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2. Division rings

By division ring we mean an associative ring with identity in which every
non-zero element has an inverse. If D is a division ring, the normalizer
N (F) of a subfield F consists of those elements d such that dF Fd, while
the centralizer C (F) consists of those elements d such that dx xd for all

x in F; the centralizer is a subdivision ring of D.
From now on D will denote a division ring with centre K and F will

denote a maximal subfield of D. We shall assume that F K (6) where 6

satisfies an irreducible monic polynomial / with coefficients in K which
splits into distinct linear factors over F. We shall see below that this assumption

allows us to apply the results of §1 to D considered as a vector space

over F (multiplying on the left with elements of F). For each element a of
Z>, the assignment T a(d) da defines a linear transformation T a of this
vector space.

If d is an eigenvector of Te, then for some X in F, d 6 Xd. This implies
that dBd~l « X and hence dFd~x F; thus de N (F). Conversely, if
d e N (F) and d ^ 0, then dOd_1 X e F for some X and hence d is an

eigenvector of T0. This proves

(2.1) A non-zero element d of D is an eigenvector of Te if and only if it
belongs to N (F).

Since / (Te) 0, the conditions of §1 apply and we have

(2.2) The vector space D is the direct sum of the eigenspaces of Te.

Let X be an eigenvalue of TQ with eigenvector d, then as above d 0 Xd.

If d ' is another eigenvector, then d'd~lXd d''1 X and d'd"1 centralizes

F since F K (2). However, F is a maximal subfield, and therefore self-

centralizing, so d ' — ed for some e in F. Thus we obtain

(2.3) Each eigenspace ofTe has dimension one.

Next, we wish to show that / (X) is the minimal polynomial of Te. Let
6 6U 02, 0m be the eigenvalues of Td and let 1 du d2, dm be

corresponding eigenvectors. Because N (F) is multiplicatively closed

dtdj must correspond to an eigenvalue 0k, say, and hence dtdjO 9kdidj9

which implies that dßj 6kdi. This shows that the mapping which takes

6j to dßjdf1 permutes the eigenvalues among themselves. Consequently,
the coefficients of g (X) (X-ßß (X-0m) commute with all the eigen-
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vectors and they therefore belong to the centre of D since the eigenvectors

span D. Each eigenvalue is a root of f (X) so the degree of g (X) is no

larger than that of f (X). But g (0) 0 so we must have g (X) f (X).
Since each 0t must be a root of the minimal polynomial of Te this proves

(2.4) The minimal polynomial of Te is f (X).

As immediate consequences we have

(2.5) dimF D dimx F degree of / m.

(2.6) dimK D m2.

Finally, we prove

(2.7) IfE K (0') and f iß') 0, then for some non-zero element d of D,

dEd_1 s F.

To see this, consider the linear transformation Te>. Since / (TV) 0

there is an eigenvalue X e F of TV and a corresponding eigenvector d such

that d 9' Xd; it follows that dE J-1 ^ T7.

Remark. The assumption on the field i7 amounts to supposing that

T/A is a finite Galois extension and the proof of (2.4) shows that

N (F)#/F# is isomorphic to its Galois group. (Where F# denotes the set

of non-zero elements of T7.)

3. Wedderburn's theorem

This proof follows van der Waerden [14, p. 203]. The counting argument
was used by Artin [1] in his proof of the same theorem.

Theorem. Every finite division ring is a field.

Proof Suppose that D is a finite division ring with centre K and maximal
subfield F. If the order of F is q, then the elements of F constitute all the

roots of the polynomial Xq — X; hence any two finite fields of the same

order are isomorphic. The multiplicative group of a finite field is cyclic,
so F K (6) for some 8. Any element of D is contained in a maximal
subfield, which by (2.5) has the same order as F and hence by (2.7) any
element of the multiplicative group G of non-zero elements of D belongs to
a conjugate of TT, the multiplicative group of non-zero elements of F. The
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