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vectors and they therefore belong to the centre of D since the eigenvectors

span D. Each eigenvalue is a root of f (X) so the degree of g (X) is no

larger than that of f (X). But g (0) 0 so we must have g (X) f (X).
Since each 0t must be a root of the minimal polynomial of Te this proves

(2.4) The minimal polynomial of Te is f (X).

As immediate consequences we have

(2.5) dimF D dimx F degree of / m.

(2.6) dimK D m2.

Finally, we prove

(2.7) IfE K (0') and f iß') 0, then for some non-zero element d of D,

dEd_1 s F.

To see this, consider the linear transformation Te>. Since / (TV) 0

there is an eigenvalue X e F of TV and a corresponding eigenvector d such

that d 9' Xd; it follows that dE J-1 ^ T7.

Remark. The assumption on the field i7 amounts to supposing that

T/A is a finite Galois extension and the proof of (2.4) shows that

N (F)#/F# is isomorphic to its Galois group. (Where F# denotes the set

of non-zero elements of T7.)

3. Wedderburn's theorem

This proof follows van der Waerden [14, p. 203]. The counting argument
was used by Artin [1] in his proof of the same theorem.

Theorem. Every finite division ring is a field.

Proof Suppose that D is a finite division ring with centre K and maximal
subfield F. If the order of F is q, then the elements of F constitute all the

roots of the polynomial Xq — X; hence any two finite fields of the same

order are isomorphic. The multiplicative group of a finite field is cyclic,
so F K (6) for some 8. Any element of D is contained in a maximal
subfield, which by (2.5) has the same order as F and hence by (2.7) any
element of the multiplicative group G of non-zero elements of D belongs to
a conjugate of TT, the multiplicative group of non-zero elements of F. The
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number of conjugates of a subgroup is the index of its normalizer, so H has

at most I G : H | conjugates in G and hence the union of the conjugates
contains at most | G : // | (| 77 | - 1) + 1 ~ | G | - | G : H [ + 1 elements.
This number is less than | G | except when G H. Hence D Fis a field.

4. Frobenius' theorem

Let R denote the field of real numbers, C the field of complex numbers
and H the division ring of quaternions. The following proof makes use of
the fundamental theorem that every polynomial with coefficients in C has

a root in C.

Theorem. Let D be a division ring which contains the real numbers R in

its centre and suppose that every element of D satisfies a polynomial with

coefficients in R. Then D is isomorphic to one ö/R, C or H.

Proof Suppose that D is not isomorphic to R or C. It follows that the

maximal subfield F of D is isomorphic to C, the centre K of D is isomorphic
to R and F K (j) where i2 — 1. Let j be an eigenvector of Tt corres-
sponding to the eigenvalue — /. Then ji — ij and j2 commutes with j and
F. From (2.2) and (2.3) the elements 1 and j form an F-basis for D and
therefore j2 a belongs to K. If a ß2 for some ß eK then (j — ß) (j+ß)

0 and j belongs to K, which is not the case; hence a — ß2 for some
ß e K. Replacing j by jß-1 we obtain a F-basis 1, i, /, ij for D such that
/2 y2 — 1 and ij — ji. That is, D is isomorphic to H.

An almost identical argument shows that if the dimension of D over its

centre K is 4 and the characteristic is not 2, then D has a F-basis 1, y, ij
v/here i2 cq j2 ß and ij - ji for some ol, ß eK.

5. Other proofs of Wedderburn's theorem

The original proofs of the theorem of §3 were given first by
Wedderburn [15] in 1905 and then by Dickson [5] in the same year; they

depend on certain divisibility properties of the integers. The neatest proof
along these lines is that of Witt [16]. Elementary proofs which avoid the use

of such number theory have been given by Artin [1] and Herstein [7]. And
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