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SOME CLASSICAL THEOREMS ON DIVISION RINGS

by D. E. Taylor

The theorem of Wedderburn [15] that every finite division ring is a

field, and the theorem of Frobenius [6] characterizing the quaternions as a

non-commutative real division algebra can both be obtained as immediate
and easy consequences of theorems on central simple algebras—particularly
the Skolem-Noether theorem (van der Waerden [14, p. 199]). The purpose
of this note is to use elementary linear algebra to prove a version of the

Skolem-Noether theorem sufficient to yield the results of Wedderburn and

Frobenius.

1. Some linear algebra

All the results of this section are quite elementary and can be found in
most texts on linear algebra (for example: Hoffman and Kunze [9]).

Let F be a vector space over a field Fand let F be a linear transformation
of V. Suppose that / (X) is a polynomial with coefficients in F such that
/(F) O. If f(X) fx (X) f2 (X) where f± (X) and f2 (X) are coprime,
then there are polynomials gt (X) and g2 (X) such that 1 f± (X)g1(X)
+ Ï2 (X) g2 (X)> Then for each v in V the vector v1 f2(T)g2(T)v
belongs to the kernel, Vu of (T), the vector v2 ft (T) gx (F) v belongs
to the kernel, V2, of f2 (F) and v v1 + v2. Thus V is the (direct) sum of
V1 and V2. Moreover, the restriction T{ of T to Vt satisfied the equation
ft (Td 0 for i 1, 2.

It follows by induction on the degree that if / (X) can be factorized
over F into distinct linear factors, then V is the direct sum of the eigenspaces
of T. Note that V is not assumed to be finite dimensional.

Recall that the minimal polynomial of T is the monic polynomial
m (X) of least degree such that m (F) 0. It is immediate that each eigenvalue

X of T satisfies the equation m (X) 0 and conversely, the above
considerations show that each root of m (X) is an eigenvalue of F.
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2. Division rings

By division ring we mean an associative ring with identity in which every
non-zero element has an inverse. If D is a division ring, the normalizer
N (F) of a subfield F consists of those elements d such that dF Fd, while
the centralizer C (F) consists of those elements d such that dx xd for all

x in F; the centralizer is a subdivision ring of D.
From now on D will denote a division ring with centre K and F will

denote a maximal subfield of D. We shall assume that F K (6) where 6

satisfies an irreducible monic polynomial / with coefficients in K which
splits into distinct linear factors over F. We shall see below that this assumption

allows us to apply the results of §1 to D considered as a vector space

over F (multiplying on the left with elements of F). For each element a of
Z>, the assignment T a(d) da defines a linear transformation T a of this
vector space.

If d is an eigenvector of Te, then for some X in F, d 6 Xd. This implies
that dBd~l « X and hence dFd~x F; thus de N (F). Conversely, if
d e N (F) and d ^ 0, then dOd_1 X e F for some X and hence d is an

eigenvector of T0. This proves

(2.1) A non-zero element d of D is an eigenvector of Te if and only if it
belongs to N (F).

Since / (Te) 0, the conditions of §1 apply and we have

(2.2) The vector space D is the direct sum of the eigenspaces of Te.

Let X be an eigenvalue of TQ with eigenvector d, then as above d 0 Xd.

If d ' is another eigenvector, then d'd~lXd d''1 X and d'd"1 centralizes

F since F K (2). However, F is a maximal subfield, and therefore self-

centralizing, so d ' — ed for some e in F. Thus we obtain

(2.3) Each eigenspace ofTe has dimension one.

Next, we wish to show that / (X) is the minimal polynomial of Te. Let
6 6U 02, 0m be the eigenvalues of Td and let 1 du d2, dm be

corresponding eigenvectors. Because N (F) is multiplicatively closed

dtdj must correspond to an eigenvalue 0k, say, and hence dtdjO 9kdidj9

which implies that dßj 6kdi. This shows that the mapping which takes

6j to dßjdf1 permutes the eigenvalues among themselves. Consequently,
the coefficients of g (X) (X-ßß (X-0m) commute with all the eigen-
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vectors and they therefore belong to the centre of D since the eigenvectors

span D. Each eigenvalue is a root of f (X) so the degree of g (X) is no

larger than that of f (X). But g (0) 0 so we must have g (X) f (X).
Since each 0t must be a root of the minimal polynomial of Te this proves

(2.4) The minimal polynomial of Te is f (X).

As immediate consequences we have

(2.5) dimF D dimx F degree of / m.

(2.6) dimK D m2.

Finally, we prove

(2.7) IfE K (0') and f iß') 0, then for some non-zero element d of D,

dEd_1 s F.

To see this, consider the linear transformation Te>. Since / (TV) 0

there is an eigenvalue X e F of TV and a corresponding eigenvector d such

that d 9' Xd; it follows that dE J-1 ^ T7.

Remark. The assumption on the field i7 amounts to supposing that

T/A is a finite Galois extension and the proof of (2.4) shows that

N (F)#/F# is isomorphic to its Galois group. (Where F# denotes the set

of non-zero elements of T7.)

3. Wedderburn's theorem

This proof follows van der Waerden [14, p. 203]. The counting argument
was used by Artin [1] in his proof of the same theorem.

Theorem. Every finite division ring is a field.

Proof Suppose that D is a finite division ring with centre K and maximal
subfield F. If the order of F is q, then the elements of F constitute all the

roots of the polynomial Xq — X; hence any two finite fields of the same

order are isomorphic. The multiplicative group of a finite field is cyclic,
so F K (6) for some 8. Any element of D is contained in a maximal
subfield, which by (2.5) has the same order as F and hence by (2.7) any
element of the multiplicative group G of non-zero elements of D belongs to
a conjugate of TT, the multiplicative group of non-zero elements of F. The
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number of conjugates of a subgroup is the index of its normalizer, so H has

at most I G : H | conjugates in G and hence the union of the conjugates
contains at most | G : // | (| 77 | - 1) + 1 ~ | G | - | G : H [ + 1 elements.
This number is less than | G | except when G H. Hence D Fis a field.

4. Frobenius' theorem

Let R denote the field of real numbers, C the field of complex numbers
and H the division ring of quaternions. The following proof makes use of
the fundamental theorem that every polynomial with coefficients in C has

a root in C.

Theorem. Let D be a division ring which contains the real numbers R in

its centre and suppose that every element of D satisfies a polynomial with

coefficients in R. Then D is isomorphic to one ö/R, C or H.

Proof Suppose that D is not isomorphic to R or C. It follows that the

maximal subfield F of D is isomorphic to C, the centre K of D is isomorphic
to R and F K (j) where i2 — 1. Let j be an eigenvector of Tt corres-
sponding to the eigenvalue — /. Then ji — ij and j2 commutes with j and
F. From (2.2) and (2.3) the elements 1 and j form an F-basis for D and
therefore j2 a belongs to K. If a ß2 for some ß eK then (j — ß) (j+ß)

0 and j belongs to K, which is not the case; hence a — ß2 for some
ß e K. Replacing j by jß-1 we obtain a F-basis 1, i, /, ij for D such that
/2 y2 — 1 and ij — ji. That is, D is isomorphic to H.

An almost identical argument shows that if the dimension of D over its

centre K is 4 and the characteristic is not 2, then D has a F-basis 1, y, ij
v/here i2 cq j2 ß and ij - ji for some ol, ß eK.

5. Other proofs of Wedderburn's theorem

The original proofs of the theorem of §3 were given first by
Wedderburn [15] in 1905 and then by Dickson [5] in the same year; they

depend on certain divisibility properties of the integers. The neatest proof
along these lines is that of Witt [16]. Elementary proofs which avoid the use

of such number theory have been given by Artin [1] and Herstein [7]. And
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proofs which deduce the theorem using finite group theory have been given

by Zassenhaus [17], Brandis [3] and Scott [11, p. 426].

Perhaps the most interesting proofs are those which present the result

as a consequence of a more general theory. There are two such proofs in the

book of van der Waerden [14]: the first (on p. 203) uses the theory of
central simple algebras, the second (sketched on p. 215) relates the theorem

to cohomology and the Brauer group (see also, Serre [12, p. 170]). The

theorem is also a consequence of the work of Tsen [13] and Chevalley [4].

Further comments on the history of the theorem can be found in an article

by Artin [2] and in the book by Herstein [8] where many interesting generalisations

are also given. One such generalization is a theorem of Jacobson:

a division ring in which xn(x) x for all x is commutative. Laffey [10] has

recently given an elementary proof of this using Wedderburn's theorem
and linear algebra similar to that used here. See also [18].
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