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3. ETUDE DU CAS p = 2. RESULTATS GENERAUX

Ce paragraphe regroupe quelques résultats valables pour tous les corps
dyadiques.
3.1. Proposition

Soit u une unité de A, anneau des entiers du corps dyadique K (extension

finie de Q, ).

1. Le plus petit entier impair 2k + 1 tel que un
d’entiers est 2d+1; (d est la partie entiére de ef2).

2kt 1 soit somme de carrés

2. Pour que u soit somme de carrés d’entiers (ueV’), il faut et il suffit
qu’on ait 6 (u) > e. De plus, sion a é (u) > e + 1, alors u est somme de deux
carrés d’entiers.

Remarquons que —1 est somme de carrés dans A4, ce qui permet d’affir-
mer que A, est bien un sous-anneau de A: dans ’anneau Z, des entiers
dyadiques, —7 est un carré car 2 est une uniformisante et —7 est congru a 1
modulo 8. Il en résulte que —1 = 1+1+4—7 est somme de quatre carrés
dans A4. Ceci étant:

1. Pour tout élément a de 4 on a I’égalité 2a = (a+1)* — (a*+1);
par conséquent 2a est somme de carrés dans A. Plus précisément, si b est
une racine carrée de —7 dans Z,, on a I’égalité obtenue a partir de la pro-
priété de multiplicativité de la norme des quaternions:

2a = (14+a)*> + (1 +a)*> + (1 —=a)*> + 2+ab)* + (2a—-b)*.

Par ailleurs, il existe une unité & de A satisfaisant a n° = 2¢. Dans ces condi-
tions on a bien un®e A, pour toute unité u de A. En particulier, on a
un®?*l e A4, pour toute unité u de A.

Réciproquement, soit # une unité de 4, 2k + 1 un entier impair tels qu’on
ait un®**1e 4,; il existe une famille finie { ay, ..., ay } d’éléments de A4

telle que:
N N
2
un®**t = 3 aj = < Y aj)z ~2 Y a,a; .
j=1 j=1 1=i<j=N

Comparons les valuations $-adiques de chacun des termes écrits ci-dessus;

N
ona vg (un®** 1) >min { 2vg ( ) a;),e + v () aja;)}. On ne peut
1 1=i<j=N
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N

avoir 2vg ( ) a) <e+ vg( Y aa) car v (un***1) est impair.
J=1 1=i<j=<=N

On en conclut que 2k +1 > e et de fagon plus précise que k est supérieur ou
égal a d.

2. Siue U est une somme de carrés dans A4, 1l existe une famille finie
d’éléments de 4, soit { ay, ..., ay }, telle que

N N
= z as = ( Z a,)* —2.2 a,a;;
j=1 Jj=1 1<J

ceci prouve que 0 (u) est supérieur ou égal a e. Réciproquement, si 0 ()
est supérieur ou €gal a e, il existe une unité v de A4 et un entier b tels que
u = v* + 7°b; or on vient de voir que n°b est somme de carrés dans A.

3. Sil’unité u satisfait a 6 (1) > e+ 1, il existe une unité v de 4 et un
entier b tels qu’on ait:

1
u = 0?4+ 2nb = 57)2 [1+1+4nbv™2].

De I’égalité (CAR) obtenue au paragraphe (1.3.2.) on déduit:
1 . 2 2
— _ ‘Z}2 { 1 + [1 + Z (_l)n—l ( l’l) 7.Enbnv—Zn:IZ} ,
2. n=1 n
2 n—1 27’1 nyn, —2n72
u-v{[1+—2( 1) n"b"v "]
n
2n _
+ [ z (___1)n 1( > "™ 2n]2}

| . . 2n
Alors u est somme de deux carrés dans A4 puisque pour tout n > 1 ( )
n

est un nombre pair.
3.2. Théoréme

Soit T la sous-extension non ramifiée maximale de K et soit B I’anneau des
entiers de T. Alors : |

1. Les anneaux B et B, coincident, ¢ est-a-dire que tout entier de T est
somme de carré d’entiers de T.

2. L’anneau A, est un anneau local, nethérien, de dimension 1 : son idéal
maximal est B N A,. En tant que B-module, A, est libre de rang e. En tant
que B-algébre, A, est egal a B [n?, 2n].
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3. Avec les notations 1, on a la double égalité :
(A:4,) = (U:V) =24

1. Puisque B est non ramifié sur Z,, 2 est une uniformisante de B;
tout élément non nul de B s’écrit donc de fagon unique sous la forme
2"(1+2a) avec neN et ae B, et on a dans B:1+2a = (a+1)* + a®

+ @ + 4d® + (/- 1)a>

2. L’anneau A est une extension totalement ramifiée de B; il en résulte
que 7, uniformisante de A4, est racine d’un polyndome d’Eisenstein a coeffi-
cients dans B; en d’autres termes, il existe une unité b, de B et (e—1) élé-
ments by, ..., b,_; de B tels qu'on ait:

e—1

=2 bnl.

j=0
Par ailleurs, on sait que 4 = B [n] et que la famille { 1, =, ..., n°~* } est
une base du B-module 4. On va montrer que si e est pair, (resp. impair),
la famille {1, 2x, n°, ..., n°7%,22°71 } (resp. {1, 2n, 7% ..., 27°" %, n°" ' })
constitue une base de A, considéré comme B-module. En premier lieu, il
est clair que B est un sous-anneau de A% et que la famille considérée est
libre sur B.

Remarquons qu’on peut choisir comme systeme R de représentants non
nuls de 4 modulo B un ensemble d’unités de B, ces unités étant elles-m&mes
des carrés dans B. (On a en effet K = K? et toute unité de B est congrue a
un carré modulo 2B.) Tout élément a de A admet donc un développement
de Hensel de la forme:

a= Y r’nm’ (r’¢eRuU {0} pourtoutjeN).
i=o0

En particulier, il résulte de la proposition 3.1.1.) que tout a e 4, admet un
développement de Hensel de la forme:

e8]
2 _2j 1+24 2 J
OrijC T _ZOT”j+1+2a!7z .
J:

<
I
Ma.

J
Remarquons alors les détails suivants:

a) L’ensemble A, est un fermé de 4 pour la topologie PB-adique. Ceci
est encore une conséquence de la proposition 3.1.1.).

b) L’ensemble B [n?, 2n] est un fermé de 4 pour la topologie B-adique.
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Or sur B [n?, 2n] cette topologie coincide avec 'unique prolongement a
cet espace de la topologie 2-adique de B. En particulier B [r?, 27] est un
fermé de A4,.

Il reste en définitive & prouver que B [n?, 2n] est dense dans A,. Pour
cela, il suffit de montrer que pour tout n € N, n°*" est combinaison linéaire
a coefficients dans B des éléments de la famille considérée plus haut. Faisons
la démonstration dans le cas e pair; (dans le cas e impair, la démonstration
est analogue):

Les remarques faites au début de la démonstration montrent que la
propriété a démontrer est vraie pour n = 0. De plus, on a les égalités:

e—1 d—2 d—1
7'[6+1 e} 27'[ Z bjﬂj‘] = 2 Z b2j+1 TCZ(j-’-l) + Zbe_l TCe + 271 Z szﬂ:z];
j=0 - j=0 Jj=0
n°*tl = 2bob,_; + Z (byj—1 +Zbe—1sz)732j
d—1 =t _
+ 2n Z (byj+2b,_1by;41) n?l;
iSo

e—3
ne*? = 2b,_y 7t +2b,_, 7% + Y 2bmit?.
i=o

A partir de 13 on raisonne par récurrence sur m pour évaluer n¢* 2™ et
e+1+2m
T .

Enfin, puisque B est un anneau de valuation discréte, la B-algébre de

~ type fini B [n*, 27 est un anneau ncethérien; puisque 4 est un anneau de

valuation discréte entier sur 4,, 'unique idéal maximal de 4, est P N A4,.

3. Légalité (4 : 4,) = 2% résulte de ce que {1, 7, ..., n°7 "} est une
base de 4 en tant que B-module, tandis qu'une base de 4, comme B-
module est { 1, 27, ..., 27°7" } ou { 1, 27, ..., °~' } selon que e est pair ou
- Impair. Reste & démontrer la derniére égalité.

Pour tout n > 1 soit U, le sous-groupe 1 + P de U. On sait que (U:U,)
| = 2/ —1 et que pour toutn >1ona (U,:U,,,) = 2. (Pour plus de détails,
~ voir [4] ou [5].) Il résulte de la proposition 3.1, 1), qu’on a:

V= UZ. U2d+1'

- Montronsquona U? N Uyyyy = Ugyy. Linclusion U3, = U2 A U,,,,
est évidente. Réciproquement, soit x e U tel que x> = 1 + an??*! avec
a € A. Quitte & changer x en —x on peut écrire x sous la forme 1+ br? avec
¢ >1et bed. On obtient alors b’1%* = an®**! — 2b1° ce qui implique
2e>2d+1lete>d+1.




 ————
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Ceci montre 'existence d’un isomorphisme entre le groupe V/U,,; 4,
2 A r
et le groupe U?/U7%, ;. La proposition sera alors une conséquence du lemme
de Herbrand:

Lemme de Herbrand. Soit ¢ : G — G’ un homomorphisme de groupes et
soit H un sous-groupe de G.

1. Les deux assertions suivantes sont équivalentes :

a) le sous-groupe H est d’indice fini dans G ;

b) les indices (¢ (G): ¢ (H )) et (Ker ¢ = H n Ker ¢) sont finis.

2. Si les assertions ci-dessus sont vraies, alors :

(G:H) = (¢ (G) : o (H)).(Ker ¢ : H n Ker ¢) .

- Pour une démonstration, voir [4] § 63.

Appliquons ce lemme au groupe U, a son sous-groupe U,, ; et a ’homo-
morphisme ¢ : U — U? (x »x?); puisque —1 appartient 3 U,.,, on a
I’égalité

(U:Usey) = (U*: U%1+1)
et les égalités:
(U:Uz1) = (U:Upyy) (Ugpr 2 Upgyy) = (U V) (Vi Uzsry)

On en conclut:
(U:V) = (Uysy: Upgiy) =29

4. RESULTATS PROPRES AU CAS p = 2 ET e IMPAIR

4.1. Théoreme

Supposons e impair et soit ue U. Alors:
1. Sid(u) > e, u est somme de deux carrés dans A ;

2. Sid(u) = e, il existe a,be U tels que u = a*+2b ; avec ces nota-
tions, les trois assertions suivantes sont équivalentes :

a) [’unité u est somme de deux carrés dans A (ueV,)

b) la trace absolue de (b/a*) appartient & 27Z.,;

c) il existe ce U tel que b = a* (¢*—c).

De plus :
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