Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1974)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CONSTRUCTION OF GAUSS

Autor: Barnes, C. W.

Kapitel: 4. The Construction of Gauss

DOI: https://doi.org/10.5169/seals-46891

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

pect to an odd prime. We finally get $(-1)^{n+1} \equiv (-1)^{2n^2+n}$ or $(-1)^{n+1} \equiv (-1)^n \pmod{p}$ which is a contradiction since p is an odd prime. Thus $\frac{(2n)!}{2(n!)^2}$ is a quadratic residue of p.

4. The Construction of Gauss

THEOREM. Suppose p=4 n+1 is a prime and $p=x^2+y^2$ where x and y are given by (3) and (4). Let β and α denote respectively the numerically smallest residues of $\frac{(2n)!}{2(n!)^2}$ and $(2n)!\beta$ modulo p, so that $|\alpha|<\frac{p}{2}$, $|\beta|<\frac{p}{2}$. Then $p=\alpha^2+\beta^2$.

Proof. By (5) we have, using the remark at the beginning of section 3, $A_m^2 + A_{m-1}^2 \equiv 0 \pmod{p}$ and hence $-A_m^2 \equiv A_{m-1}^2 \pmod{p}$, so that $\{(2n)!\}^2 A_m^2 \equiv A_{m-1}^2 \pmod{p}$, and since p is a prime $(2n)! A_m \equiv \pm A_{m-1} \pmod{p}$. Supposing the negative sign holds we have $(2n)! A_m^2 \equiv -A_m A_{m-1} \pmod{p}$. Therefore we obtain $(2n)! A_m^2 - (2n)! p B_m^2 \equiv (p B_m B_{m-1} - A_m A_{m-1}) \pmod{p}$, so that by (3) and (4) we get

(6)
$$x \equiv (2n) ! y \pmod{p}.$$

If the positive sign holds above it follows that $x \equiv -(2n) ! y \pmod{p}$ which is just as good for our present purposes since we are not concerned with the signs of x and y. We will comment on the signs in section 5.

By the lemma we have $\{\frac{(2n)!}{2(n!)^2}\}^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ so $(2n)!^{\frac{p-1}{2}} \equiv 2^{\frac{p-1}{2}}$ (n!) $^{p-1}$ (mod p), and therefore $(2n)!^{\frac{p-1}{2}} \equiv 2^{\frac{p-1}{2}}$ (mod p) since (n!, p) = 1. We have $x \equiv \pm (2n)! y \pmod{p}$, and since each of y and -1 is a quadratic residue of p, $x^{\frac{p-1}{2}} \equiv (2n)!^{\frac{p-1}{2}} \equiv 2^{\frac{p-1}{2}}$ (mod p), and in terms of the Legendre symbol it follows that $(\frac{x}{p}) = (\frac{2}{p})$; that is, the quadratic character of x with respect to x is the same as the quadratic character of x with respect to x is the same as the quadratic character of x with respect to x.

Suppose 2 is a quadratic residue of p. Then

 $2^{\frac{p-1}{2}}(n!)^{p-1}(A_mA_m-1)^{\frac{p-1}{2}} \equiv (A_mA_{m-1})^{\frac{p-1}{2}} \equiv (-x)^{\frac{p-1}{2}} \equiv x^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$

Next, if 2 is a quadratic nonresidue of p we have

$$2^{\frac{p-1}{2}}(n!)^{p-1}(A_mA_{m-1})^{\frac{p-1}{2}} \equiv -(-x)^{\frac{p-1}{2}} \equiv -(x)^{\frac{p-1}{2}} \equiv -(-1) \equiv 1$$
 (mod p),

and we conclude that $2(n!)^2 A_m A_{m-1}$ is a quadratic residue of p. By (3), (4), and (6) we have

$$(2n) ! y \equiv -A_m A_{m-1} \pmod{p},$$

$$2(n !)^2 (2n) ! y \equiv -2(n !)^2 A_m A_{m-1} \pmod{p}$$

and

$$-2(n!)^2(2n)!y \equiv b^2 \pmod{p}$$

for some quadratic residue b^2 . Therefore

$$-2(n !)^{2} (2n) ! y \equiv -(2n) !^{2} b^{2} \pmod{p},$$

$$-2(n !)^{2} y \equiv -(2n) ! b^{2} \pmod{p},$$

and finally

$$y \equiv \frac{(2n)!}{2(n!)^2} b^2 \pmod{p}.$$

Hence by (6)

$$x \equiv \frac{(2n)!^2}{2(n!)} b^2 \pmod{p}.$$

Let $b^2 \equiv r \pmod{p}$, $|r| < \frac{p}{2}$, so that (r, p) = 1. Then in terms of α ,

 β , and r, $x \equiv \alpha r \pmod{p}$ and $y \equiv \beta r \pmod{p}$. There are unique integers K and L such that $x = \alpha r + Kp$, $y = \beta r + Lp$. Then

$$x^2 + y^2 = (\alpha^2 + \beta^2) r^2 + (K^2 + L^2) p^2 + 2rp(\alpha K + \beta L),$$

or

$$p = (\alpha^2 + \beta^2) r^2 + (K^2 + L^2) p^2 + 2rp(\alpha K + \beta L).$$

Suppose that $|r| > 1, K \neq 0$, and $L \neq 0$. The last equation can be written

(7)
$$pK^2 + (2r\alpha p)K + \{L^2p^2 + 2r\beta pL + (\alpha^2 + \beta^2)r^2 - p\} = 0$$
.

Since (7) is a quadratic in K and we are supposing that the integral root is not zero we have

$$K \mid \{ L^2 p^2 + 2r\beta pL + (\alpha^2 + \beta^2) r^2 - p \}.$$

There is an integer t such that

$$L^{2}p^{2} + 2r\beta pL + (\alpha^{2} + \beta^{2})r^{2} - p = Kt$$

and therefore (7) vanishes when

$$K = \frac{L^2 p^2 + 2r\beta pL + (\alpha^2 + \beta^2) r^2 - p}{t}.$$

That is

(8)
$$\{ L^2 p^2 + 2r\beta pL + (\alpha^2 + \beta^2) r^2 - p \} \{ t^2 + 2r\alpha pt + p \{ L^2 p^2 + 2r\beta pL + (\alpha^2 + \beta^2) r^2 - p \} \} = 0$$

The discriminant of the quadratic function

$$t^2 + 2r\alpha pt + p \{ p^2L^2 + 2r\beta pL + (\alpha^2 + \beta^2)r^2 - p \}$$

is $4p^2 \{ p - (pL + \beta r)^2 \}$ which is not zero. It follows that the second factor in (8) cannot be zero; otherwise we would have two distinct integral values for t giving rise to two distinct integers K, whereas K is unique. Hence we have

(9)
$$p^{2}L^{2} + 2r\beta pL + (\alpha^{2} + \beta^{2})r^{2} - p = 0$$

and since we are supposing that $L \neq 0$, we see that

 $L \mid \{ (\alpha^2 + \beta^2) r^2 - p \}$ so that for an integer u we have $(\alpha^2 + \beta^2) r^2 - p$ = L u and (9) vanishes when

$$L = \frac{(\alpha^2 + \beta^2) r^2 - p}{u},$$

so that

$$(10) \left\{ (\alpha^2 + \beta^2) r^2 - p \right\} \left\{ u^2 + 2r\beta pu + p^2 \left\{ (\alpha^2 + \beta^2) r^2 - p \right\} \right\} = 0.$$

As before we consider the quadratic function

$$u^{2} + 2r\beta pu + p^{2} \{ (\alpha^{2} + \beta^{2}) r^{2} - p \}$$

The discriminant is $4p^2(p-\alpha^2r^2)$ which cannot vanish, so that, as before, the first factor in (10) must be zero, and we have

(11)
$$(\alpha^2 + \beta^2) r^2 - p = 0$$

which is a contradiction since $\alpha^2 + \beta^2 > 1$ and we are supposing that |r| > 1.

Therefore we cannot have |r| > 1, $K \ne 0$, and $L \ne 0$. If |r| = 1 we see that K = L = 0 since $|x - \alpha r| < p$ and $|y - \beta r| < p$ in this case. If |r| > 1 with K = L = 0 we would have $x = \alpha r$, $y = \beta r$ and hence (x, y) > 1, whereas x and y are relatively prime. Finally it remains to consider the possibility of having |r| > 1 with one of K and L zero, the other nonzero. This if we suppose that |r| > 1, K = 0, $L \ne 0$, we obtain (9) which, as we have seen, leads to a contradiction. On the other hand the supposition that |r| > 1 with $K \ne 0$, L = 0 implies that (11) would hold with $r^2 > 1$.

We conclude that |r| = 1, K = 0 and L = 0. Hence $x = \pm \alpha$, $y = \pm \beta$ and $\alpha^2 + \beta^2 = p$.

In [1], Corollary 2, we observed that if $p = x^2 + y^2$ then, in our notation, y is a quadratic residue of p. Collecting our results we have the

COROLLARY. Let $p = x^2 + y^2$ where p is a prime of the form 4n + 1 with x and y given by (3) and (4). Then $\left(\frac{x}{p}\right) = \left(\frac{2}{p}\right)$ and $\left(\frac{y}{p}\right) = 1$.

5. Conclusion

We saw that $x = \pm \alpha$, $y = \pm \beta$. When p = 13 we have y = -3, $\beta = -3$; when p = 29, y = -5, $\beta = 5$, and when p = 41, y = 5, $\beta = 5$. Hence the sign of y, determined by the approximants to a continued fraction depends on the integer m, the number of terms in the finite segment of (2) which is used, can agree with that of β or be opposite that of β . The same applies to x and α . In [1], Theorem 1, we gave a construction which always gives positive values for x and y. Other various constructions, as we have seen, do not have this property.

Finally we comment on the numbers $\frac{(2n)!}{2(n!)^2}$ which we denote by a_n for n = 1, 2, 3, ...