Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	20 (1974)
Heft:	3-4: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	SOME CLASSICAL THEOREMS ON DIVISION RINGS
Autor:	Taylor, D. E.
Kapitel:	2. Division rings
DOI:	https://doi.org/10.5169/seals-46912

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 08.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

2. DIVISION RINGS

By division ring we mean an associative ring with identity in which every non-zero element has an inverse. If D is a division ring, the normalizer N(F) of a subfield F consists of those elements d such that dF = Fd, while the centralizer C(F) consists of those elements d such that dx = xd for all x in F; the centralizer is a subdivision ring of D.

From now on D will denote a division ring with centre K and F will denote a maximal subfield of D. We shall assume that $F = K(\theta)$ where θ satisfies an irreducible monic polynomial f with coefficients in K which splits into distinct linear factors over F. We shall see below that this assumption allows us to apply the results of §1 to D considered as a vector space over F (multiplying on the left with elements of F). For each element a of D, the assignment $T_a(d) = da$ defines a linear transformation T_a of this vector space.

If d is an eigenvector of T_{θ} , then for some λ in F, $d\theta = \lambda d$. This implies that $d\theta d^{-1} = \lambda$ and hence $dFd^{-1} = F$; thus $d \in N(F)$. Conversely, if $d \in N(F)$ and $d \neq 0$, then $d\theta d^{-1} = \lambda \in F$ for some λ and hence d is an eigenvector of T_{θ} . This proves

(2.1) A non-zero element d of D is an eigenvector of T_{θ} if and only if it belongs to N (F).

Since $f(T_{\theta}) = 0$, the conditions of §1 apply and we have

(2.2) The vector space D is the direct sum of the eigenspaces of T_{θ} .

Let λ be an eigenvalue of T_{θ} with eigenvector d, then as above $d\theta = \lambda d$. If d' is another eigenvector, then $d'd^{-1}\lambda d d'^{-1} = \lambda$ and $d'd^{-1}$ centralizes F since $F = K(\lambda)$. However, F is a maximal subfield, and therefore self-centralizing, so d' = ed for some e in F. Thus we obtain

(2.3) Each eigenspace of T_{θ} has dimension one.

Next, we wish to show that f(X) is the minimal polynomial of T_{θ} . Let $\theta = \theta_1, \theta_2, ..., \theta_m$ be the eigenvalues of T_{θ} and let $1 = d_1, d_2, ..., d_m$ be corresponding eigenvectors. Because N(F) is multiplicatively closed $d_i d_j$ must correspond to an eigenvalue θ_k , say, and hence $d_i d_j \theta = \theta_k d_i d_j$, which implies that $d_i \theta_j = \theta_k d_i$. This shows that the mapping which takes θ_j to $d_i \theta_j d_i^{-1}$ permutes the eigenvalues among themselves. Consequently, the coefficients of $g(X) = (X - \theta_1) \dots (X - \theta_m)$ commute with all the eigen-

vectors and they therefore belong to the centre of D since the eigenvectors span D. Each eigenvalue is a root of f(X) so the degree of g(X) is no larger than that of f(X). But $g(\theta) = 0$ so we must have g(X) = f(X). Since each θ_i must be a root of the minimal polynomial of T_{θ} this proves

(2.4) The minimal polynomial of T_{θ} is f(X).

As immediate consequences we have

(2.5) $\dim_F D = \dim_K F = \text{degree of } f = m.$

(2.6)
$$\dim_{\kappa} D = m^2$$
.

Finally, we prove

(2.7) If $E = K(\theta')$ and $f(\theta') = 0$, then for some non-zero element d of D, $dE d^{-1} \subseteq F$.

To see this, consider the linear transformation $T_{\theta'}$. Since $f(T_{\theta'}) = 0$ there is an eigenvalue $\lambda \in F$ of $T_{\theta'}$ and a corresponding eigenvector d such that $d\theta' = \lambda d$; it follows that $dE d^{-1} \subseteq F$.

Remark. The assumption on the field F amounts to supposing that F/K is a finite Galois extension and the proof of (2.4) shows that $N(F)^{\#}/F^{\#}$ is isomorphic to its Galois group. (Where $F^{\#}$ denotes the set of non-zero elements of F.)

3. WEDDERBURN'S THEOREM

This proof follows van der Waerden [14, p. 203]. The counting argument was used by Artin [1] in his proof of the same theorem.

THEOREM. Every finite division ring is a field.

Proof. Suppose that D is a finite division ring with centre K and maximal subfield F. If the order of F is q, then the elements of F constitute all the roots of the polynomial $X^{q} - X$; hence any two finite fields of the same order are isomorphic. The multiplicative group of a finite field is cyclic, so $F = K(\theta)$ for some θ . Any element of D is contained in a maximal subfield, which by (2.5) has the same order as F and hence by (2.7) any element of the multiplicative group G of non-zero elements of D belongs to a conjugate of H, the multiplicative group of non-zero elements of F. The