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number of conjugates of a subgroup is the index of its normalizer, so H has
at most | G:H [ conjugates in G and hence the union of the conjugates
containsatmost |G : H|(|H| — 1)+ 1 = |G| —|G:H| + 1elements.
This number is less than l G ] except when G = H. Hence D = Fis a field.

4. FROBENIUS THEOREM

Let R denote the field of real numbers, C the field of complex numbers
and H the division ring of quaternions. The following proof makes use of
the fundamental theorem that every polynomial with coefficients in C has
a root in C.

THEOREM. Let D be a division ring which contains the real numbers R in
its centre and suppose that every element of D satisfies a polynomial with
coefficients in R. Then D is isomorphic to one of R, C or H.

Proof. Suppose that D is not isomorphic to R or C. It follows that the
maximal subfield F of D is isomorphic to C, the centre K of D is isomorphic
to R and F = K (i) where i = — 1. Let j be an eigenvector of T corres-
sponding to the eigenvalue —i. Then ji = — ij and j* commutes with j and
F. From (2.2) and (2.3) the elements 1 and j form an F-basis for D and
therefore j* = o belongs to K. If « = p* for some B €K then (j—f)(j+f)

= (0 and j belongs to K, which is not the case; hence o = — f* for some
B € K. Replacing j by jB~* we obtain a K-basis 1, i, j, ij for D such that
i? =j* = —1land ij = — ji. Thatis, D is isomorphic to H.

An almost identical argument shows that if the dimension of D over its
centre K is 4 and the characteristic is not 2, then D has a K-basis 1, i, J, ij
where i = «, j2 = fandij = — ji for some a, B € K.

5. OTHER PROOFS OF WEDDERBURN’S THEOREM

The original proofs of the theorem of §3 were given first by
Wedderburn [15] in 1905 and then by Dickson [5] in the same year; they
depend on certain divisibility properties of the integers. The neatest proof
along these lines is that of Witt [16]. Elementary proofs which avoid the use
of such number theory have been given by Artin [1] and Herstein [7]. And
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proofs which deduce the theorem using finite group theory have been given
by Zassenhaus [17], Brandis [3] and Scott [11, p. 426].

Perhaps the most interesting proofs are those which present the result
as a consequence of a more general theory. There are two such proofs in the
book of van der Waerden [14]: the first (on p. 203) uses the theory of
central simple algebras, the second (sketched on p. 215) relates the theorem
to cohomology and the Brauer group (see also, Serre[12, p. 170]) The
theorem is also a consequence of the work of Tsen [13] and Chevalley [4].
Further comments on the history of the theorem can be found in an article
by Artin [2] and in the book by Herstein [8] where many interesting general-
- isations are also given. One such generalization is a theorem of Jacobson:
a division ring in which x"®*) = x for all x is commutative. Laffey [10] has
recently given an elementary proof of this using Wedderburn’s theorem
and linear algebra similar to that used here. See also [18].
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