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3. Etude du cas p 2. Résultats généraux

Ce paragraphe regroupe quelques résultats valables pour tous les corps
dyadiques.

3.1. Proposition

Soit u une unité de A, anneau des entiers du corps dyadique K (extension
finie de Q2J.

1. Le plus petit entier impair 2k + 1 tel que un2k + 1 soit somme de carrés

d'entiers est 2d+ 1 ; (d est la partie entière de e/2).

2. Pour que u soit somme de carrés d'entiers (weF), il faut et il suffit
qu 'on ait ô (u) > e. De plus, si on a ô (u) > e + 1, alors u est somme de deux
carrés d'entiers.

Remarquons que - 1 est somme de carrés dans A, ce qui permet d'affirmer

que A2 est bien un sous-anneau de A: dans l'anneau Z2 des entiers

dyadiques, — 7 est un carré car 2 est une uniformisante et — 7 est congru à 1

modulo 8. Il en résulte que —1 — 1 + 1+ 4 —7 est somme de quatre carrés
dans A. Ceci étant:

1. Pour tout élément a de A on a l'égalité 2a (a+1)2 — (a2+l);
par conséquent 2a est somme de carrés dans A. Plus précisément, si b est

une racine carrée de —7 dans Z2, on a l'égalité obtenue à partir de la
propriété de multiplicativité de la norme des quaternions:

2a (1 +a)2 + (1 +a)2 + (1 — a)2 + (2 -y ab)2 + (2a — b)2

Par ailleurs, il existe une unité s de A satisfaisant à ne 2s. Dans ces conditions

on a bien une e A2 pour toute unité u de A. En particulier, on a

un2d+1 e A2 pour toute unité u de A.

Réciproquement, soit u une unité de A,2k+l un entier impair tels qu'on
ait un2k+1 e A2; il existe une famille finie { al9 aNj d'éléments de A
telle que:

un2k+1E ß J
f E af-2 y Oflj.

7=1 \J= 1 / 1 i=:i< ji=N

Comparons les valuations ^3-adiques de chacun des termes écrits ci-dessus ;

N

on a vK (;un2k+1) > min { 2vK £ afi, e + vK £ a}afi }. On ne peut
1 l^i< j^N
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N

avoir 2vK( Ya,) < e + vK(£ a/z,) car est impair.
J=1 1 t=i<ji=N

On en conclut que 2k +1 > e et de façon plus précise que k est supérieur ou

égal à d.

2. Si ue U est une somme de carrés dans A, il existe une famille finie
d'éléments de A, soit { au aN }, telle que

u y a2j Y«/)2 - 2 E ;

j l j l i<j
ceci prouve que ô (u) est supérieur ou égal à e. Réciproquement, si ö (u)
est supérieur ou égal à e, il existe une unité v de ^ et un entier b tels que
u v2 + neb; or on vient de voir que neb est somme de carrés dans A.

3. Si l'unité u satisfait à <5 (u) > 1, il existe une unité v de A et un
entier b tels qu'on ait:

u v2 + 27zb -v2 [1 + 1 + 4-7ibv ~2]

De l'égalité (CAR) obtenue au paragraphe (1.3.2.) on déduit:

1 00 (2n\
U -V2{1 + [1 + Y-i)""1n"b"v~2"]2},

2 «=i \nj
1 00 /2n\
U=V2{[1+ Yi-W^i2 »=1 \ »,/

1 00 /2ti\
2 n l \n J

Alors uest somme de deux carrés dans A puisque pour tout n > 1

est un nombre pair.
3.2. Théorème

Soit Tla sous-extension non ramifiée maximale de K et soit B l'anneau des
entiers de T. Alors :

1. Les anneaux B et B2 coïncident, c'est-à-dire que tout entier de T est
somme de carré d'entiers de T.

2. L'anneau A2 est un anneau local, nœthérien, de dimension 1 ; son idéal
maximal est ^3 n A2. En tant que B-module, A2 est libre de rang e. En tant
que B-algèbre, A2 est égal à B [n2, 2n],
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3. Avecles notations 1, on a la double égalité:

(A : A2) (U:V) 2d'

1. Puisque B est non ramifié sur Z2, 2 est une uniformisante de B;
tout élément non nul de B s'écrit donc de façon unique sous la forme

2"(l+2ß) avec n e N et a e B, et on a dans B : l+2a (a+ l)2 + a2

+ a2+ 4a2 + (v/-7; fa2.

2. L'anneau A est une extension totalement ramifiée de B; il en résulte

que n, uniformisante de A, est racine d'un polynôme d'Eisenstein à coefficients

dans B; en d'autres termes, il existe une unité b0 de B et (e — 1)

éléments bu be^1 de B tels qu'on ait:

e- 1

71e 2 Yj bj7LJ

j=0

Par ailleurs, on sait que A B [n] et que la famille { 1, tz, 7ie~x } est

une base du iLmodule A. On va montrer que si e est pair, (resp. impair),
la famille { 1, 2ti, tl2, 7ie~2, 2%e~1 } (resp. { 1, 2%, tl2, 2ne~2, 7ie~1 })
constitue une base de A2 considéré comme ^-module. En premier lieu, il
est clair que B est un sous-anneau de A2 et que la famille considérée est

libre sur B.

Remarquons qu'on peut choisir comme système R de représentants non
nuls de A modulo ^3 un ensemble d'unités de B, ces unités étant elles-mêmes

des carrés dans B. (On a en effet K K2 et toute unité de B est congrue à

un carré modulo 2B.) Tout élément a de A admet donc un développement
de Hensel de la forme:

co

a Yj r2jnJ' (r 2jeR u { 0 } Pour tout J e N) •

j= o

En particulier, il résulte de la proposition 3.1.1.) que tout a e A2 admet un

développement de Hensel de la forme:

d co

aË r2jn2J +n1 + 2d y r2j + 1 + 2dnj.
o

Remarquons alors les détails suivants:

a) L'ensemble A2 est un fermé de A pour la topologie ^-adique. Ceci

est encore une conséquence de la proposition 3.1.1.).

b) L'ensemble B [tl2, 2tl] est un fermé de A pour la topologie ^3-adique.
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Or sur B [n2, 2tc] cette topologie coïncide avec l'unique prolongement à

cet espace de la topologie 2-adique de B. En particulier B [7t29 27i] est un
fermé de A2.

Il reste en définitive à prouver que B [n2, 2n] est dense dans A2. Pour
cela, il suffit de montrer que pour tout ne N, ne+n est combinaison linéaire
à coefficients dans B des éléments de la famille considérée plus haut. Faisons

la démonstration dans le cas e pair; (dans le cas e impair, la démonstration
est analogue):

Les remarques faites au début de la démonstration montrent que la

propriété à démontrer est vraie pour n 0. De plus, on a les égalités:

7te+1 2n£ bfiJ 2 Y, b2j+i n2U++ £
j=*0

^ ^
j=0 j=0

jre+t 2b0be-t + I (b2j-1+2be„1b2J)i12<

ä-x
+ 2 n Y(b2j + 2be_1b2J+1)n2J ;

j=0
e-3

7ze+2 2be-1ne+1 + 2foe_27re + Yj 2bj7ij+2
j 0

A partir de là on raisonne par récurrence sur m pour évaluer ne+2m et
ne + 1 + 2m.

Enfin, puisque B est un anneau de valuation discrète, la ^-algèbre de

type fini B [n2, 2tl\ est un anneau nœthérien; puisque A est un anneau de
valuation discrète entier sur A2, l'unique idéal maximal de A2 est $ n A2.

3. L'égalité (A : A2) 2df résulte de ce que { 1, n,..., n6'1 } est une
base de A en tant que ^-module, tandis qu'une base de A2 comme B-
module est { 1, 2n,..., 2ne 1

} ou { 1, 2n,..., ne~1 } selon que e est pair ou
impair. Reste à démontrer la dernière égalité.

Pour tout n > 1 soit Un le sous-groupe 1 + de U. On sait que (U:U^
2f-1 et que pour tout n > 1 on a (t/„ :[/„+,) 2f. (Pour plus de détails,

voir [4] ou [5].) Il résulte de la proposition 3.1, 1), qu'on a:

v U2.u2d+1.
Montrons qu'on a U2 n U2d+1U2d+1L'inclusion+1 <= U2 n U2d+1
est évidente. Réciproquement, soit xeU tel que x2 1 + an2d+1 avec
ae A. Quitte à changer x en -x on peut écrire x sous la forme 1 + b%2 avec
s > 1 et be A. On obtient alors b2n2s an2d+1 - 2bns ce qui implique

2e > 2d+ 1 et e > d+ 1.
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Ceci montre l'existence d'un isomorphisms entre le groupe VjU2d+1
et le groupe U2/U2d+La proposition sera alors une conséquence du lemme
de Herbrand:

Lemme de Herbrand. Soit cp : G -> Gf un homomorphisme de groupes et
soit H un sous-groupe de G.

1. Les deux assertions suivantes sont équivalentes :

a) le sous-groupe H est d 'indice fini dans G ;
b) les indices (cp (G) : cp (H)) et (Ker cp H n Ker cp) sont finis.

2. Si les assertions ci-dessus sont vraies, alors :

0G:H) (<p (G) : <p (H)). (Ker cp : H n Ker cp).

Pour une démonstration, voir [4] § 63.

Appliquons ce lemme au groupe U, à son sous-groupe Ud+ l et à l'homo-
morphisme <p : U -> l/2(xh>x2); puisque —1 appartient à Ud+l, on a

l'égalité

(U:Ud+t) (U2:U2d+1)
et les égalités:

(E/ : t/M+1) (£/ : ü„+1) (l/J+1 : l/2i+1) - (U : F) (F: £7M+I).

On en conclut:

(U:V) (Ud+1 : U2d+l) 2«.

4. Résultats propres au cas p - 2 et e impair

4.1. Théorème

Supposons e impair et soit ue U. Alors :

1. Si ô (u) > e, u est somme de deux carrés dans A ;

2. Si ô (u) e, il existe a, b e U tels que u a2 + 2b ; avec ces

notations, les trois assertions suivantes sont équivalentes :

a) l'unité u est somme de deux carrés dans A (ueV2) ;

b) la trace absolue de (b/a2) appartient à 2Z2 ;

c) il existe ceU tel que b a2 (c2 — c).

De plus :
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