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SOMMES DE CARRES D’ENTIERS D’UN CORPS p-ADIQUE

par Claude MOSER

RESUME

On se propose de présenter, dans cet article, une étude aussi complete
et ¢lémentaire que possible de I'anneau formé par les entiers d’un corps
p-adique qui sont sommes de carrés d’entiers. Aprés avoir donné des résul-
tats généraux sur cet anneau, on recherche pour tout n > 1 quels sont les
entiers qui sont sommes de n carrés d’entiers, et si un entier est somme de n
carrés, on cherche a le représenter comme tel.

1. INTRODUCTION

Le premier intérét de ce travail est de constituer une étape préliminaire
pour I’étude des sommes de carrés d’entiers d’un corps de nombres: on sait
qu'une condition nécessaire et suffisante pour qu’un élément totalement
positif @ d’un corps de nombres K soit somme de n carrés dans K, est que a
soit somme de n carrés dans chaque complété p-adique de K; c’est 1a une
application directe du principe de Hasse [1], [4]. Ce principe n’est plus
applicable en général lorsqu’il s’agit de représenter un entier comme somme
de carrés d’entiers. Il n’en demeure pas moins qu’une condition nécessaire
pour qu’un entier @ d’un corps de nombres K soit somme de n carrés d’en-
tiers de K, est évidemment que a soit somme de » carrés d’entiers dans
chaque complété p-adique de K. Signalons d’ailleurs que la condition est
suffisante pour n = 4 si le discriminant de K/Q est impair, cf. [3].

Le second intérét réside dans le caractére élémentaire de la démarche
utilisée: si on peut considérer, en écho aux méthodes générales de C. Riehm
sur la représentation d’une forme quadratique par une autre [6], que notre
probléme est un cas particulier de celui de la représentation entiére d’une
forme du type aX? par une forme X7 + ... + X2, la recherche explicite
d’une telle représentation utilise en fait les calculs que nous faisons.

On congoit que I'essentiel des difficultés réside dans le comportement
des corps dyadiques, c’est-a-dire les extensions finies de Q,, et que les résul
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tats dépendent étroitement de la ramification et de I’extension résiduelle du
corps K considéré. Mais ces facteurs ne suffisent pas: intervient aussi la
propriété pour —1 d’€tre « plus ou moins loin » d’€tre un carré dans K.
C’est pourquoi nous utilisons constamment la notion de défaut quadratique
introduite par O. T. O’Meara [4].

Nous avons cru intéressant d’étayer les démonstrations de quelques
exemples numériques simples qui permettent au lecteur de se rendre compte
du caractére effectif de la méthode utilisée.

1.1. Notations générales et rappels

K désignera un corps p-adique, d’anneau des entiers 4; on notera:

B I’idéal maximal de A4;
une uniformisante de A4 (choisie une fois pour toutes);

.3

K le groupe multiplicatif de K;

v : K —» Z la valuation normalisée de K;

U - le groupe des unités de A4;

K le corps résiduel de K;

f le degré résiduel [K:F,];

e I'indice de ramification absolu de K sur Q,;

d la partie entic¢re de ¢/2;

A, le sous-anneau de 4 formé des sommes de carrés d’éléments de 4 ;

V le groupe des unités de 4,;

V I’ensemble des unités de 4, qui sont sommes de n carrés d’él¢-

ments de A (pour n>1);

s(A) la « stufe » de A4, c’est-a-dire le plus petitentierntelque — 1€V, ;

t(A) le plus petit entier z tel que tout élément de 4, soit somme de
n carrés d’éléments de A.

1.1.1. Lemme de Hensel. Soit ¢ (X) un polynéme a coefficients dans A.
Soit ay € A tel que v (go (ap)) soit strictement supérieur a 2v (¢’ (ap)). Alors
la suite { a, },.x définie par :

an+ 1 = an - QD (an) (QDI (a"))— '

converge dans A vers un zéro de ¢ (X ). De plus si a est la limite de cette suite
on a les inégalités :

v(a—ag) = v(e(ap)) — 2v(e' (ap) > 1.

Pour une démonstration voir [3].
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1.2. Extensions cycliqueé de corps locaux

1.2.1.  Proposition. Soit L une extension finie et cycliqgue d 'un corps local
K et soit Ngjp Lo K ["application norme. On a les égalités :
(U(K) : NL/K(U(L))) = e(L/K).

Pour une démonstration voir [7], ou [4] pour le cas particulier d’une
extension de degré 2.

1.2.2.  Proposition. Soit p un nombre premier. Pour tout n > 1il existe une
extension non ramifiée (unique a isomorphisme prés) de degré n de Q,.
Cette extension peut etre décrite comme étant le corps de décomposition

. A pn___ .
sur Q, du polynome X X. Elle est cyclique.

Pour une démonstration voir également [4] et [7].
1.3.  Le défaut quadratique (cas dyadique, p=2)

Dans tout ce paragraphe on considére des corps dyadiques, c’est-a-dire
des extensions finies du corps Q,, complété 2-adique du corps des rationnels.

- La notion de défaut quadratique et les résultats qui la concernent sont dus
- a O’Meara (cf. [4]).

1.3.1. Définition. Soit u une unité de A qui n’est pas un carré dans A.

- On appelle défaut quadratique de u, et on note 6 (u), le plus grand entier n
- tel que la congruence

u = x? (mod P")

~ait une solution dans A. (Si u est un carré dans A, on convient de poser & (u)
- =+ 0o0).

|

!

1.3.2.  Proposition. Soit u une unité de A.

1. Pour que u soit un carré dans A, il faut et il suffit que la congruence

u = x*>(mod 4PB) ait une solution dans A, (autrement dit la condition
0 (u) >2e + 1 équivaut a la condition 6 (u) = + o).

2. Siu satisfait a 6 (u) < 2e, alors 6 (1) est un nombre impair.

3. L’extension quadratique K (\/ u)/K est non ramifiée si et seulement

- sionad(u) = 2e De plus, si deux unités ont pour défaut quadratique 2e,

~leur produit est un carré.
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4. Soit a un élément de A tel que v (a) soit impuair. Alors 6 (1+a) = v (a).

Remarquons d’abord que toute unité u a un défaut quadratique car du
fait que K = K?, toute congruence # = x* (mod ) a une solution dans
A. De plus le défaut quadratique d’une unité u ne dépend que de sa classe
modulo les carrés d’unités. Soit u une unité telle que 6 (¥) = m et soit
y e U. Posons 6 (uy?) = n. A partir des représentations: u = x* + x,n"
et y*u = z* + z,7" on déduit les égalités:

yu = x*y* + x,y*n2™,  ce qui implique m < n;

u=(zy H% + z,y7 27", ce qui implique n < m; d’oll m = n.
1

1. Soit u une unité de A4 telle que 6 (1) > 2e + 1. Quitte & multiplier
u par le carré d’une unité, on peut supposer qu’on a:

u=1+4nb, avec beA.

Dans I’anneau de séries formelles Q [[7 1] I'élément 1 + 4T est le carré
de I’élément:

© 1 /1\ /1 1
1+4T)'2 =1 — (2 z=1). (s —n+1)aT";
dren et 5 G) Gt )

on vérifie sans peine que pour tout » > 1 on a:

AR ) arr = (=it (") 1
aG)G 1) ) e = o ()

: .. (2n
[C’est un bon exercice de montrer que le coeficient b1nom1al( >est tou-
n

jours pair, et qu’il est multiple de 4 si et seulement si n n’est pas une puis-
sance de 2]. Maintenant, dans ’espace ultramétrique complet 4, la série de

n
terme général a, =1 et a, = (—1)""! < )n"b" (n>1) est convergente.
n

On conclut a I’égalité:

(CAR)1 +4nb = {1 + > (=1 <2nn> n"b"}2.
n=1
Cette formule rend « explicite » ’extraction de la racine carrée, en ce sens
qu’il est possible, pour tout » >0, de trouver le terme de rang » du déve-
loppement de Hensel d’une racine carrée de 1 + 4rnb.
Réciproquement, si # est un carré d’unité, il est clair que la congruence:
u = x> (mod 4 P) a une solution dans A.
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[Pour une autre démonstration de cette assertion voir [4] pp. 160-163
4 qui sont empruntées les démonstrations des assertions 2) a 4).]

2. 1l suffit de montrer que si la congruence u = x> (mod $*9) (a<e)
a une solution dans A4, il en est de méme de la congruence: u = x?
(mod B2+ 1), Quitte, encore, 2 multiplier u par le carré d’une unité, on peut
supposer quon a u = 1 + yn** avec y € 4. Si y n’est pas une unité, il n’y a
rien & démontrer. Au contraire si y est une unité, il existe une unit€ w et un
entier 7€ A tels que y = w? + nt et u = 1 + w?n?® + m** "', Cest-a-dire

u = (14+wn®? + m®**t = 2wn® = (1 +wn®)* (mod P>**1),

car on a v(tn***'—=2wn") >min {2a+1,eta} >2a+1. On a donc
o) >1 + 2a.

3. Siu = y*+ 4z est une unité de A4 telle que 6 (u) = 2e, alors z est
1 - :
une unité et u n’est pas un carré dans 4. De plus, B (y+ \/ u) est eéntier sur A.

Son polyndme irréductible sur 4 est X2 —yX —z dont le discriminant est u.
C’est dire que K (\/ u) est une extension quadratique non ramifiée de K.

Réciproquement, soit u# une unité non carrée de A4 telle que K (\/ u)
soit non ramifiée sur K. Quitte a multiplier u par le carré d’une unité, ce qui

. ne change pas I’extension K (ﬁ), on peut supposer qu'on a u = 1 + 7

aveca = 0 (u)etbe U.Posonsc = —1 + \/; et désignons par v : (K (\/;))
— 7. la valuation normalisée de K (\/ u). Puisque I'extension K (\/ u)/K est

- non ramifiée, v coincide avec v sur K. Si on avait v (¢) < e on aurait a
AN

= 2v(c) < 2e, ce qui est impossible d’aprés 1’assertion 2. ci-dessus. Par
A

~ conséquent on a v (¢) > e et a > 2e. Ceci implique a = 2e puisque u n’est
~ pas un carré dans A.

‘ La dernicre partie de 3. résulte de I'unicité de I’extension non ramifiée
de degré 2 de K.

4. Si ae A est de valuation impaire v (a) < 2e, il est clair qu'on a
0 (1+a) > v (a). Raisonnons par I’absurde et supposons qu’existe b e A
- tel que 1 + a soit congru a (1+5)? modulo p***@, On aurait v (b (b+2))
- = v(a). L’hypothése v (b) > e implique v (a) > 2e tandis que ’hypothése
v (b) < e implique v (a) = 2v (b). Ces deux hypothéses contredisent la
~ définition de a. Par conséquent, on a § (1+a) < v (a).
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2. ETUDE DU CAS p IMPAIR

Cette étude se résume a ’énoncé et a la démonstration du théoréme
suivant:

2.1. Théoreme

Si p est impair, tout entier de K est somme de carrés d’entiers (A=A,);
plus précisément :

1. Pour qu’un entier de K soit un carré, il faut que sa valuation normalisée
soit un nombre pair. Un entier x = un*" de valuation 2n est un carré dans A
si et seulement si la classe de u dans K est un carré.

2. Sipestcongrual modulo 4, —1 est un carré et tout entier est somme
de deux carrés d’entiers, (s(4) =1, t(4) = 2).

3. Sipestcongrua —1 modulo 4, onas(4)=1ett(A) =2 (resp.
s(A) = 2ett(A) = 3) sifest pair (resp. impair). Si f est impair, les entiers
de valuation paire sont somme de deux carrés d’entiers tandis que les entiers
de valuation impaire sont somme de trois carrés d’entiers et pas moins.

En vue de la démonstration de ce théoréeme, rappelons quelques pro-
priétés des corps finis: ‘

2.2. Lemme

Soit p un nombre premier impair et soit ¥, le corps a p éléments.

1. Sip est congru a 1 modulo 4, alors —1 est un carré dans ¥, ; si p est
congru a —1 modulo 4, —1 n’est pas un carré dans ¥,, mais est somme de
deux carrés dans F,.

2. Soit k une extension finie de ¥,. Si p est congru a —1 modulo 4
alors —1 est un carré dans k si et seulement si k¥, est de degré pair.

Le groupe multiplicatif Fp du corps F, est cyclique d’ordre p—1. Il

admet un seul sous-groupe d’ordre . Or ’endomorphisme (x - x?,

Fp ~F ,) a pour noyau { —1, +1 }. Il en résulte que le groupe des carrés de

F, est 'unique sous-groupe d’ordre de F,. Un élément est un carré si

et seulement si son ordre divise . Puisque I'ordre de —1 est 2, —1 est
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¢ . P . .
un carré si et seulement si est pair. Il suffit de montrer que si a € F,

n’est pas un carré il est somme de deux carrés. Pour cela considérons
A={x|gy,x=»*} et B(a) = {x|gy,x =a—y*}. Ces deux sous-
p+1

ensembles de F, ont pour cardinal . Puisque CardF, = p on a

A n B(a) # @, ce qui prouve que a est somme de deux carrés dans F,.
La deuxiéme assertion résulte de ce que pour tout n > 1, F, admet une
extension de degré n unique (2 isomorphisme pres) (cf. par exemple [2] ou
[8]). Ceci étant, si p est congru a — 1 modulo 4 I'unique extension de degré 2
de F, est ¥, (,/ — D).
Démontrons maintenant le théoréme 2.1:

1. La premiére assertion est évidente. Soit # une unité de A. Si la classe
de u modulo ¢ n’est pas un carré, a fortiori # n’est pas un carré dans A.
Si au contraire la classe de u est un carré dans K, il existe une unité b de A
telle que I’on ait u—5b% € B. On peut alors appliquer au polyndome X?—u
le lemme de Hensel (1.1.1) et conclure que u est un carré dans A.

2 et 3. Remarquons que 2 est une unité de A4 et que pour tout ¢lément
a de A on a I’égalité:

(+ B a+12_<a—12.
o= () -(5)

Si p est congru a 1 modulo 4 ou si le degré résiduel f = [K : F,] de K
est pair, alors — 1 est un carré dans K (cf. lemme 2.2) et la premiére partie du
théoréme permet d’affirmer que —1 est un carré dans 4. On conclut faci-
lement en utilisant (*) que tout élément de 4 est somme de deux carrés dans
A. |

Enfin, si p est congru 2 —1 modulo 4 et si le degré résiduel de K est
impair, —1 est somme de deux carrés dans K. Il existe donc deux unités
u et z de A4 telles que —1—u*~z*>eP. On applique alors le lemme de
Hensel au polyndme X2 + 1 + u® pour conclure qu’il existe une unité de
de 4 telle que 1 + u* + w? = 0. Alors toute unité de A est somme de
deux carrés d’éléments de 4 puisque toute unité est soit un carré soit 'opposé
d’un carré. Pour terminer remarquons que les éléments de K qui sont

somme de deux carrés dans K sont les normes des éléments de K (\/ ~——1).
L’égalité [K : N (K (\/ —1))’] = 2 implique qu’aucun élément de valuation
impaire n’est somme de deux carrés dans K. Enfin tout élément de valuation
impaire de 4 est somme de trois carrés dans 4 en vertu de I’égalité (*¥).

L’Enseignement mathém., t. XX, fasc. 3-4, ' 20
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3. ETUDE DU CAS p = 2. RESULTATS GENERAUX

Ce paragraphe regroupe quelques résultats valables pour tous les corps
dyadiques.
3.1. Proposition

Soit u une unité de A, anneau des entiers du corps dyadique K (extension

finie de Q, ).

1. Le plus petit entier impair 2k + 1 tel que un
d’entiers est 2d+1; (d est la partie entiére de ef2).

2kt 1 soit somme de carrés

2. Pour que u soit somme de carrés d’entiers (ueV’), il faut et il suffit
qu’on ait 6 (u) > e. De plus, sion a é (u) > e + 1, alors u est somme de deux
carrés d’entiers.

Remarquons que —1 est somme de carrés dans A4, ce qui permet d’affir-
mer que A, est bien un sous-anneau de A: dans ’anneau Z, des entiers
dyadiques, —7 est un carré car 2 est une uniformisante et —7 est congru a 1
modulo 8. Il en résulte que —1 = 1+1+4—7 est somme de quatre carrés
dans A4. Ceci étant:

1. Pour tout élément a de 4 on a I’égalité 2a = (a+1)* — (a*+1);
par conséquent 2a est somme de carrés dans A. Plus précisément, si b est
une racine carrée de —7 dans Z,, on a I’égalité obtenue a partir de la pro-
priété de multiplicativité de la norme des quaternions:

2a = (14+a)*> + (1 +a)*> + (1 —=a)*> + 2+ab)* + (2a—-b)*.

Par ailleurs, il existe une unité & de A satisfaisant a n° = 2¢. Dans ces condi-
tions on a bien un®e A, pour toute unité u de A. En particulier, on a
un®?*l e A4, pour toute unité u de A.

Réciproquement, soit # une unité de 4, 2k + 1 un entier impair tels qu’on
ait un®**1e 4,; il existe une famille finie { ay, ..., ay } d’éléments de A4

telle que:
N N
2
un®**t = 3 aj = < Y aj)z ~2 Y a,a; .
j=1 j=1 1=i<j=N

Comparons les valuations $-adiques de chacun des termes écrits ci-dessus;

N
ona vg (un®** 1) >min { 2vg ( ) a;),e + v () aja;)}. On ne peut
1 1=i<j=N
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N

avoir 2vg ( ) a) <e+ vg( Y aa) car v (un***1) est impair.
J=1 1=i<j=<=N

On en conclut que 2k +1 > e et de fagon plus précise que k est supérieur ou
égal a d.

2. Siue U est une somme de carrés dans A4, 1l existe une famille finie
d’éléments de 4, soit { ay, ..., ay }, telle que

N N
= z as = ( Z a,)* —2.2 a,a;;
j=1 Jj=1 1<J

ceci prouve que 0 (u) est supérieur ou égal a e. Réciproquement, si 0 ()
est supérieur ou €gal a e, il existe une unité v de A4 et un entier b tels que
u = v* + 7°b; or on vient de voir que n°b est somme de carrés dans A.

3. Sil’unité u satisfait a 6 (1) > e+ 1, il existe une unité v de 4 et un
entier b tels qu’on ait:

1
u = 0?4+ 2nb = 57)2 [1+1+4nbv™2].

De I’égalité (CAR) obtenue au paragraphe (1.3.2.) on déduit:
1 . 2 2
— _ ‘Z}2 { 1 + [1 + Z (_l)n—l ( l’l) 7.Enbnv—Zn:IZ} ,
2. n=1 n
2 n—1 27’1 nyn, —2n72
u-v{[1+—2( 1) n"b"v "]
n
2n _
+ [ z (___1)n 1( > "™ 2n]2}

| . . 2n
Alors u est somme de deux carrés dans A4 puisque pour tout n > 1 ( )
n

est un nombre pair.
3.2. Théoréme

Soit T la sous-extension non ramifiée maximale de K et soit B I’anneau des
entiers de T. Alors : |

1. Les anneaux B et B, coincident, ¢ est-a-dire que tout entier de T est
somme de carré d’entiers de T.

2. L’anneau A, est un anneau local, nethérien, de dimension 1 : son idéal
maximal est B N A,. En tant que B-module, A, est libre de rang e. En tant
que B-algébre, A, est egal a B [n?, 2n].
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3. Avec les notations 1, on a la double égalité :
(A:4,) = (U:V) =24

1. Puisque B est non ramifié sur Z,, 2 est une uniformisante de B;
tout élément non nul de B s’écrit donc de fagon unique sous la forme
2"(1+2a) avec neN et ae B, et on a dans B:1+2a = (a+1)* + a®

+ @ + 4d® + (/- 1)a>

2. L’anneau A est une extension totalement ramifiée de B; il en résulte
que 7, uniformisante de A4, est racine d’un polyndome d’Eisenstein a coeffi-
cients dans B; en d’autres termes, il existe une unité b, de B et (e—1) élé-
ments by, ..., b,_; de B tels qu'on ait:

e—1

=2 bnl.

j=0
Par ailleurs, on sait que 4 = B [n] et que la famille { 1, =, ..., n°~* } est
une base du B-module 4. On va montrer que si e est pair, (resp. impair),
la famille {1, 2x, n°, ..., n°7%,22°71 } (resp. {1, 2n, 7% ..., 27°" %, n°" ' })
constitue une base de A, considéré comme B-module. En premier lieu, il
est clair que B est un sous-anneau de A% et que la famille considérée est
libre sur B.

Remarquons qu’on peut choisir comme systeme R de représentants non
nuls de 4 modulo B un ensemble d’unités de B, ces unités étant elles-m&mes
des carrés dans B. (On a en effet K = K? et toute unité de B est congrue a
un carré modulo 2B.) Tout élément a de A admet donc un développement
de Hensel de la forme:

a= Y r’nm’ (r’¢eRuU {0} pourtoutjeN).
i=o0

En particulier, il résulte de la proposition 3.1.1.) que tout a e 4, admet un
développement de Hensel de la forme:

e8]
2 _2j 1+24 2 J
OrijC T _ZOT”j+1+2a!7z .
J:

<
I
Ma.

J
Remarquons alors les détails suivants:

a) L’ensemble A, est un fermé de 4 pour la topologie PB-adique. Ceci
est encore une conséquence de la proposition 3.1.1.).

b) L’ensemble B [n?, 2n] est un fermé de 4 pour la topologie B-adique.
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Or sur B [n?, 2n] cette topologie coincide avec 'unique prolongement a
cet espace de la topologie 2-adique de B. En particulier B [r?, 27] est un
fermé de A4,.

Il reste en définitive & prouver que B [n?, 2n] est dense dans A,. Pour
cela, il suffit de montrer que pour tout n € N, n°*" est combinaison linéaire
a coefficients dans B des éléments de la famille considérée plus haut. Faisons
la démonstration dans le cas e pair; (dans le cas e impair, la démonstration
est analogue):

Les remarques faites au début de la démonstration montrent que la
propriété a démontrer est vraie pour n = 0. De plus, on a les égalités:

e—1 d—2 d—1
7'[6+1 e} 27'[ Z bjﬂj‘] = 2 Z b2j+1 TCZ(j-’-l) + Zbe_l TCe + 271 Z szﬂ:z];
j=0 - j=0 Jj=0
n°*tl = 2bob,_; + Z (byj—1 +Zbe—1sz)732j
d—1 =t _
+ 2n Z (byj+2b,_1by;41) n?l;
iSo

e—3
ne*? = 2b,_y 7t +2b,_, 7% + Y 2bmit?.
i=o

A partir de 13 on raisonne par récurrence sur m pour évaluer n¢* 2™ et
e+1+2m
T .

Enfin, puisque B est un anneau de valuation discréte, la B-algébre de

~ type fini B [n*, 27 est un anneau ncethérien; puisque 4 est un anneau de

valuation discréte entier sur 4,, 'unique idéal maximal de 4, est P N A4,.

3. Légalité (4 : 4,) = 2% résulte de ce que {1, 7, ..., n°7 "} est une
base de 4 en tant que B-module, tandis qu'une base de 4, comme B-
module est { 1, 27, ..., 27°7" } ou { 1, 27, ..., °~' } selon que e est pair ou
- Impair. Reste & démontrer la derniére égalité.

Pour tout n > 1 soit U, le sous-groupe 1 + P de U. On sait que (U:U,)
| = 2/ —1 et que pour toutn >1ona (U,:U,,,) = 2. (Pour plus de détails,
~ voir [4] ou [5].) Il résulte de la proposition 3.1, 1), qu’on a:

V= UZ. U2d+1'

- Montronsquona U? N Uyyyy = Ugyy. Linclusion U3, = U2 A U,,,,
est évidente. Réciproquement, soit x e U tel que x> = 1 + an??*! avec
a € A. Quitte & changer x en —x on peut écrire x sous la forme 1+ br? avec
¢ >1et bed. On obtient alors b’1%* = an®**! — 2b1° ce qui implique
2e>2d+1lete>d+1.
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Ceci montre 'existence d’un isomorphisme entre le groupe V/U,,; 4,
2 A r
et le groupe U?/U7%, ;. La proposition sera alors une conséquence du lemme
de Herbrand:

Lemme de Herbrand. Soit ¢ : G — G’ un homomorphisme de groupes et
soit H un sous-groupe de G.

1. Les deux assertions suivantes sont équivalentes :

a) le sous-groupe H est d’indice fini dans G ;

b) les indices (¢ (G): ¢ (H )) et (Ker ¢ = H n Ker ¢) sont finis.

2. Si les assertions ci-dessus sont vraies, alors :

(G:H) = (¢ (G) : o (H)).(Ker ¢ : H n Ker ¢) .

- Pour une démonstration, voir [4] § 63.

Appliquons ce lemme au groupe U, a son sous-groupe U,, ; et a ’homo-
morphisme ¢ : U — U? (x »x?); puisque —1 appartient 3 U,.,, on a
I’égalité

(U:Usey) = (U*: U%1+1)
et les égalités:
(U:Uz1) = (U:Upyy) (Ugpr 2 Upgyy) = (U V) (Vi Uzsry)

On en conclut:
(U:V) = (Uysy: Upgiy) =29

4. RESULTATS PROPRES AU CAS p = 2 ET e IMPAIR

4.1. Théoreme

Supposons e impair et soit ue U. Alors:
1. Sid(u) > e, u est somme de deux carrés dans A ;

2. Sid(u) = e, il existe a,be U tels que u = a*+2b ; avec ces nota-
tions, les trois assertions suivantes sont équivalentes :

a) [’unité u est somme de deux carrés dans A (ueV,)

b) la trace absolue de (b/a*) appartient & 27Z.,;

c) il existe ce U tel que b = a* (¢*—c).

De plus :
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3. Sifestpaironas(A) =2,V ="V;ett(d) =3,

4, Si f est impair on a s(A) =4, V="V, et t(4) = 4, pour que u
appartienne a V, mais non a Vs, il faut et il suffit que — u soit un carré dans A.

La premiére assertion est une répétition de la seconde assertion de la
proposition (3.1.). Avant d’examiner les assertions suivantes faisons quelques
remarques. Tout d’abord —1 n’est pas un carré dans K puisqu’on a 6 (—1)
= e en vertu de la derniére assertion de la proposition (1.3.2.).

Ensuite remarquons que si v est une unité de Q, (i) (i*= —1), alors
NayiyQ, (V) €1 + 4Z,. En effet, une base d’entiers de Q, (i) est { 1,7}

Cetsiv = o+ if, alors Noyiy, (V) = «® + B7, I'un et 'un seulement des

nombres ¢, f étant une unité de Z,.

Signalons que relativement & 1’extension résiduelle K/F, la trace tr : K
— F, est un homomorphisme surjectif de groupes additifs dont le noyau est
{u]ayeK,u=y>—y} (cf. [2] page 8, prop. 9). Ceci étant dit, soit u
une unité de 4 dont le défaut quadratique este. Sionau = a* + 2betsiu
est somme de deux carrés d’entiers, alors la norme de u est, dans I’extension
K/Q,, la norme d’une unité de Q, (7).

On a alors:

Ny o, () = [Nk, (@)]* [1+2 Trg)Q, (b/a*) +4h] (he,Z).

Puisque a est une unité de A4, on a [NK/Qz(a)]2 el + 8Z,. La deuxiéme

~ remarque faite ci-dessus permet alors de conclure que 7i ri,0,(bla%) € Z2,.

Maintenant, si l'unité¢ u = a® + 2b, (beU), satisfait & Trg,q,(b/a?)
€2Z,, il existe ¢, e K tel que la classe de (b/a*) modulo P soit cg—c,.
L’application du lemme de Hensel au polyndme X? — X — (b/a®) permet
de conclure a P'existence d’une unité ¢ de A4 telle que b = a® (¢®>—¢).

Enfin, §’il existe ce U avec b = a* (¢c*—c¢) on peut écrire u = a*> + 2b

~sous la forme u = a® [+ (c—1)?*] et uel,.

3. Si f est pair, on remarque que K contient une racine primitive

- cubique j de l'unité. On a —1 = j* + j? et s(4) = 2. Si ue U satisfait a
6 (u) > e on peut écrire u = a* + 2b (acU, beA) et u = (a+b/a)* — (b/a)?
- € V5. L’assertion sur #(4) sera démontrée plus loin (cf. Proposition 4.2,
- remarque).

4. Remarquons que Try,(—1) = —ef ¢2Z,. Par conséquent — I

n’est pas somme de deux carrés dans A4, ni méme de trois (vérification
facile). Donc la forme quadratique X7 + X3 + X% + X2 n’est pas iso-

trope sur K. On a bien =1 =1+ 1+ 4 —7€eV,, donc —U? < V,/V,.
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Maintenant soit u € V tel que u n appartlenne ni a U%nia — U2 Pour

toute v ¢K 2 soit G (v) le sous-groupe de K formé par les normes dans
I’extension K (\/ v)/K. D’aprés la proposition (1.2.) les groupes G (u) et

G (—1) sont d’indice 2 dans K. Il existe donc x € G (1)/G (—1); puisque
—1¢G(—1), il existe y, v, w, € K non tous nuls tels que y* — uy? =
— (W*+1%).Onav # 0et on déduit de 13 que u est somme de trois carrés
dans K. Reste a montrer que v appartient a V5.

Dans un premier temps remarquons que si ¥ appartient a V/V,, alors
—u appartient a V,. En effet, quitte a multiplier u par le carré d’une unité
on peut supposer que u = 1 + 2b avecbe A et Tryo, (b)el + 2Z,; 0on a
alors —u=1—2(b+1) et Trgo,(— (b+1)) = —ef + Trg0,(—b)e2Z,.
Dans un second temps on peut écrire u sous les deux formes

u =n""(al +a3+a3) = — (b +b3)

avec a4, d,, a5, by, b, € A. Si on suppose I'entier » minimum on peut sup-
poser que a; est une unité. Si a, et a; appartiennent a P alorsn = Oeton a
u € V5. Supposons donc que a, et a, sont des unités. De I’égalité ci-dessus on
déduit la suivante:

(al +b17tn+b27'cn)2 + a% + a% —_ 275” (albl +Cl1b2 —blszC") -

si on avait n > 1, lentier a5 — 27" (a,b,+a b, — b b,n") serait somme de
deux carrés d’entiers et la forme X? + X3 + X3 + X3 serait isotrope sur
K. Contradiction. On a doncn = 0 et ue V.

De tout ceci on déduit évidemment: V = V, et V,/V; = — U

4.2. Proposition

Soit u une unité de A. On a les résultats suivants :

1. Le plus petit entier pair 2k tel que un** appartienne a A, est max
[0, e — 6 ()] ; pour tout entier pair 21 > max [0, e — 6 (u)], un*" est somme de n
carrés dans A si et seulement si u est somme de n carrés dans K ;

2. Le plus petit entier impair 2k+1 tel que un***' appartienne a A,

est e ; pour tout entier impair 21+ 1 > e, un*'*! est somme de deux ou de trois
carrés dans A selon que un est ou n’est pas somme de deux carrés dans K.

1. Si 6(u)>e on a uelV dapres le théoreme (4.1.). Si 6 (u) < e
on a un® ™ = g27¢7%W + g€y avec a, v € U et 1’assertion initiale résulte
de I’assertion 1) de la proposition (3.1.).
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a) Le cas f pair: si f est pair, tout élément de 4 est somme de trois
carrés dans K puisque s (4) = 2. Si 6 (u) >e,onauecV, etiln’y ariena
démontrer. Si & (1) = e, il suffit de montrer que si u est somme de deux
carrés dans K, alors u appartient & V,. Si u est somme de deux carrés dans X,
il existe ve N, a,v, xe U, ye A tels que: un?®’ = a’n®’ + 2un*’ = x> +y°;
si on avait v > 0, y serait une unité et on aurait:

—1 = x"2{(y+ay 'n")* — 2an’ — 2a*n* — 2n'v }

ce qui impliquerait § (—1) > e. Contradiction puisque 6 (—1) = e d’apres
la derniére assertion de la proposition (1.3.2.). Ona doncv = 0etuel,.
Enfin, dans le cas ol 6 (1) < e, on peut écrire de manicre analogue

u=a*+ on’® avec a,veU;

si u est somme de deux carrés dans K, soit v le plus petit entier tel que un>”
soit somme de deux carrés dans A. Il existe x, ye U tels que un®*’ = x?
+ y2, et on obtient:

1 = x—z{ _y_}_an\))z . 7)7I2v+¢5(u) 27 (ay 2 v};
puisque 0 (—1) = e, on a bien 2v + 6 (u) =

b) Le cas f impair: la proposition est vraie pour n = 1. En ce qui
concerne le cas n = 2, elle se démontre comme dans a). Si u appartient a
Vi\V,, il n’y a rien a démontrer. Si u e U\V est somme de trois carrés dans
K, soit 2v le plus petit entier pair tel que un?" soit somme de trois carrés dans
A. Tl existe xe U, y, ze A tels que un?’ = x> + y* + z% et on a:

—1 =x?{(y+z+an’)®> —vn®>"°® — 2yz — 2an’(y +z+an")}.

St yz € P, on a immédiatement 2v + 6 (u) = e puisque v > 0.
Si yz e U, on a nécessairement 2v + 6 () > e et on peut écrire:

~1 = x"2{(y+an")® + z% —on®*® _ 24272 _ 2gyn” 3.

~Si on avait 6 (u) + 2v > e, on aurait z* — vn?"* W — 24272V — 2gyp”
- eV, et —1 serait somme de trois carrés dans 4. Contradiction.

Enfin, si u n’est pas somme de trois carrés dans K, on a ue —U? et u
- est somme de quatre carrés et pas moins dans A.

| 2. La premiére assertion résulte de la proposition (3.1.). De plus uxn
~est somme de trois carrés dans K quelle que soit la parité de f, car —un
n’est pas un carré.
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Si f est pair, il existe ve U tel que un® = 2v, et on a un® = (v+1)>
— (1+v?), somme de trois carrés dans 4. De plus si un est somme de deux
carrés dans K et si 2/+1 est le plus petit entier impair tel que un®'*? soit
somme de deux carrés dans A4, il existe deux unités a, b de A telles que
a® + b* = un®*! On a alors —1 =a 2 {b*> + un®'*'} et on conclut
que 2/+1 = e.

Si f est impair, soit 2/+ 1 le plus petit entier impair tel que un
somme de trois carrés dans A. Il existe xe 4, y,ze U tels que un
= x> + y* + 22, ce qui donne

21+1 SOit

21+1

1 = y—z{Zz _ oyt +x2};

puisque s (4) = 4, on a 2/+1 < e d’apres le théoréme (4.1.). Par ailleurs
on a 2I+1 >e d’aprés la proposition (3.1.). Donc 2/+1 = e. Enfin, si
un est somme de deux carrés dans K, on raisonne comme dans le cas f pair.

Remarque: Il est clair d’aprés ce qui précéde que 7 (4) = 4 si f est
impair. Par ailleurs, si f est pair on a V3 # V,, ce qui montre que ¢ (A)
= 3. En effet, 'application trace de K dans F, est surjective: il existe
u € U tel que la trace de la classe de u soit 1 dans F,. Alors 1 + 2ue V5/V,.

4.3. Exemple numérique

1. Prenons d’abord I'exemple du corps K = Q, (+/6). C’est une exten-
sion totalement ramifiée de degré 3 de , dont une uniformisante 7 est
précisément x3/6. Remarquons qu’on a les égalités:

(U:V) =2 et (V:V,) =2=(V,:U%».

Un systéme. de représentants de U modulo V est { +1, 1+\3/8 b
Un systéme de représentants de " modulo ¥, est { 1, —1}.
Un systéme de représentants de ¥, modulo U? est { 1, 1 +24%6 }.

On a évidemment 1 + 2¢/6 = 1 + (+/6)* — 4+Y/6. Considérons main-
tenant 'unité 1 + % Cette unité a pour défaut quadratique 1, de méme
que son opposé. On en déduit que le plus petit entier pair tel que n** (1 + n)
soit somme de carrés dans A est 2k = 2. De plus n%* (1 +7n) et —n%* (1+n)
sont tels que 'un est somme de deux carrés dans A et pas moins et 'autre
somme de trois carrés et pas moins. Effectivement on a les égalités:

—72(1+n) = —n*—=6 =97 —7 + 1 — 107*.
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Dans Z,, I'une des racines carrées de —7 est de la forme 1 + 4a et
on a:
—7*(1+7) = (1 +4a —3n)? — 6w — 12an + 1 — 107?
= (14+4a—-3n)? + (z*+1-2n%) — 127 — 12an — 8n?
—72(1+7) = (1 +4a=3n)? + (1 —7®)? — 121 — 12an — 8z

Ceci permet d’affirmer que —n* (1+n) est somme de deux carrés dans A
et que n° (1+7) est somme de trois carrés et pas moins. Une représentation
s’obtient par exemple & partir de ’égalité.

*(1+n) =7> +6 = (m+2)* +2(1—4n).

Ceci étant, le plus petit entier impair tel que (1+n) n***! appartienne & 4,

est e = 3. Mais n® (1+n) = 6 (1+n) = (—6) (— (1+n)). Or dans Z,, —6
= ] — 7 est somme de deux carrés et on vient de voir que —(1+mn) est
somme de deux carrés dans K. Par conséquent 6 (1 +n) est somme de deux
carrés dans 4. De facon « semi-explicite » on peut écrire —(1+7) = ¢
+ d? avec mc et nd dans A tels que nc = nd = 1 mod R. On a alors:

6(14+n) = [1+(1+4a)*].[c*+d*] = (c+d+4ad)* + (c —d —4ad)*

et chacun des termes figurant entre parenthéses est un entier de K.

2. Pour obtenir un exemple ol f est pair, considérons maintenant le
corps K = Q, (+/6,) ou j est une racine cubique de I'unité. Une unifor-
misante est encore /6. Mais dans ce corps 1 + 4%6 est somme de deux
carrés. Une unité qui est somme de trois carrés et pas moins est par exemple
1 + 2 (j+476) puisqu'on a

TVK/Qz(j+\:3/6) =3 Ter(j)/Qz(j) = —3.
On a d’ailleurs:
L+2(+3/0) = (P =V/06)" +j*(++/6)" +j* (j +/6)°
= (5 =470 + (2 +j/6)" + (1 +/276).

Remarquons enfin qu’on a (U : V) = 4 dans ce cas et qu’un systéme de
représentants de U modulo V est par exemple:

{1, 1+6,14+j6,1+j> 6 .
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5. RESULTATS PROPRES AU CAS p = 2 ET e PAIR

5.1. Théoréme

Si e est pair, toute unité de A, est somme de deux carrés dans A, c’est-d-
dire qu’on a V = V,. De plus on a t (A) = 3.

La premiére assertion de ce théoréeme résulte de la proposition (3.1.)
puisque 6 (1) > e équivaut a 6 (u) > e+ 1. Soit ue U, et soit n e N tel que
x = un” appartienne a A,. Sin > e, 1 —x est somme de deux carrés dans 4.
On a s (4) = 2, donc x est somme de trois carrés dans 4. Si n < e, alors n
est pair (cf. proposition 3.1.): si on pose n = 2m et u = a®> + bn’™® avec
a,be U on obtient: x = (an™)? + bn’®*2™; ce résultat implique & (1)
+ 2m > e+ 1. Pour tout ze U, on a:

x = (z4+an™? — (22 =br*" 3™ 4 2qz7™) .

On en conclut que z* — br*™* %™ 4 2gzn™ est somme de deux carrés d’en-
tiers, donc que x est somme de trois carrés dans 4. On a ainsi montré que
t (A) < 3. L’égalité ¢ (4) = 3 résultera des propositions qui suivent et qui
concernent respectivement les cas § (—1) = 2¢, (5.2.), 0 (—1) < 2e¢, (5.3.) et
o(—1)> 2e, (54.).

5.2. Proposition

On suppose e pair et 0 (—1) = 2e. Alors:

1. Pour qu’un entier soit somme de deux carrés dans A, il faut que sa
valuation soit paire ;

2. Soitue U tel que d (u) < e (u¢lV) ; le plus petit entier pair 2k tel que
un** appartienne a A, est e+1—6 (u); le plus petit entier pair 2l tel que

urn®! soit somme de deux carrés dans A est 2 (e— 96 (u)).

L’assertion 1. résulte du fait que Iextension K (i)/K (i*= —1) est non

ramifiée et de la proposition (1.2.): un élément de K est somme de deux
carrés dans K si et seulement si c’est une norme de K (i), c’est-a-dire un

élément de U . K2,
2. La premiére assertion est un corollaire de la proposition (3.1.). Soit

2! le plus petit naturel tel que un®! soit somme de deux carrés d’entiers. 1l
existe a, b, ¢, de U tels que:
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un? = a® + b2 = (cnh)? + dm2l+o
Ce qui donne:
—1 = a 2 {(b+cn")? — dn**o®™ — 2bcent} .

La derniére assertion de la proposition (1.3.2.) permet d’affirmer que
20 + 8 (u) > e+1, cest-a-dire I > e— 0 (u). Reste a prouver que urn?~ ")
est somme de deux carrés d’entiers. Si on pose 2 = en®et —1 = v* + wr?®
avec &, v, we U, on a pour tout xe U:

unZ(e—é(u)) — (x+cne—5(u))2 + vaZ + ane—é(u) _ 2cxne—5(u) + X2W7'Eze )

On applique le lemme de Hensel (1.1.) au polyndme
f(X) = wr*® X? —ecX +d

en construisant la suite dont le premier terme est de ~'c ™. 1l existe donc
u'eUtel que f(u') =0etona

unZ(e—é(u)) — (u/ +cne—5(u))2 +v2u/2 .

5.2.1. Exemple numérique. L’exemple le plus simple dans ce cas est celui
du corps Q, (\/ ?_’) pour lequel on a les propriétés suivantes:

a) Ona —1 = 3—4 =27-28 = (3./3)* + 2/ —7)?

b) Une uniformisante de ce corps est = = 3 + \/g dont le polyndme
irréductible sur Q, est X*—6X+6. Avec les notations de (1.1.) ona (U : V)
= 2 et un représentant de la classe non triviale de U modulo V est par

exemple 1 + n. Pour cette unité on a 6 (1 +7) = 1 et on peut écrire les rela-
tions suivantes:

ur? = (1+n)n? =147 —(1-7n°) = 1—-n)? — (1 =21n—7%
avec n° = 30m — 36. On en déduit
(L+mn® = (24/3)? - [37-321] = 2—/3)? + (59-32./3).
Or, on constate facilement que 59 — 32\/ 3= (2+8\/ 5)2 — 135, c’est-a-dire
en définitive '
A+mn? = 2—-./3)% + (2+8/3)* + 3/ —15)*.
Ceci étant, utilisons les notations de la démonstration de 5.2.: on a: —1

= v + n**w avec v = \/g et w=—(3(1-n))"% et 2= en® avec
[3(-D]""

Le polyndme f(X') considéré en 5.2. est donc:

JX) = —n(3(1-n)*X* —B(—-1)"'X +1.
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En effectuant le changement de variable X; = —(3 (z—1))”"' X on obtient
f(X)=0¢(X,)= —nX?+ X, + 1 dont le discriminant est

I +4n =13 + 4/3 = 1+2/3)? = (=5+20).
La racine de ce polyndme qui est une unité est:
x; =1—-n[3x-D]*.
La racine de f(X) qui est une unité est
x =3 —2m.

En fin de compte, on obtient pour n* (1+7n) la représentation comme
somme de deux carrés d’entiers:

n*(1+n) = [3-2n+n]* + 3(3—2n)*
= 3-n)?[14+ (3-2n)7].

5.3. Proposition

On suppose e pair et § (—1) < 2e. Soit u une unité de A.

1. Siu est somme de deux carrés dans K on a les propriétés suivantes :

2K+ 1 gppartienne a A, est

a) le plus petit entier impair 2k+1 tel que un
et+1;

b) si  est somme de deux carrés dans K, le plus petit entier impair 21+ 1 tel
que un*'*t soit somme de deux carrés dans A est 5 (—1);

2m+1

c) si m n’est pas somme de deux carrés dans K, un est somme de trois

carrés dans A et pas moins quel que soit le nombre impair 2m+1 > e+1;

d) le plus petit entier pair 2n tel que un®" appartienne a A, est max [0, e +1
—o (W],
e) sid(—1) + 6 (u) < 2e, le plus petit entier pair 2r tel que un®* soit somme

de deux carrés dans A est 6 (—1) — 6 (u); si au contraire 6 (—1) + 6 (u)
> 2e, le plus petit entier pair 2s tel que un®> soit somme de deux carrés

dans A est 2 max [0, e—§ (u)].

2. Siun’est pas somme de deux carrés dans K, on a les propriétés sui-
vantes : ‘

f) le plus petit entier k tel que un* appartienne @ A, est e
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: r l
g) si m est somme de deux carrés dans K, alors pour tout | > e, un’ est somme
de trois carrés dans A, mais non de deux ;

h) si m n’est pas somme de deux carrés dans K, le plus petit entier impair
2m+1 tel que un®*! soit somme de deux carrés dans A est 6 (—1);
pour tout entier pair 2n > e, un*" est somme de trois carrés dans A mais
non de deux.

1. L’assertion a) résulte de la proposition (3.1.). En ce qui concerne b),
si 7 est somme de deux carrés dans K, il en est de méme de un®/ " pour tout
naturel j. Si 2/+1 est le plus petit entier impair tel que un*'*! soit somme
de deux carrés dans A, il existe ae U, be A tels que un®'*' = a® + b?,

~etona —1=a?{b*~ur**'}; on en conclut que 2/+1 =45(—1) a
I’aide de la proposition (1.4.). Si 7 n’est pas somme de deux carrés dans K,
il en est de méme de un?*/ *! pour tout naturel j. On applique le théoréme 5.1.
Ceci démontre ¢). d) Sid (u) >eonaueVetiln’yarien a démontrer. Si
0 (u) < e on peut écrire u = a* + bn®™. Si 2n est le plus petit entier pair
cherché on a 2n + 6 (u) = e+1 d’aprés la proposition (3.1.). €) Si on a
0 (1) > e, c’est-a-dire u eV, il n’y a rien & démontrer. On supposera donc
0 (u) < e. Si2n est 'entier minimum cherché il existe a, b, ¢, d € U tels que:
u=a + bn’™ = (*+d*)n"*" et on a:

__1 — C—Z {(d_{_a,nn)z . bn&(u)+2n . 2adn" _ 2 Zn}

Sid(u) +2n<e+n onad(+ 2n=275(—1)avec I'inégalité 6 (—1)
+ 0 (u) < 2e.

S1 0 (u) +2n>e+n, on a etn <5(—1), donc 2n >2 (e—45 (n)) et
O (= 1) + & (u) > 2e. 1l suffit donc de montrer que un?© ™™ est somme de
deux carrés d’entiers. Or pour tout ye U on a:

unZ(e—&(u)) — (y+ane—6(u))2 _ y2 + bTCZe—é(u) _ 2ayne—5(u)
—1 =v*+ wr’™D) (pour unv et un we U).

de la:
Ur @) = (p pantT O g 22 4 ypy2d- D)
— 2ayn®°® 4 pp2eé®

- Pour que un?©™°™ soit somme de deux carrés dans 4 il suffit que le poly-
- nome f(Y) = wa?mDHW=2ey2 _ on=euy 4 b ait un zéro y e U. Mais
~ on peut supposer 6 () + 6 (—1) > 2e car si 6 (—1) + 6 (u) = 2 on a évi-
~ demment 2n = 2 (e—§ (u)). Cela étant, le lemme de Hensel s’applique 2

f (Y) et prouve que ce polyndme admet un zéro y congru  bn®/2a modulo B.

4
|
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2. L’assertion f) est encore un corollaire de la proposition (3.1.). Si «
est somme de deux carrés dans K, quel que soit j € N, un’/ n’est pas somme
de deux carrés dans K. On applique le théoréme (5.1.) pour terminer la
démonstration de g). h) Si 7 n’est pas somme de deux carrés dans K, alors

2J*1 est somme de deux carrés dans K puisque (K : NK(i)/K(K (1)) = 2.
Si 2m+ 1 est I’entier impair minimum cherché il existe a, b, ¢, d € U tels que

um

CZ + d2 — a2n2m+1 + bn2m+1+6(u)

etona —1=c?{d?—a’n®" " —bn?" 1T et 5(—1) =2m+1. La
dernicre assertion se démontre comme I’assertion c) ci-dessus.

5.3.1. Exemple numérigue. Le polyndbme X4 — 2X + 2e Z, [X] est
un polyndme d’Fisenstein, donc irréductible sur Z,. Si « est une racine de
ce polynome dans une cléture algébrique de Q,, alors K = Q, (7) est une
extension totalement ramifiée de degré 4 de Q, dont 7 est une uniformi-
sante. Dans I'anneau A des entiers de K on a:

—1 = (1 +7*)?* = 22 (1 +n).

Ceci implique que 6 (—1) = 5. Avec les notations de la proposition ci-

1 += -1
dessus on a: v = 1+7%, w = et ¢ = 1T Remarquons que
— 7 — 7

T
I’'unité 1 — 7 est somme de deux carrés dans K puisque 1 — 7 = = Un

systéme de représentants de U modulo V est par exemple
{(L1-n1-7*(1-n)(1-7"}.

Remarquons encore, puisque tout élément de V' est somme de deux
carrés dans A et puisqu’il existe des unités de 4 qui ne sont pas somme de
deux carrés dans K, que 1—=> n’est pas somme de deux carrés dans K.
Pour simplifier les notations posons u; = 1—=n et u, = 1—=n>. On obtient
ainsi: uyn® = n°—n® = —2(1+7*) qui est somme de deux carrés d’en-
tiers. Ceci illustre les assertions a) et b) de la premiére partie de la propo-
sition 54.carona d(—1) =e+1 = 5.

Passons & I’étude de u, = 1—n>. D’aprés ce qu’on a dit plus haut u,
n’est pas somme de deux carrés dans K. Par suite n°u, = n*—n’ est somme
de trois carrés dans A et pas moins. En effet on obtient u,n* = n*—n’
= —242n—n" =1+ (1+2n—n"—4) etona l+2n—n'—4eV,.
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5.4. Proposition

On suppose e pair et 6 (—1) = + 0, (—1 ef(z). Soit ue U. Alors:

1. Le plus petit entier pair 2k tel que un** appartienne & A, est max
{0, e+1—38(u)}; le plus petit entier pair 21 tel que un®' soit somme de deux
carrés dans A est 2 max { 0, e—0 (u) }.

2m+1 gppartienne @ A,

soit somme de deux

2. Le plus petit entier impair 2m~+1 tel que un
est e+ 1 ; le plus petit entier impair 2n+1 tel que un®"*1
carrés dans A est 2e+1.

On remarque que tout élément de 4 est somme de deux carrés dans K.
Ceci étant, la premiére assertion de 1) résulte de la proposition (3.1.) et la
seconde se démontre comme la derniére assertion de la proposition (5.3.).
2) La premiére assertion résulte encore de la proposition (3.1.). En ce qui
concerne la derniére assertion il existe (a, b) € Ux 4 tel que: —1 = (a~'b)?
. -2 2n+1

a “un .

La proposition (1.4.) permet d’affirmer que 2n+1 >2e+1 et que

2e+1 convient.

5.4.1. Exemple numérique. Le polyndme X° — 2X3 + 4X + 2 est un
polyndme d’Eisenstein. Si 7 est une racine de ce polyndme dans une cldoture
algébrique de Q,, le corps K = @, (n) est totalement ramifié sur Q, et
admet 7 pour uniformisante. De plus dans ’anneau 4 des entiers de K on a
I’égalité:

—1 = (1 -=7%? + 4n,

c’est-a-dire que —1 est un carré dans K. On a par ailleurs (U : V) = 8
et un systeme de représentants de U modulo V est par exemple:

{Ll+n,147%147°, (A +n) (1 +7°), (1 +n) (1 +7°), (1 +7°) (1 +7%),
(14+n)(1+7(1+7°)}.
A titre d’exemple, on a:
(1 +7t3) pet1-8(1+n3) _ (1+7z3)7c4 _ (1+n4) —(1 —77:7)
= (1+7%)? — (1 +2n —2r% —21%)
cet entier est somme de trois carrés de A et pas moins. Par contre, on a:

(1+73)n® = n8+7° = —[1=7° + (=1—4m), qui est somme de deux
carrés de A.
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