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SOME CLASSICAL THEOREMS ON DIVISION RINGS

by D. E. TAYLOR

The theorem of Wedderburn [15] that every finite division ring is a
field, and the theorem of Frobenius [6] characterizing the quaternions as a
non-commutative real division algebra can both be obtained as immediate

~and easy consequences of theorems on central simple algebras—particularly
the Skolem-Noether theorem (van der Waerden [14, p. 199]). The purpose

~of this note is to use elementary linear algebra to prove a version of the
Skolem-Noether theorem sufficient to yield the results of Wedderburn and
Frobenius.

1. SOME LINEAR ALGEBRA

All the results of this section are quite elementary and can be found in

- most texts on linear algebra (for example: Hoffman and Kunze [9)).
| Let V' be a vector space over a field F and let 7 be a linear transformation

~of V. Suppose that f (X) is a polynomial with coefficients in F such that
f(T)=0.1f £ (X) = £, (X) f, (X) where f; (X) and f, (X) are coprime,
then there are polynomials g; (X) and g, (X) such that 1 = f; (X)g,(X)
-+ 5 (X) g, (X). Then for each v in V the vector v, = L, (T) g, (T) v
- belongs to the kernel, V5, of f; (T), the vector v, = f; (T) g, (T') v belongs
to the kernel, V,, of f, (') and v = v, + v,. Thus V is the (direct) sum of
Vy and V,. Moreover, the restriction T; of T to V; satisfied the equation
fi(T) =0 fori=1,2.
, It follows by induction on the degree that if f (X) can be factorized
! over Finto distinct linear factors, then ¥ is the direct sum of the eigenspaces
of T. Note that V' is not assumed to be finite dimensional.
~ Recall that the minimal polynomial of 7" is the monic polynomial
' m (X) of least degree such that m (T’ ) = 0. It is immediate that each eigen-
,value A of T satisfies the equation m (1) = 0 and conversely, the above
i considerations show that each root of m (X) is an eigenvalue of T.
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2. DIVISION RINGS

By division ring we mean an associative ring with identity in which every
non-zero element has an inverse. If D is a division ring, the normalizer
N (F) of a subfield F consists of those elements d such that dF = Fd, while
the centralizer C (F) consists of those elements d such that dx = xd for all
x in F; the centralizer is a subdivision ring of D.

From now on D will denote a division ring with centre K and F will
denote a maximal subfield of D. We shall assume that F = K (6) where 0
satisfies an irreducible monic polynomial f with coefficients in K which
splits into distinct linear factors over F. We shall see below that this assump-
tion allows us to apply the results of §1 to D considered as a vector space
over F (multiplying on the left with elements of F). For each element a of
D, the assignment T ,(d) = da defines a linear transformation 7", of this
vector space.

If d is an eigenvector of Ty, then for some A in F, d @ = Ad. This implies
that d0d~* = 1 and hence d Fd~! = F; thus d e N (F). Conversely, if
de N (F)and d # 0, then d0d~' = J e F for some A and hence d 1s an
eigenvector of Ty. This proves

(2.1) A non-zero element d of D is an eigenvector of T, if and only if it
belongs to N (F).

Since f (T,) = 0, the conditions of §1 apply and we have
(2.2) The vector space D is the direct sum of the eigenspaces of T,.

Let A be an eigenvalue of 7, with eigenvector d, then as above d 0 = Ad.
If d’ is another eigenvector, then d'd~'idd’'~' = Aand d’'d~" centralizes
F since F = K (1). However, F is a maximal subfield, and therefore self-
centralizing, so d'= ed for some e in F. Thus we obtain

(2.3) Each eigenspace of T, has dimension one.

Next, we wish to show that f (X) is the minimal polynomial of 7. Let
0=2040©0,,...0, be the eigenvalues of 7, and let 1 = dy, d,, ..., d,, be
corresponding eigenvectors. Because N (F) is multiplicatively closed
dd; must correspond to an eigenvalue 0,, say, and hence did;0 = 0,d,d;,
which implies that d;0; = 60,d;. This shows that the mapping which takes
0; to d,f ;d;~' permutes the eigenvalues among themselves. Consequently,

the coefficients of g (X) = (X—0,) ... (X—0,,) commute with all the eigen-
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vectors and they therefore belong to the centre of D since the eigenvectors
span D. Each eigenvalue is a root of f(X) so the degree of g (X) is no
larger than that of f (X). But g (0) = 0 so we must have g (X) = f (X).
Since each 6, must be a root of the minimal polynomial of 7, this proves

(2.4) The minimal polynomial of Ty is f (X).

As immediate consequences we have
(2.5) dimy D = dimg F = degree of f = m.

(2.6) dimg D = m?

Finally,‘ we prove

(2.7) IfE = K ©)and f(0') = 0O, then for some non-zero element dof D,
dEd™ ' c F.

To see this, consider the linear transformation Ty. Since f(Tp) = O
there is an eigenvalue A € F of T, and a corresponding eigenvector d such
that d ' = Jd; it follows that JEd~* < F.

Remark. The assumption on the field F amounts to supposing that
F/K is a finite Galois extension and the proof of (2.4) shows that
N (F)#|F# is isomorphic to its Galois group. (Where F* denotes the set
of non-zero elements of F.)

3. WEDDERBURN’S THEOREM

This proof follows van der Waerden [14, p. 203]. The counting argument
was used by Artin [1] in his proof of the same theorem. |

THEOREM. Every finite division ring is a field.

Proof. Suppose that D is a finite division ring with centre K and maximal
subfield F. If the order of F is g, then the elements of F constitute all the
‘roots of the polynomial X'? — X; hence any two finite fields of the same
order are isomorphic. The multiplicative group of a finite field is cyclic,
so F=K (0) for some 0. Any element of D is contained in a maximal
‘subfield, which by (2.5) has the same order as F and hence by (2.7) any
element of the multiplicative group G of non-zero elements of D belongs to
‘a conjugate of H, the multiplicative group of non-zero elements of F. The
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number of conjugates of a subgroup is the index of its normalizer, so H has
at most | G:H [ conjugates in G and hence the union of the conjugates
containsatmost |G : H|(|H| — 1)+ 1 = |G| —|G:H| + 1elements.
This number is less than l G ] except when G = H. Hence D = Fis a field.

4. FROBENIUS THEOREM

Let R denote the field of real numbers, C the field of complex numbers
and H the division ring of quaternions. The following proof makes use of
the fundamental theorem that every polynomial with coefficients in C has
a root in C.

THEOREM. Let D be a division ring which contains the real numbers R in
its centre and suppose that every element of D satisfies a polynomial with
coefficients in R. Then D is isomorphic to one of R, C or H.

Proof. Suppose that D is not isomorphic to R or C. It follows that the
maximal subfield F of D is isomorphic to C, the centre K of D is isomorphic
to R and F = K (i) where i = — 1. Let j be an eigenvector of T corres-
sponding to the eigenvalue —i. Then ji = — ij and j* commutes with j and
F. From (2.2) and (2.3) the elements 1 and j form an F-basis for D and
therefore j* = o belongs to K. If « = p* for some B €K then (j—f)(j+f)

= (0 and j belongs to K, which is not the case; hence o = — f* for some
B € K. Replacing j by jB~* we obtain a K-basis 1, i, j, ij for D such that
i? =j* = —1land ij = — ji. Thatis, D is isomorphic to H.

An almost identical argument shows that if the dimension of D over its
centre K is 4 and the characteristic is not 2, then D has a K-basis 1, i, J, ij
where i = «, j2 = fandij = — ji for some a, B € K.

5. OTHER PROOFS OF WEDDERBURN’S THEOREM

The original proofs of the theorem of §3 were given first by
Wedderburn [15] in 1905 and then by Dickson [5] in the same year; they
depend on certain divisibility properties of the integers. The neatest proof
along these lines is that of Witt [16]. Elementary proofs which avoid the use
of such number theory have been given by Artin [1] and Herstein [7]. And



— 297 —

proofs which deduce the theorem using finite group theory have been given
by Zassenhaus [17], Brandis [3] and Scott [11, p. 426].

Perhaps the most interesting proofs are those which present the result
as a consequence of a more general theory. There are two such proofs in the
book of van der Waerden [14]: the first (on p. 203) uses the theory of
central simple algebras, the second (sketched on p. 215) relates the theorem
to cohomology and the Brauer group (see also, Serre[12, p. 170]) The
theorem is also a consequence of the work of Tsen [13] and Chevalley [4].
Further comments on the history of the theorem can be found in an article
by Artin [2] and in the book by Herstein [8] where many interesting general-
- isations are also given. One such generalization is a theorem of Jacobson:
a division ring in which x"®*) = x for all x is commutative. Laffey [10] has
recently given an elementary proof of this using Wedderburn’s theorem
and linear algebra similar to that used here. See also [18].
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