a immédiatement 2v + ô (u) e puisque v > 0.

Si yz e (/, on a nécessairement 2v + ô (u) > e et on peut écrire :

-1 x~2 {(y +any)2 + z2 -vtl2v+ô(u) - 2a27i2v - 2aynv}

Si on avait ô (u) + 2v > e, on aurait z2 — vn2y+ô{u) — 2a2n2v — 2aynv
e V2 et -1 serait somme de trois carrés dans A. Contradiction.

Enfin, si u n'est pas somme de trois carrés dans K, on a u e - U2 et u
est somme de quatre carrés et pas moins dans A.

2. La première assertion résulte de la proposition (3.1.). De plus un
est somme de trois carrés dans K quelle que soit la parité de /, car - un
n'est pas un carré.
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Si / est pair, il existe v e U tel que une 2v, et on a une (v + l)2
— (1 + v2), somme de trois carrés dans A. De plus si un est somme de deux
carrés dans K et si 21+ 1 est le plus petit entier impair tel que un2l + 1 soit
somme de deux carrés dans A, il existe deux unités a, b de A telles que
a2 + b2 un2l + 1. On a alors -1 a~2 { b2 + un2l+1 } et on conclut

que 21+ 1 e.

Si /est impair, soit 2/+ 1 le plus petit entier impair tel que un2l+1 soit

somme de trois carrés dans A. Il existe x e A, y, z e U tels que un2l + 1

x2 + y2 + z2, ce qui donne

— 1 y~2 {z2 — un2l+1 + x2} ;

puisque s (A) 4, on a 21+ 1 < e d'après le théorème (4.1.). Par ailleurs
on a 2/+1 > e d'après la proposition (3.1.). Donc 2/+1 e. Enfin, si

un est somme de deux carrés dans K, on raisonne comme dans le cas / pair.

Remarque: Il est clair d'après ce qui précède que t (A) 4 si / est

impair. Par ailleurs, si / est pair on a F3 ^ V2, ce qui montre que t (A)
3. En effet, l'application trace de K dans F2 est surjective: il existe

u e U tel que la trace de la classe de u soit 1 dans F2. Alors 1 +2ue V3/V2.

4.3. Exemple numérique

1. Prenons d'abord l'exemple du corps K Q2 (^6). C'est une extension

totalement ramifiée de degré 3 de Q2 dont une uniformisante n est

précisément <^/%. Remarquons qu'on a les égalités:

(U : V) 2 et (E: V2) 2 (E2 : U2).

Un système, de représentants de U modulo V est { + 1, 1 +^/6 }•

Un système de représentants de V modulo V2 est { 1, -1 }.
Un système de représentants de V2 modulo U2 est { 1, 1 +2^/ß }.

On a évidemment 1 + 2^/6 1 + (^ô)4 ~ 4^6- Considérons
maintenant l'unité 1 + Cette unité a pour défaut quadratique 1, de même

que son opposé. On en déduit que le plus petit entier pair tel que n2k (1 +n)
soit somme de carrés dans A est 2k 2. De plus n2k (1 +n) et —n2k (1 +n)
sont tels que l'un est somme de deux carrés dans A et pas moins et l'autre

somme de trois carrés et pas moins. Effectivement on a les égalités:

-ti2(1+7i) -n2-6 9n2 -1 + 1 - IOti2
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Dans Z2, l'une des racines carrées de — 7 est de la forme 1 + 4a et

on a:

-n2 (1 +7i) (1 +4a — 3n)2 — 6n — 12an + 1 — IO712

(1 +4a — 37i)2 + (714 + 1 — 2tc2) - 1271 - 12an - %%2

-712 (1 +71) (1 +4a -37l)2 + (1 -TL2)2 - 1271 - 12(271 - 8712

Ceci permet d'affirmer que —n2 (14-71) est somme de deux carrés dans A

et que n2 (1 +71) est somme de trois carrés et pas moins. Une représentation
s'obtient par exemple à partir de l'égalité.

7z2 (1 +7r) 712. + 6 (71 +2)2 + 2 (1 — 47i)

Ceci étant, le plus petit entier impair tel que (1 +71) n2k+1 appartienne à Â2
est e 3. Mais n3 (1 + n) — 6 (1 + 71) (- 6) (- (14- n)). Or dans Z2, - 6

1 - 7 est somme de deux carrés et on vient de voir que -(14-71) est

somme de deux carrés dans K. Par conséquent 6 (1 +71) est somme de deux

carrés dans A. De façon «semi-explicite» on peut écrire —(14-71) « c2

+ d2 avec ne et nd dans A tels que ne nd 1 mod ^3. On a alors:

6(1 4-71) [1 4-(l 4-4a)2] [e2 4-d2] (e +d + 4ad)2 + (c — d — 4ad)2

et chacun des termes figurant entre parenthèses est un entier de K.

2. Pour obtenir un exemple où / est pair, considérons maintenant le

corps K Q2 (^y6, j) où j est une racine cubique de l'unité. Une
uniformisante est encore ^/6. Mais dans ce corps 1 4- ^6 est somme de deux
carrés. Une unité qui est somme de trois carrés et pas moins est par exemple
1 + 2 (j4-^/6) puisqu'on a

TrK,Q2(j + ^/6)3 TrQ2iJ)/Q2(j) -3.
On a d'ailleurs:

1 + 20 + ^6)(j2-$'6)2

(.r-f 6)2 + U2 + (1 ^6)2.

Remarquons enfin qu'on a (U : V)=4 dans ce cas et qu'un système de

représentants de U modulo V est par exemple:

{1,1 +-^6,1 +)<%/61 +j2 $/6}
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