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SOMMES DE CARRÉS D'ENTIERS D'UN CORPS y?-ADIQUE

par Claude Moser

Résumé

On se propose de présenter, dans cet article, une étude aussi complète

et élémentaire que possible de l'anneau formé par les entiers d'un corps

/sadique qui sont sommes de carrés d'entiers. Après avoir donné des résultats

généraux sur cet anneau, on recherche pour tout n > 1 quels sont les

entiers qui sont sommes de n carrés d'entiers, et si un entier est somme de n

carrés, on cherche à le représenter comme tel.

1. Introduction

Le premier intérêt de ce travail est de constituer une étape préliminaire

pour l'étude des sommes de carrés d'entiers d'un corps de nombres : on sait

qu'une condition nécessaire et suffisante pour qu'un élément totalement

positif a d'un corps de nombres K soit somme de n carrés dans K, est que a

soit somme de n carrés dans chaque complété p-adique de K; c'est là une
application directe du principe de Hasse [1], [4]. Ce principe n'est plus
applicable en général lorsqu'il s'agit de représenter un entier comme somme
de carrés d'entiers. Il n'en demeure pas moins qu'une condition nécessaire

pour qu'un entier a d'un corps de nombres K soit somme de n carrés d'entiers

de K, est évidemment que a soit somme de n carrés d'entiers dans

chaque complété />-adique de K. Signalons d'ailleurs que la condition est

suffisante pour n 4 si le discriminant de K\Q est impair, cf. [5].
Le second intérêt réside dans le caractère élémentaire de la démarche

utilisée : si on peut considérer, en écho aux méthodes générales de C. Riehm
sur la représentation d'une forme quadratique par une autre [6], que notre
problème est un cas particulier de celui de la représentation entière d'une
forme du type aX2 par une forme X\ + + X2n, la recherche explicite
d'une telle représentation utilise en fait les calculs que nous faisons.

On conçoit que l'essentiel des difficultés réside dans le comportement
des corps dyadiques, c'est-à-dire les extensions finies de Q2, et que les résul
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tats dépendent étroitement de la ramification et de l'extension résiduelle du

corps K considéré. Mais ces facteurs ne suffisent pas: intervient aussi la

propriété pour — 1 d'être « plus ou moins loin » d'être un carré dans K.
C'est pourquoi nous utilisons constamment la notion de défaut quadratique
introduite par O. T. O'Meara [4].

Nous avons cru intéressant d'étayer les démonstrations de quelques
exemples numériques simples qui permettent au lecteur de se rendre compte
du caractère effectif de la méthode utilisée.

1.1. Notations générales et rappels

K désignera un corps ^-adique, d'anneau des entiers A ; on notera :

^3 l'idéal maximal de A;
ri une uniformisante de A (choisie une fois pour toutes);

K le groupe multiplicatif de K;
v :K-*Z la valuation normalisée de K;
U le groupe des unités de A ;

K le corps résiduel de K;

/ le degré résiduel [&:Fp];
e l'indice de ramification absolu de K sur Qp ;

d la partie entière de e/2 ;

A 2 le sous-anneau de A formé des sommes de carrés d'éléments de A ;

V le groupe des unités de A 2 ;

Vn l'ensemble des unités de A2 qui sont sommes de n carrés d'élé¬

ments de A (pour 1);

s (A) la « stufe » de A, c'est-à-dire le plus petit entier n tel que — 1 e Vn ;

t (A) le plus petit entier n tel que tout élément de A2 soit somme de

n carrés d'éléments de A.

1.1.1. Lemme de Hensel. Soit cp (X) un polynôme à coefficients dans A.
Soit a0e A tel que v {cp (ö0)) soit strictement supérieur à 2v (<p' (a0)). Alors
la suite { an }neN définie par :

a„+i a„ - <p(a,,)(y (a,,))-1

converge dans A vers un zéro de cp (X). De plus si a est la limite de cette suite

on a les inégalités :

v (a — a0)>v((p(a0)) - > 1

Pour une démonstration voir [3].



1.2. Extensions cycliques de corps locaux

1.2.1. Proposition. Soit L une extension finie et cyclique d'un corps local

K et soit NKjL : L -» K l'application norme. On a les égalités :

(K:NL/K(L))\_L: A"]

(£/(£) : (£/(L))) e(L/K).

Pour une démonstration voir [7], ou [4] pour le cas particulier d'une
extension de degré 2.

1.2.2. Proposition. Soitp un nombrepremier. Pour tout n > 1 il existe une

extension non ramifiée (unique à isomorphisme près) de degré n de Qp.

Cette extension peut etre décrite comme étant le corps de décomposition

sur Qp du polynôme Xpn — X. Elle est cyclique.

Pour une démonstration voir également [4] et [7].

1.3. Le défaut quadratique {cas dyadique, p 2)

Dans tout ce paragraphe on considère des corps dyadiques, c'est-à-dire
des extensions finies du corps Q2? complété 2-adique du corps des rationnels.
La notion de défaut quadratique et les résultats qui la concernent sont dus
à O'Meara (cf. [4]).

1.3.1. Définition. Soit u une unité de A qui n'est pas un carré dans A.
On appelle défaut quadratique de u, et on note ô (u), le plus grand entier n

tel que la congruence
u X2 (mod ^3")

ait une solution dans A. {Si u est un carré dans A, on convient de poser ô {u)
+ oo).

1.3.2. Proposition. Soit u une unité de A.

1. Pour que u soit un carré dans A, il faut et il suffit que la congruence
u EE x2 (mod 4 ?ß) ait une solution dans A ; (autrement dit la condition
ô {u) > 2e + 1 équivaut à la condition ô {u) + 00^).

2. Si u satisfait à Ô {u) < 2e, alors Ö {u) est un nombre impair.
3. L'extension quadratique K(Ju)jK est non ramifiée si et seulement

si on a ô {u) 2e. De plus, si deux unités ont pour défaut quadratique 2e,
leur produit est un carré.
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4. Soit a un élément de A tel que v (a) soit impair. Alors Ô (1 + a) v (a).

Remarquons d'abord que toute unité u a un défaut quadratique car du
fait que K K2, toute congruence u x2 (mod ^3) a une solution dans

A. De plus le défaut quadratique d'une unité u ne dépend que de sa classe

modulo les carrés d'unités. Soit u une unité telle que ô (u) m et soit

y e U. Posons ô (uy2) n. A partir des représentations: u x2 + x^171

et y2u z2 + z17in on déduit les égalités:

y2u x2y2 + x1y2nm, ce qui implique m </z;
u (zy-1)2 + z1y~2nn, ce qui implique n < m; d'où m n.

1. Soit w une unité de ^4 telle que <5 (m) > 2c + 1. Quitte à multiplier
u par le carré d'une unité, on peut supposer qu'on a:

u — l + 4nb avec b e A

Dans l'anneau de séries formelles Q [|T]] l'élément 1+4T est le carré
de l'élément:

(1 +4T)1/2 1 + £ + (f) (1 — 1^ (1 —n + 0 4"T" ;
^ n\\2j\2 J \2

on vérifie sans peine que pour tout n > 1 on a:

1 /1\ /l \ /I \ (2n\
-n + l) 4nTn (-1)""1 Tn

n! \2/ V2 / V2 / \n

[C'est un bon exercice de montrer que le coefficient binomial est tou-
V n y

jours pair, et qu'il est multiple de 4 si et seulement si n n'est pas une
puissance de 2]. Maintenant, dans l'espace ultramétrique complet A, la série de

-1 (2n\
terme général a0 1 et an — l)n nnbn (n> 1) est convergente.

V"/
On conclut à l'égalité:

00 /2n\
(C^Ä.)l + { 1 + E (-1)""1

n 1 \ ^ /
Cette formule rend « explicite » l'extraction de la racine carrée, en ce sens

qu'il est possible, pour tout n > 0, de trouver le terme de rang n du

développement de Hensel d'une racine carrée de 1 + 4nb.

Réciproquement, si u est un carré d'unité, il est clair que la congruence :

u x2 (mod 4 ^3) a une solution dans A.
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[Pour une autre démonstration de cette assertion voir [4] pp. 160-163

à qui sont empruntées les démonstrations des assertions 2) à 4).]

2. Il suffit de montrer que si la congruence n x2 (mod (a<e)
a une solution dans A, il en est de même de la congruence: u x2

(mod $2a + 1). Quitte, encore, à multiplier u par le carré d'une unité, on peut

supposer qu'on a u 1 + yn2a avec y e A. Si y n'est pas une unité, il n'y a

rien à démontrer. Au contraire si y est une unité, il existe une unité w et un
entier te A tels que y w2 + nt et u 1 + w2n2a + tn2a+1, c'est-à-dire

u (1 + wna)2 + tn2a+1 - 2wna (1 + wna)2 (mod ^ 2a+1)

car on a v (tn2a+1 —2wna) > min { 2a + 1, e + a } > 2a + 1. On a donc
S (u) 1 + 2a.

3. Si u y2 + 4z est une unité de A telle que & (u) 2c, alors z est

une unité et u n'est pas un carré dans A. De plus, - (y + sju) est entier sur A.

Son polynôme irréductible sur A est X2— yX— z dont le discriminant est u.

C'est dire que K(+Ju) est une extension quadratique non ramifiée de K.

Réciproquement, soit u une unité non carrée de A telle que K (s/u)
soit non ramifiée sur K. Quitte à multiplier u par le carré d'une unité, ce qui

ne change pas l'extension K{^fu), on peut supposer qu'on a u 1 + nab

avec a ö (u) et b e U. Posons c — 1 + yfu et désignons par v : (K (-Ju))
-> Z la valuation normalisée de K{y/u). Puisque l'extension K(yju)/K est

A A

non ramifiée, v coïncide avec v sur K. Si on avait v (c) < e on aurait a
A

2v (c) < 2e, ce qui est impossible d'après l'assertion 2. ci-dessus. Par
A

conséquent on a v (c) > e et a > 2e. Ceci implique a 2e puisque u n'est

pas un carré dans A.
La dernière partie de 3. résulte de l'unicité de l'extension non ramifiée

de degré 2 de K.

4. Si a e A est de valuation impaire v (a) < 2e, il est clair qu'on a
ö (1 +d) > v (a). Raisonnons par l'absurde et supposons qu'existe b e A
tel que 1 + a soit congru à (1 +b)2 modulo p1 + y(a). On aurait v {b (6 + 2))

v (a). L'hypothèse v (b) > e implique v (a) X 2e tandis que l'hypothèse
v{b) < e implique v (a) 2v (b). Ces deux hypothèses contredisent la
définition de a. Par conséquent, on a <5 (1 4-à) < Ha).
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2. Etude du cas p impair

Cette étude se résume à l'énoncé et à la démonstration du théorème
suivant:

2.1. Théorème

Si p est impair, tout entier de K est somme de carrés d'entiers (A A2);
plus précisément :

1. Pour qu 'un entier de K soit un carré, ilfaut que sa valuation normalisée
soit un nombre pair. Un entier x uiz2n de valuation 2n est un carré dans A
si et seulement si la classe de u dans K est un carré.

2. Si p est congru à 1 modulo 4,-1 est un carré et tout entier est somme
de deux carrés d'entiers, {s (A) 1, t (A) 2).

3. Si p est congru à — 1 modulo 4, on a s (A) 1 et t (A) 2 (resp.
s (A) 2 et t (A) 3) sif est pair (resp. impair). Sif est impair, les entiers
de valuation paire sont somme de deux carrés d'entiers tandis que les entiers
de valuation impaire sont somme de trois carrés d'entiers et pas moins.

En vue de la démonstration de ce théorème, rappelons quelques
propriétés des corps finis:

2.2. Lemme

Soit p un nombre premier impair et soit Fp le corps à p éléments.

1. Si p est congru à 1 modulo 4, alors — 1 est un carré dans Fp ; si p est

congru à — 1 modulo 4, — 1 n 'est pas un carré dans Fp, mais est somme de

deux carrés dans Fp.

2. Soit k une extension finie de Fp. Si p est congru à — 1 modulo 4

alors — 1 est un carré dans k si et seulement si k/Fp est de degré pair.

Le groupe multiplicatif Fp du corps Fp est cyclique d'ordre p— 1. Il

admet un seul sous-groupe d'ordre — • Or l'endomorphisme {x K x2,

Fp-^Fp) a pour noyau { -1, +1 }. Il en résulte que le groupe des carrés de

p — 1

Fp est l'unique sous-groupe d'ordre —-— de Fp. Un élément est un carré si

p — 1

et seulement si son ordre divise Puisque l'ordre de - 1 est 2,-1 est



un carré si et seulement si
^—

est pair. Il suffit de montrer que si a e Fp

n'est pas un carré il est somme de deux carrés. Pour cela considérons

A { x | x y2 } et B (a) { x | x a-y2 }. Ces deux sous-

p + 1

ensembles de ¥p ont pour cardinal ———. Puisque Card Fp p on a

A n B (a) ^ 0, ce qui prouve que a est somme de deux carrés dans Fp.

La deuxième assertion résulte de ce que pour tout n > 1 Fp admet une

extension de degré n unique (à isomorphisme près) (cf. par exemple [2] ou

[8]). Ceci étant, si p est congru à - 1 modulo 4 l'unique extension de degré 2

de Fp est Fp (J -1).
Démontrons maintenant le théorème 2.1:

1. La première assertion est évidente. Soit u une unité de A. Si la classe

de u modulo ^3 n'est pas un carré, a fortiori u n'est pas un carré dans A.
Si au contraire la classe de u est un carré dans K, il existe une unité b de A
telle que l'on ait u~b2 e ^3. On peut alors appliquer au polynôme X2 -u
le lemme de Hensel (1.1.1) et conclure que u est un carré dans A.

2 et 3. Remarquons que 2 est une unité de A et que pour tout élément

a de A on a l'égalité:

Si p est congru à 1 modulo 4 ou si le degré résiduel f [K : FJ de K
est pair, alors — 1 est un carré dans K (cf. lemme 2.2) et la première partie du
théorème permet d'affirmer que — 1 est un carré dans A. On conclut
facilement en utilisant (*) que tout élément de A est somme de deux carrés dans
A.

Enfin, si p est congru à -1 modulo 4 et si le degré résiduel de K est

impair, — 1 est somme de deux carrés dans K. Il existe donc deux unités
u et z de A telles que -l-w2~z2e^3. On applique alors le lemme de

Hensel au polynôme X2 + l + u2 pour conclure qu'il existe une unité de
de A telle que 1 + u2 + w2 0. Alors toute unité de A est somme de
deux carrés d'éléments de A puisque toute unité est soit un carré soit l'opposé
d'un carré. Pour terminer remarquons que les éléments de K qui sont

somme de deux carrés dans K sont les normes des éléments de K ~ 1).

L'égalité [K : 2V (AT (^/ — 1))*] 2 implique qu'aucun élément de valuation
impaire n'est somme de deux carrés dans K. Enfin tout élément de valuation
impaire de A est somme de trois carrés dans A en vertu de l'égalité (*).

L'Enseignement mathém., t. XX, fasc. 3-4. 20
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3. Etude du cas p 2. Résultats généraux

Ce paragraphe regroupe quelques résultats valables pour tous les corps
dyadiques.

3.1. Proposition

Soit u une unité de A, anneau des entiers du corps dyadique K (extension
finie de Q2J.

1. Le plus petit entier impair 2k + 1 tel que un2k + 1 soit somme de carrés

d'entiers est 2d+ 1 ; (d est la partie entière de e/2).

2. Pour que u soit somme de carrés d'entiers (weF), il faut et il suffit
qu 'on ait ô (u) > e. De plus, si on a ô (u) > e + 1, alors u est somme de deux
carrés d'entiers.

Remarquons que - 1 est somme de carrés dans A, ce qui permet d'affirmer

que A2 est bien un sous-anneau de A: dans l'anneau Z2 des entiers

dyadiques, — 7 est un carré car 2 est une uniformisante et — 7 est congru à 1

modulo 8. Il en résulte que —1 — 1 + 1+ 4 —7 est somme de quatre carrés
dans A. Ceci étant:

1. Pour tout élément a de A on a l'égalité 2a (a+1)2 — (a2+l);
par conséquent 2a est somme de carrés dans A. Plus précisément, si b est

une racine carrée de —7 dans Z2, on a l'égalité obtenue à partir de la
propriété de multiplicativité de la norme des quaternions:

2a (1 +a)2 + (1 +a)2 + (1 — a)2 + (2 -y ab)2 + (2a — b)2

Par ailleurs, il existe une unité s de A satisfaisant à ne 2s. Dans ces conditions

on a bien une e A2 pour toute unité u de A. En particulier, on a

un2d+1 e A2 pour toute unité u de A.

Réciproquement, soit u une unité de A,2k+l un entier impair tels qu'on
ait un2k+1 e A2; il existe une famille finie { al9 aNj d'éléments de A
telle que:

un2k+1E ß J
f E af-2 y Oflj.

7=1 \J= 1 / 1 i=:i< ji=N

Comparons les valuations ^3-adiques de chacun des termes écrits ci-dessus ;

N

on a vK (;un2k+1) > min { 2vK £ afi, e + vK £ a}afi }. On ne peut
1 l^i< j^N
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N

avoir 2vK( Ya,) < e + vK(£ a/z,) car est impair.
J=1 1 t=i<ji=N

On en conclut que 2k +1 > e et de façon plus précise que k est supérieur ou

égal à d.

2. Si ue U est une somme de carrés dans A, il existe une famille finie
d'éléments de A, soit { au aN }, telle que

u y a2j Y«/)2 - 2 E ;

j l j l i<j
ceci prouve que ô (u) est supérieur ou égal à e. Réciproquement, si ö (u)
est supérieur ou égal à e, il existe une unité v de ^ et un entier b tels que
u v2 + neb; or on vient de voir que neb est somme de carrés dans A.

3. Si l'unité u satisfait à <5 (u) > 1, il existe une unité v de A et un
entier b tels qu'on ait:

u v2 + 27zb -v2 [1 + 1 + 4-7ibv ~2]

De l'égalité (CAR) obtenue au paragraphe (1.3.2.) on déduit:

1 00 (2n\
U -V2{1 + [1 + Y-i)""1n"b"v~2"]2},

2 «=i \nj
1 00 /2n\
U=V2{[1+ Yi-W^i2 »=1 \ »,/

1 00 /2ti\
2 n l \n J

Alors uest somme de deux carrés dans A puisque pour tout n > 1

est un nombre pair.
3.2. Théorème

Soit Tla sous-extension non ramifiée maximale de K et soit B l'anneau des
entiers de T. Alors :

1. Les anneaux B et B2 coïncident, c'est-à-dire que tout entier de T est
somme de carré d'entiers de T.

2. L'anneau A2 est un anneau local, nœthérien, de dimension 1 ; son idéal
maximal est ^3 n A2. En tant que B-module, A2 est libre de rang e. En tant
que B-algèbre, A2 est égal à B [n2, 2n],
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3. Avecles notations 1, on a la double égalité:

(A : A2) (U:V) 2d'

1. Puisque B est non ramifié sur Z2, 2 est une uniformisante de B;
tout élément non nul de B s'écrit donc de façon unique sous la forme

2"(l+2ß) avec n e N et a e B, et on a dans B : l+2a (a+ l)2 + a2

+ a2+ 4a2 + (v/-7; fa2.

2. L'anneau A est une extension totalement ramifiée de B; il en résulte

que n, uniformisante de A, est racine d'un polynôme d'Eisenstein à coefficients

dans B; en d'autres termes, il existe une unité b0 de B et (e — 1)

éléments bu be^1 de B tels qu'on ait:

e- 1

71e 2 Yj bj7LJ

j=0

Par ailleurs, on sait que A B [n] et que la famille { 1, tz, 7ie~x } est

une base du iLmodule A. On va montrer que si e est pair, (resp. impair),
la famille { 1, 2ti, tl2, 7ie~2, 2%e~1 } (resp. { 1, 2%, tl2, 2ne~2, 7ie~1 })
constitue une base de A2 considéré comme ^-module. En premier lieu, il
est clair que B est un sous-anneau de A2 et que la famille considérée est

libre sur B.

Remarquons qu'on peut choisir comme système R de représentants non
nuls de A modulo ^3 un ensemble d'unités de B, ces unités étant elles-mêmes

des carrés dans B. (On a en effet K K2 et toute unité de B est congrue à

un carré modulo 2B.) Tout élément a de A admet donc un développement
de Hensel de la forme:

co

a Yj r2jnJ' (r 2jeR u { 0 } Pour tout J e N) •

j= o

En particulier, il résulte de la proposition 3.1.1.) que tout a e A2 admet un

développement de Hensel de la forme:

d co

aË r2jn2J +n1 + 2d y r2j + 1 + 2dnj.
o

Remarquons alors les détails suivants:

a) L'ensemble A2 est un fermé de A pour la topologie ^-adique. Ceci

est encore une conséquence de la proposition 3.1.1.).

b) L'ensemble B [tl2, 2tl] est un fermé de A pour la topologie ^3-adique.
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Or sur B [n2, 2tc] cette topologie coïncide avec l'unique prolongement à

cet espace de la topologie 2-adique de B. En particulier B [7t29 27i] est un
fermé de A2.

Il reste en définitive à prouver que B [n2, 2n] est dense dans A2. Pour
cela, il suffit de montrer que pour tout ne N, ne+n est combinaison linéaire
à coefficients dans B des éléments de la famille considérée plus haut. Faisons

la démonstration dans le cas e pair; (dans le cas e impair, la démonstration
est analogue):

Les remarques faites au début de la démonstration montrent que la

propriété à démontrer est vraie pour n 0. De plus, on a les égalités:

7te+1 2n£ bfiJ 2 Y, b2j+i n2U++ £
j=*0

^ ^
j=0 j=0

jre+t 2b0be-t + I (b2j-1+2be„1b2J)i12<

ä-x
+ 2 n Y(b2j + 2be_1b2J+1)n2J ;

j=0
e-3

7ze+2 2be-1ne+1 + 2foe_27re + Yj 2bj7ij+2
j 0

A partir de là on raisonne par récurrence sur m pour évaluer ne+2m et
ne + 1 + 2m.

Enfin, puisque B est un anneau de valuation discrète, la ^-algèbre de

type fini B [n2, 2tl\ est un anneau nœthérien; puisque A est un anneau de
valuation discrète entier sur A2, l'unique idéal maximal de A2 est $ n A2.

3. L'égalité (A : A2) 2df résulte de ce que { 1, n,..., n6'1 } est une
base de A en tant que ^-module, tandis qu'une base de A2 comme B-
module est { 1, 2n,..., 2ne 1

} ou { 1, 2n,..., ne~1 } selon que e est pair ou
impair. Reste à démontrer la dernière égalité.

Pour tout n > 1 soit Un le sous-groupe 1 + de U. On sait que (U:U^
2f-1 et que pour tout n > 1 on a (t/„ :[/„+,) 2f. (Pour plus de détails,

voir [4] ou [5].) Il résulte de la proposition 3.1, 1), qu'on a:

v U2.u2d+1.
Montrons qu'on a U2 n U2d+1U2d+1L'inclusion+1 <= U2 n U2d+1
est évidente. Réciproquement, soit xeU tel que x2 1 + an2d+1 avec
ae A. Quitte à changer x en -x on peut écrire x sous la forme 1 + b%2 avec
s > 1 et be A. On obtient alors b2n2s an2d+1 - 2bns ce qui implique

2e > 2d+ 1 et e > d+ 1.
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Ceci montre l'existence d'un isomorphisms entre le groupe VjU2d+1
et le groupe U2/U2d+La proposition sera alors une conséquence du lemme
de Herbrand:

Lemme de Herbrand. Soit cp : G -> Gf un homomorphisme de groupes et
soit H un sous-groupe de G.

1. Les deux assertions suivantes sont équivalentes :

a) le sous-groupe H est d 'indice fini dans G ;
b) les indices (cp (G) : cp (H)) et (Ker cp H n Ker cp) sont finis.

2. Si les assertions ci-dessus sont vraies, alors :

0G:H) (<p (G) : <p (H)). (Ker cp : H n Ker cp).

Pour une démonstration, voir [4] § 63.

Appliquons ce lemme au groupe U, à son sous-groupe Ud+ l et à l'homo-
morphisme <p : U -> l/2(xh>x2); puisque —1 appartient à Ud+l, on a

l'égalité

(U:Ud+t) (U2:U2d+1)
et les égalités:

(E/ : t/M+1) (£/ : ü„+1) (l/J+1 : l/2i+1) - (U : F) (F: £7M+I).

On en conclut:

(U:V) (Ud+1 : U2d+l) 2«.

4. Résultats propres au cas p - 2 et e impair

4.1. Théorème

Supposons e impair et soit ue U. Alors :

1. Si ô (u) > e, u est somme de deux carrés dans A ;

2. Si ô (u) e, il existe a, b e U tels que u a2 + 2b ; avec ces

notations, les trois assertions suivantes sont équivalentes :

a) l'unité u est somme de deux carrés dans A (ueV2) ;

b) la trace absolue de (b/a2) appartient à 2Z2 ;

c) il existe ceU tel que b a2 (c2 — c).

De plus :
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3. Si f est pair on a s (A) 2, V V3 et t (A) — 3;

4. Si f est impair on a s (A) 4, V V4 et t (A) 4; pour que u

appartienne à K4 mais non à V3, il faut et il suffit que — u soit un carré dans A.

La première assertion est une répétition de la seconde assertion de la

proposition (3.1.). Avant d'examiner les assertions suivantes faisons quelques

remarques. Tout d'abord -1 n'est pas un carré dans K puisqu'on a <5 (— 1)

e en vertu de la dernière assertion de la proposition (1.3.2.).
Ensuite remarquons que si v est une unité de Q2 (0 (i2=~l)> alors

NQ2(i)/Q2 (v) e 1 + 4Z2. En effet, une base d'entiers de Q2 (/) est { 1, i}
et si v a + iß, alors NQm/Q2 (v) <*2 + ß2, l'un et l'un seulement des

nombres a, ß étant une unité de Z2.
Signalons que relativement à l'extension résiduelle K/F2 la trace tr : K

-» F2 est un homomorphisme surjectif de groupes additifs dont le noyau est

{ u | ppy g K, u y2 —y } (cf. [2] page 8, prop. 9). Ceci étant dit, soit u

une unité de A dont le défaut quadratique est e. Si on a u a2 + 2b et si u

est somme de deux carrés d'entiers, alors la norme de u est, dans l'extension

K/Qi, la norme d'une unité de Q2 (/).
On a alors:

Nr/q2(w) — [^x/Q2(a)]2 [1 + ^ TrKjQ2 (b/a2) +4K] (he2Z).

Puisque a est une unité de A, on a [NK/Q2(a)]2 g 1 + 8Z2. La deuxième

remarque faite ci-dessus permet alors de conclure que TrK/Q2(b/a2) e Z22.
Maintenant, si l'unité u a2 + 2b, (beU), satisfait à TrKjQ.fbja2)

g2Z2, il existe c0eK tel que la classe de (b/a2) modulo ^3 soit cl~c0.
L'application du lemme de Hensel au polynôme X2 — X — (b/a2) permet
de conclure à l'existence d'une unité c de A telle que b a2 (c2-c).

Enfin, s'il existe c e U avec b — a2 {c2 - c) on peut écrire u — a2 + 2b

sous la forme u a2 [c2+ (c-l)2] et u e V2-

3. Si / est pair, on remarque que K contient une racine primitive
cubique j de l'unité. On a -1 ;4 + j2 et s (A) 2. Si u e U satisfait à
S (u) > £ on peut écrire u a2 + 2b (aeU, beA) et u » (a + b/a)2 - (b/a)2
eV3. L'assertion sur t (A) sera démontrée plus loin (cf. Proposition 4.2,
remarque).

4. Remarquons que TrK/Q2(-1) -ef$ 2Z2. Par conséquent -1
n'est pas somme de deux carrés dans A, ni même de trois (vérification
facile). Donc la forme quadratique X2 + X\ + X\ + X\ n'est pas
isotrope sur K. On a bien -1 - 1 + 1 + 4 - 7e F4, donc - U2 c VJV3.



— 312 —

Maintenant soit u g V tel que u n'appartienne ni à U2 ni à - U2. Pour

toute v$K2 soit G (v) le sous-groupe de K formé par les normes dans

l'extension K(^Jv)/K. D'après la proposition (1.2.) les groupes G (u) et

G(-l) sont d'indice 2 dans K. Il existe donc x e G (u)/G (-1); puisque
— 1 ^ G (— 1), il existe y, v, w,1 g K non tous nuls tels que y2 — uv2

— (w2 + t2). On a v ^ 0 et on déduit de là que u est somme de trois carrés
dans K. Reste à montrer que u appartient à V3.

Dans un premier temps remarquons que si u appartient à V/V2, alors
— u appartient à V2. En effet, quitte à multiplier u par le carré d'une unité

on peut supposer que u 1 + 2b avec b e A et TrK/Q2 (b) g 1 + 2Z2 ; on a

alors -u 1 -2(6+1) et TrK/Q2(- (6+1)) -e/+ TrK/Q2{~b) e 2Z2.
Dans un second temps on peut écrire w sous les deux formes

u 7T
2" (ax + a2 + a3) — (6^ + 62)

avec öl5 ö2, a3, 6l5 62 g A. Si on suppose l'entier n minimum on peut
supposer que est une unité. Si a2 et a3 appartiennent à ^3 alors n 0 et on a

ueV3. Supposons donc que a1 et a2 sont des unités. De l'égalité ci-dessus on
déduit la suivante:

(äq +b17in + 627in)2 + al + a\ — 2nn(a1b1 +a1b2 — 61627i") — 0;

si on avait n > 1, l'entier a\ — 2Tcn (a1bi + aib2 — b1b2nn) serait somme de

deux carrés d'entiers et la forme X\ + X\ + X\ + X\ serait isotrope sur
K. Contradiction. On a donc n 0 et ueV3.

De tout ceci on déduit évidemment: V V4 et VJV3 —U2.

4.2. Proposition

Soit u une unité de A, On a les résultats suivants :

1. Le plus petit entier pair 2k tel que un2k appartienne à A2 est max
[0, e — ô (u)] ; pour tout entier pair 21 > max [0, e — S (m)], un21 est somme de n

carrés dans A si et seulement si u est somme de n carrés dans K;
2. Le plus petit entier impair 2k +1 tel que un2k+1 appartienne à A2

est e ; pour tout entier impair 2/+ 1 > e, un2l + 1 est somme de deux ou de trois
carrés dans A selon que un est ou n 'est pas somme de deux carrés dans K.

1. Si ô (u) > e on a u e V d'après le théorème (4.1.). Si ô (u) < e

on a une~~ô(u) a2ne~ô{u) + nev avec a, v g U et l'assertion initiale résulte
de l'assertion 1) de la proposition (3.1.).
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a) Le cas / pair: si/est pair, tout élément de A est somme de trois

carrés dans K puisque s (A) 2. Si S (u) > e, on a u e V2 ét il n'y a rien à

démontrer. Si ô (u) e, il suffit de montrer que si u est somme de deux

carrés dans K, alors u appartient à V2. Si u est somme de deux carrés dans K,

il existe v e N,a,v,xeU,yeA tels que: un2v a2n2v + 2vn2v x2+y2;
si on avait v > 0, y serait une unité et on aurait:

— 1 x~2 {(y +ay~1nv)2 — 2anv — 2a2n2v — 2nvv }

ce qui impliquerait <5 (— 1) > e. Contradiction puisque ö (— 1) e d'après
la dernière assertion de la proposition (1.3.2.). On a donc v 0 et u e V2.

Enfin, dans le cas où S (u) < e, on peut écrire de manière analogue

u a2 + ^7ia(") avec a,v e U ;

si w est somme de deux carrés dans K, soit v le plus petit entier tel que un2v

soit somme de deux carrés dans A. Il existe x,yeU tels que un2v x2

+ y2, et on obtient:

— 1 x~~2 { —y +a7iv)2 — V7ï2v+ô(u) — 2nv (ay —a27iv } ;

puisque <5 — 1) e, on a bien 2v + <5 (u) e.

b) Le cas / impair: la proposition est vraie pour n 1. En ce qui
concerne le cas n 2, elle se démontre comme dans a). Si w appartient à

V3\V2, il n'y a rien à démontrer. Si t/ e U\V est somme de trois carrés dans

K, soit 2v le plus petit entier pair tel que un2v soit somme de trois carrés dans

A. Il existe x e U, y, z e A tels que utl2v x2 + y2 + z2 et on a:

— 1 x~2 { (y + z +anv)2 — vn2v+ô(u) — 2yz — 2anv (y + z +anv) }

Si yz e ^j3, on a immédiatement 2v + ô (u) e puisque v > 0.

Si yz e (/, on a nécessairement 2v + ô (u) > e et on peut écrire :

-1 x~2 {(y +any)2 + z2 -vtl2v+ô(u) - 2a27i2v - 2aynv}

Si on avait ô (u) + 2v > e, on aurait z2 — vn2y+ô{u) — 2a2n2v — 2aynv
e V2 et -1 serait somme de trois carrés dans A. Contradiction.

Enfin, si u n'est pas somme de trois carrés dans K, on a u e - U2 et u
est somme de quatre carrés et pas moins dans A.

2. La première assertion résulte de la proposition (3.1.). De plus un
est somme de trois carrés dans K quelle que soit la parité de /, car - un
n'est pas un carré.
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Si / est pair, il existe v e U tel que une 2v, et on a une (v + l)2
— (1 + v2), somme de trois carrés dans A. De plus si un est somme de deux
carrés dans K et si 21+ 1 est le plus petit entier impair tel que un2l + 1 soit
somme de deux carrés dans A, il existe deux unités a, b de A telles que
a2 + b2 un2l + 1. On a alors -1 a~2 { b2 + un2l+1 } et on conclut

que 21+ 1 e.

Si /est impair, soit 2/+ 1 le plus petit entier impair tel que un2l+1 soit

somme de trois carrés dans A. Il existe x e A, y, z e U tels que un2l + 1

x2 + y2 + z2, ce qui donne

— 1 y~2 {z2 — un2l+1 + x2} ;

puisque s (A) 4, on a 21+ 1 < e d'après le théorème (4.1.). Par ailleurs
on a 2/+1 > e d'après la proposition (3.1.). Donc 2/+1 e. Enfin, si

un est somme de deux carrés dans K, on raisonne comme dans le cas / pair.

Remarque: Il est clair d'après ce qui précède que t (A) 4 si / est

impair. Par ailleurs, si / est pair on a F3 ^ V2, ce qui montre que t (A)
3. En effet, l'application trace de K dans F2 est surjective: il existe

u e U tel que la trace de la classe de u soit 1 dans F2. Alors 1 +2ue V3/V2.

4.3. Exemple numérique

1. Prenons d'abord l'exemple du corps K Q2 (^6). C'est une extension

totalement ramifiée de degré 3 de Q2 dont une uniformisante n est

précisément <^/%. Remarquons qu'on a les égalités:

(U : V) 2 et (E: V2) 2 (E2 : U2).

Un système, de représentants de U modulo V est { + 1, 1 +^/6 }•

Un système de représentants de V modulo V2 est { 1, -1 }.
Un système de représentants de V2 modulo U2 est { 1, 1 +2^/ß }.

On a évidemment 1 + 2^/6 1 + (^ô)4 ~ 4^6- Considérons
maintenant l'unité 1 + Cette unité a pour défaut quadratique 1, de même

que son opposé. On en déduit que le plus petit entier pair tel que n2k (1 +n)
soit somme de carrés dans A est 2k 2. De plus n2k (1 +n) et —n2k (1 +n)
sont tels que l'un est somme de deux carrés dans A et pas moins et l'autre

somme de trois carrés et pas moins. Effectivement on a les égalités:

-ti2(1+7i) -n2-6 9n2 -1 + 1 - IOti2
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Dans Z2, l'une des racines carrées de — 7 est de la forme 1 + 4a et

on a:

-n2 (1 +7i) (1 +4a — 3n)2 — 6n — 12an + 1 — IO712

(1 +4a — 37i)2 + (714 + 1 — 2tc2) - 1271 - 12an - %%2

-712 (1 +71) (1 +4a -37l)2 + (1 -TL2)2 - 1271 - 12(271 - 8712

Ceci permet d'affirmer que —n2 (14-71) est somme de deux carrés dans A

et que n2 (1 +71) est somme de trois carrés et pas moins. Une représentation
s'obtient par exemple à partir de l'égalité.

7z2 (1 +7r) 712. + 6 (71 +2)2 + 2 (1 — 47i)

Ceci étant, le plus petit entier impair tel que (1 +71) n2k+1 appartienne à Â2
est e 3. Mais n3 (1 + n) — 6 (1 + 71) (- 6) (- (14- n)). Or dans Z2, - 6

1 - 7 est somme de deux carrés et on vient de voir que -(14-71) est

somme de deux carrés dans K. Par conséquent 6 (1 +71) est somme de deux

carrés dans A. De façon «semi-explicite» on peut écrire —(14-71) « c2

+ d2 avec ne et nd dans A tels que ne nd 1 mod ^3. On a alors:

6(1 4-71) [1 4-(l 4-4a)2] [e2 4-d2] (e +d + 4ad)2 + (c — d — 4ad)2

et chacun des termes figurant entre parenthèses est un entier de K.

2. Pour obtenir un exemple où / est pair, considérons maintenant le

corps K Q2 (^y6, j) où j est une racine cubique de l'unité. Une
uniformisante est encore ^/6. Mais dans ce corps 1 4- ^6 est somme de deux
carrés. Une unité qui est somme de trois carrés et pas moins est par exemple
1 + 2 (j4-^/6) puisqu'on a

TrK,Q2(j + ^/6)3 TrQ2iJ)/Q2(j) -3.
On a d'ailleurs:

1 + 20 + ^6)(j2-$'6)2

(.r-f 6)2 + U2 + (1 ^6)2.

Remarquons enfin qu'on a (U : V)=4 dans ce cas et qu'un système de

représentants de U modulo V est par exemple:

{1,1 +-^6,1 +)<%/61 +j2 $/6}
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5. Résultats propres au cas p 2 et e pair

5.1. Théorème

Si e est pair, toute unité de A 2 est somme de deux carrés dans A, c 'est-à-

dire qu'on a V — V2. De plus on a t (A) 3.

La première assertion de ce théorème résulte de la proposition (3.1.)
puisque 3 (u) > e équivaut à S (u) > e+1. Soit u e U, et soit ne N tel que
x unn appartienne h A2. Si n > e, 1 — a est somme de deux carrés dans A.
On a s (A) 2, donc x est somme de trois carrés dans A. Si n < e, alors n

est pair (cf. proposition 3.1.): si on pose n 2m et u a2 + bnô(u) avec

a,beU on obtient: x (<anm)2 + bnôiu) + 2m; ce résultat implique ô (u)
+ 2m > e + 1. Pour tout z e U, on a :

x (z+anm)2 - (z2 -bn2m+ô(u) +2aznm)

On en conclut que z2 — bn2m+ô{u) 4- 2aznm est somme de deux carrés d'entiers,

donc que x est somme de trois carrés dans A. On a ainsi montré que
t(A) < 3. L'égalité t (A) 3 résultera des propositions qui suivent et qui
concernent respectivement les cas 3 (— 1) 2e, (5.2.), S (— 1) < 2e, (5.3.) et

ô(-l)>2e, (5.4.).

5.2. Proposition

On suppose e pair et 3 — 1) 2e. Alors :

1. Pour qu'un entier soit somme de deux carrés dans A, il faut que sa

valuation soit paire ;

2. Soit ue U tel que 3 (u) < e (u£V) ; le plus petit entier pair 2k tel que
un2k appartienne à A2 est e+î —3{u); le plus petit entier pair 21 tel que
un21 soit somme de deux carrés dans A est 2 (e —3 (;u)).

L'assertion 1. résulte du fait que l'extension K(i)/K(i2 —1) est non

ramifiée et de la proposition (1.2.): un élément de K est somme de deux

carrés dans K si et seulement si c'est une norme de K (z), c'est-à-dire un

élément de U .K2.

2. La première assertion est un corollaire de la proposition (3.1.). Soit
2l le plus petit naturel tel que un21 soit somme de deux carrés d'entiers. Il
existe a,b, c, de U tels que :
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un21 a2 +b2 (en1)2 + dn2l+ô(u).

Ce qui donne:
— 1 a~2 {(b +cn1)2 - dn2l+ô(u) — 2bcn1}

La dernière assertion de la proposition (1.3.2.) permet d'affirmer que
21 + ô (u) > e + l, c'est-à-dire / > e—ô (u). Reste à prouver que un2{e~ô{tl))

est somme de deux carrés d'entiers. Si on pose 2 sne et — 1 v2 + w>7z:2e

avec 8, v, w e U, on a pour tout xe U:

un2(e~ô(u)) — (x + cne~ô(u))2 + ^2x2 + dn2e~ô(u) — 2cxne~ô(u) + x2wn2e.

On applique le lemme de Hensel (1.1.) au polynôme

f(X) wnô(u)X2 - scX + d

en construisant la suite dont le premier terme est ds~1c~1. Il existe donc
u' g U tel que f(ur) 0 et on a

un2 (e-ö(u)) m (Ur +Cne~ô(u))2 +V2U'2

5.2.1. Exemple numérique. L'exemple le plus simple dans ce cas est celui

du corps Q2 (a/3) pour lequel on a les propriétés suivantes:

a) Ona -1 3-4 27-28 (3yfï)2 + (2v/-7)2
b) Une uniformisante de ce corps est n 3 + dont le polynôme

irréductible sur Q2 est X2 — 6X+6. Avec les notations de (1.1.) on a (U : V)
2 et un représentant de la classe non triviale de U modulo V est par

exemple 1 + n. Pour cette unité on a ô (1 +n) 1 et on peut écrire les
relations suivantes:

un2 (1 +n)n2 1 + n2 — (1 — n3) — (1 — n)2 — (1 — 2n— n3)

avec 7T3 30n - 36. On en déduit

{l+n)n2 {ijïf-[37-3271] (2 - ^/j)2 + (59 -
Or, on constate facilement que 59 — 32^/3 (2 + 8,y3)2 — 135, c'est-à-dire
en définitive

(1 +7t)7r2 (2-V3)2 +(2 +8^ +(3V-15)2.
Ceci étant, utilisons les notations de la démonstration de 5.2.: on a: — 1

v2 + n2ew avec v ^3 et w— (3 (1 — 7r))-2 et 2 Ene avec
[3 (ti 1)] —1.

Le polynôme f(X) considéré en 5.2. est donc:

f(X)7C (3 (1 7i))—2 X2-(3(7t-l))-lX+ 1.
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En effectuant le changement de variable X1 — (3 (n- l))-1 X on obtient

f(X) cp (.XJ -7tX\ + X1 + 1 dont le discriminant est

1 + An13 + 4^3 (1+2^3)2 (-5+2ti)2.
La racine de ce polynôme qui est une unité est:

xx 1 — 71 [3 (71 — l)]"1

La racine de / (X) qui est une unité est

x 3 — 2iz

En lin de compte, on obtient pour 7i4(l+7i) la représentation comme
somme de deux carrés d'entiers:

7T4(1+7C) [3— 271+7i]2 + 3(3 — 2TC)2

(3 — n)2 [1 + (3 — 27c)2]

5.3. Proposition

On suppose e pair et ô (— 1) < 2e. Soit u une unité de A.

1. Si u est somme de deux carrés dans K on a les propriétés suivantes :

a) le plus petit entier impair 2k +1 tel que un2k+1 appartienne à A2 est

e+ ï ;

b) si n est somme de deux carrés dans K, le plus petit entier impair 2/+ 1 tel

que un2l + 1 soit somme de deux carrés dans A est ô — 1) ;

c) si n n 'est pas somme de deux carrés dans K, un2m+1 est somme de trois
carrés dans A et pas moins quel que soit le nombre impair 2m +1 > e + 1 ;

d) le plus petit entier pair 2n tel que un2n appartienne à A2 est max [0, e + 1

-à{u)};
e) si S (— 1) + ô (u) < 2e, le plus petit entier pair 2r tel que un2r soit somme

de deux carrés dans A est ô { — 1) —ô (li) ; si au contraire ô (— 1) + Ö (u)

> 2e, le plus petit entier pair 2s tel que un25 soit somme de deux carrés

dans A est 2 max [0, e — ô (u)].

2. Si u n 'est pas somme de deux carrés dans K, on a les propriétés
suivantes :

f) le plus petit entier k tel que U7ik appartienne à A2 est e ;
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g) si n est somme de deux carrés dans K, alors pour tout l ^e,unl est somme

de trois carrés dans A, mais non de deux ;
h) si n n 'est pas somme de deux carrés dans K, le plus petit entier impair

2m +1 tel que un2m+1 soit somme de deux carrés dans A est ô — 1)/
pour tout entier pair 2n e, un2n est somme de trois carrés dans A mais

non de deux.

1. L'assertion a) résulte de la proposition (3.1.). En ce qui concerne b),
si 7i est somme de deux carrés dans K, il en est de même de un2J + 1

pour tout
naturel j. Si 2/+1 est le plus petit entier impair tel que un2l+1 soit somme
de deux carrés dans A, il existe aeU, be A tels que un2l + 1 a2 + b2,

et on a -1 a~2 { b2 — utz21+1 }; on en conclut que 2/4-1 <5(—1) à

l'aide de la proposition (1.4.). Si n n'est pas somme de deux carrés dans K,
il en est de même de un2j + 1

pour tout naturel j. On applique le théorème 5.1.

Ceci démontre c). d) Si 5 (u) > e on a u e V et il n'y a rien à démontrer. Si

ô (u) < e on peut écrire u a2 + bnô(u\ Si 2n est le plus petit entier pair
cherché on a 2n + ô (u) e + 1 d'après la proposition (3.1.). e) Si on a

ô (u) > e, c'est-à-dire ueV, il n'y a rien à démontrer. On supposera donc
ô (u) < e. Si 2n est l'entier minimum cherché il existe a,b, c, de U tels que :

u a2 + bnô(u) (<c2 + d2) n~2n et on a:

— 1 c~2 {(d+ann)2 — bnô(>u)+2n — 2adnn — 2a27i2n} ;

Si ô (u) + 2n < e + n, on a <5 (u) + 2n 3 (-1) avec l'inégalité S (— 1)

+ Ô (u) < 2e.

Si ô (u) + 2n > e + n, on a e + n < ö 1), donc 2n > 2 (e —5 (u)) et
(5 — 1) + (5 (u) > 2c. Il suffit donc de montrer que W7i2(e~5(u)) est somme de
deux carrés d'entiers. Or pour tout y e U on a:

un2 (e-ô(u)) ^^-<500)2 _ ^2 + bn2e-3(u) _ 2ay7le-Ô(u)

— 1 ï;2 + W7i5(_1) (pour un y et un w g C/).

Un2(e-Ö(u)) _ ^ +a7rc-<5(M)^2 _j_ ^2^2 + w^2^(-i)
- 2ayne~Hu) + bn2e~Hu)

Pour que W7r2(e"5(u)) soit somme de deux carrés dans ^4 il suffit que le

polynôme/(F)
— + — 2ey2 _ 27i~eaY + b ait un zéro y e U. Mais

on peut supposer <5 (w) + <5 (-1) > 2e car si <5 (-1) + <5 («) 2 on a
évidemment 2n 2(e — S (u)). Cela étant, le lemme de Hensel s'applique à

/ Y) et prouve que ce polynôme admet un zéro y congru à bne/2a modulo Sß.
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2. L'assertion f) est encore un corollaire de la proposition (3.1.). Si %

est somme de deux carrés dans K, quel que soit j e N, unJ n'est pas somme
de deux carrés dans K. On applique le théorème (5.1.) pour terminer la
démonstration de g), h) Si n n'est pas somme de deux carrés dans K, alors

un2j+1 est somme de deux carrés dans K puisque (.K : NK^jK{K (/))) 2.

Si 2m + 1 est l'entier impair minimum cherché il existe a, b, c, d e U tels que

c2 + à2 a2n2m+1 + bn2m+1+Hu)

et on a - 1 c~2 { d2 -a2n2m+1—bn2m+i + ô(u) } et <5 (— 1) 2m+ 1. La
dernière assertion se démontre comme l'assertion c) ci-dessus.

5.3.1. Exemple numérique. Le polynôme X4 — 2X + 2 e Z2 [X] est

un polynôme d'Eisenstein, donc irréductible sur Z2. Si n est une racine de

ce polynôme dans une clôture algébrique de Q2, alors K Q2 (n) est une
extension totalement ramifiée de degré 4 de Q2 dont n est une uniformisante.

Dans l'anneau A des entiers de K on a :

— 1 (1 An2)2 — 2n (1 +7i)

Ceci implique que ô (— 1) 5. Avec les notations de la proposition ci-

2
1 + 71 — 1

dessus on a: v l+n w et £ Remarquons que
1—71 1—71

7l4
l'unité 1 — 7i est somme de deux carrés dans K puisque 1 — n — • Un

système de représentants de U modulo V est par exemple

{ 1, 1 — n, 1 —tu3, (1 —7l) (1 —7i3) }

Remarquons encore, puisque tout élément de V est somme de deux
carrés dans A et puisqu'il existe des unités de A qui ne sont pas somme de

deux carrés dans K, que 1— n3 n'est pas somme de deux carrés dans K.

Pour simplifier les notations posons u1 1 — n et u2 1 — 7i3. On obtient
ainsi: u^n5 n5 — 7i6 — 2(l+7i4) qui est somme de deux carrés d'entiers.

Ceci illustre les assertions a) et b) de la première partie de la proposition

5.4. car ona<5(— 1) e+1 5.

Passons à l'étude de u2 1-ti3. D'après ce qu'on a dit plus haut u2

n'est pas somme de deux carrés dans K. Par suite neu2 7i4 — n7 est somme
de trois carrés dans A et pas moins. En effet on obtient w27i4 %4 — n1

—2 + 271 — n1 1 + (1 +2n — 7i7 — 4) et on a 1 +271 — n1 — 4 e V2.
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5.4. Proposition

On suppose e pair et ô (-1) + go, (-1 eK2). Soit ue U. Alors :

1. Le plus petit entier pair 2k tel que un2k appartienne à A2 est max

{ 0, e+ 1 — ô (u) } ; le plus petit entier pair 21 tel que un21 soit somme de deux

carrés dans A est 2 max { 0, e~ô (u) }.

2. Le plus petit entier impair 2m +1 tel que U7i2m+1 appartienne à A2
est e+ 1 ; le plus petit entier impair 2/7+1 tel que un2n+1 soit somme de deux

carrés dans A est 2e +1.

On remarque que tout élément de A est somme de deux carrés dans K.
Ceci étant, la première assertion de 1) résulte de la proposition (3.1.) et la
seconde se démontre comme la dernière assertion de la proposition (5.3.).
2) La première assertion résulte encore de la proposition (3.1.). En ce qui
concerne la dernière assertion il existe (a, b) e Ux A tel que: — 1 (ö_1Z>)2

- a~2un2n + 1.

La proposition (1.4.) permet d'affirmer que 2n+l >2e+l et que
2e +1 convient.

5.4.1. Exemple numérique. Le polynôme X6 — 2X3 + 4X + 2 est un
polynôme d'Eisenstein. Si n est une racine de ce polynôme dans une clôture
algébrique de Q2, le corps K Q2(ti) est totalement ramifié sur Q2 et
admet n pour uniformisante. De plus dans l'anneau A des entiers de K on a

l'égalité :

— 1 (1 —TL3)2 + 471

c'est-à-dire que -1 est un carré dans K. On a par ailleurs (U : V) 8

et un système de représentants de U modulo V est par exemple :

{ 1, 1 +71, 1 +713, 1 +7l5,(l + 7l) (1 +7I3),(1 + 7l) (1 +7T5), (1 +7l3)(l +715),

(l+7l)(l+7l3)(l+7l5)}.
A titre d'exemple, on a:

(1 +7t3)7ie+1-^1 + 7t3)
(1 +n3)n4 (1 4) - (1 -n1)

(l+7i2)2 - (1+271-2TÎ2-2TI4)

cet entier est somme de trois carrés de A et pas moins. Par contre, on a:
(l+7i3)7i6 7i6 + 7i9 [1 7i3]2 + (—1—47i), qui est somme de deux
carrés de A.
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