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2 —

by [a,, ay, ..., a,]. For 0 = m = n we denote the numerator and denominator
of the m™ approximant to [a,, a4, ..., a,] by 4, and B,, respectively.
If p is a prime of the form 4 n + 1, then

(2) \/p = [@os A1y evns Ay Ay o205 A5 200]

in the usual notation for a periodic continued fraction. The symmetric part
of the period does not have a central term. In [1] we proved that p
= x? + y? where

(3) X = meBm—l - AmAm—l
(4) | y = Am — pBn,

A , |
and where —= is the m™ approximant to (2). We also showed that

m

AL + A2
(5) p= -

~ B2+ B2

3. THE QUADRATIC CHARACTER OF

(2n) !
2(n N?*’

’ -1
It is well known that if p is a prime of the form 4 n + 1 then { (%—) 112

= — 1 (mod p); that is, 2n) !* = 1 (mod p). We make use of this in the
(2n) !

LemMMa. If p = 4n + 1 is a prime then
p==an P 2(n 1)

1S a quadratic residue

of p.
(2n) ! .

Proof. We use Euler’s criterion. Thus if we suppose that 20 17 1S a
n!

2n) ! L
2((}1)')2 } 2 = —1(mod p) and thus
n!

{(2n) 1? }52—1 =—{2(nhH? }3—2;1— (mod p). Since (2n) !* = —1 (mod p) and

n 1?~1 = 1 (mod p) we have (—=1)" = —2 2 (mod p), or (=1)"*"! =

(—1)

quadratic nonresidue of p we have {

-

, using the standard result for the quadratic character of 2 with res-
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pect to an odd prime. We finally get (=1 = (=1)** " or (-t =
(2n) !
2(n')?

(—1)" (mod p) which is a contradiction since p is an odd prime. Thus

is a quadratic residue of p.

4. 'THE CONSTRUCTION OF (GAUSS

THEOREM. Suppose p = 4n + 1 is a prime and p = x*> + y® where
x and y are given by (3) and (4). Let f and « denote respectively the numeri-

!

and (2n) ! B modulo p, so that | o | < », -

cally smallest residues of 2 (n 17 2

18] <§.Thenp=oc2+ﬁz.

Proof. By (5) we have, using the remark at the beginning of section 3,
A2 + A2, =0 (modp) and hence —AZ = A._, (modp), so that
{@n) 1} A2 =A%, (modp), and since p is a prime (2n)!4,,
= + A, _, (mod p). Supposing the negative sign holds we have (2n) ! 4,
= —A,A,_, (modp). Therefore we obtain (2n)! A2 — (2n)!pB;,
= (pB,B,,-1—A,A4,,-1) (mod p), so that by (3) and (4) we get

(6) x = (2n)!y(mod p).
If the positive sign holds above it follows that x = — (2r) ! y (mod p)

which is just as good for our present purposes since we are not concerned
with the signs of x and y. We will comment on the signs in section 5.

(2n) ! =1 p—1 P_;_l

2(7’1 1)2} 2 1 (mOd p) SO (21’1) 172 5

By the lemma we have {

il

p—1 p—

1
(n H?~ ! (mod p), and therefore 2n)! 2 =2 2 (mod p)since (n !, p) = 1.

We have x = + (2n) ! y (mod p), and since each of y and — 1 is a quadratic
p—1 p—1 p—1 .
residue of p, x 2 =@2n)! 2 =2 2 (mod p), and in terms of the

b 2
Legendre symbol it follows that (—) = (-); that is, the quadratic charac-
p p

ter of x with respect to p is the same as the quadratic character of 2 with
respect to p.

Suppose 2 is a quadratic residue of p. Then
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