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by [a0, au an]. For 0 m n we denote the numerator and denominator
of the mth approximant to [<a0, au by .Tm and Bm respectively.

Ifp is a prime of the form 4 n + 1, then

(2) -y/^7 [flo, #1* • • • 5 ß/u) •••> ^1?

in the usual notation for a periodic continued fraction. The symmetric part
of the period does not have a central term. In [1] we proved that p
~ x2 + y2 where

(3) X PBnßm-1 - ^m^m-1

(4) y A2m-pB2m

A mand where — is the m approximant to (2). We also showed that
Bm

Am+ -4/n— 1
(5) P r2 D 2 •

3. The Quadratic Character of

(2 n)!2 (n !)2
'

p J

It is well known that ifp is a prime of the form 4 n + 1 then { —— }2

— 1 (modp); that is, (2ft) I2 — 1 (modp). We make use of this in the

(2n)
Lemma. If p 4 n + 1 is a prime then T is a quadratic residue

2 (ft

of p.
(2ft)

Proof. We use Euler's criterion. Thus if we suppose that is a
2 (ft

(2ft) Lzi
quadratic nonresidue of p we have { ——^ } 2 — 1 (mod p) and thus

p—l p—l
{ (2ft) !2 } — { 2 (ft !)2 } (modp). Since (2ft) !2 — 1 (modp) and

p—i

ft P"1 1 (mod p) we have (—1)" — —2 2 (mod /?), or (— l)n+1
p2+l

— 1) s using the standard result for the quadratic character of 2 with res-



— 3 —

pect to an odd prime. We finally get (—1)"+1 (—1)2m2+m or (—l)w+1

(2n)\
— 1)" (mod p) which is a contradiction since p is an odd prime. Thus

^ ^ ^
is a quadratic residue of p.

4. The Construction of Gauss

Theorem. Suppose p An + I is a prime and p x2 + y2 where

x and y are given by (3) and (4). Let ß and a denote respectively the numeri-

(2ri) jP

cally smallest residues of j and (2n) ß modulo /?, so that | a | < - -
2 (n 2

\ß\ < P-.Then p a2 +ß2.

Proof. By (5) we have, using the remark at the beginning of section 3,

A2 + A2-! 0 (mod/?) and hence —A2 A2-± (mod/?), so that

{(2ri) }2 A2 A2-1 (mod/?), and since p is a prime {In) Am

± A m^1 (mod/?). Supposing the negative sign holds we have (2n) I A2

—AmAm-1 (mod/?). Therefore we obtain {In) A2 — {In) !pB2
{pBmBm_1—AmAm-1) (mod/?), so that by (3) and (4) we get

(6) x (2n) l y (mod p).

If the positive sign holds above it follows that x — {In) y (mod /?)

which is just as good for our present purposes since we are not concerned
with the signs of x and y. We will comment on the signs in section 5.

(2n) — p— Lzi
By the lemma we have { ——— } 2 1 (mod p) so (2ri) 2 2 2

p—i p—i
{n !)p~1 (mod/?), and therefore (2n) 2 2 2 (mod/?) since {n !,/?)= 1.

We have x ± {In) y (mod /?), and since each of y and — 1 is a quadratic
p— i p-1 p—i

residue of /?, x 2 (2«) 2 2 2 (mod /?), and in terms of the

x 2
Legendre symbol it follows that (-) (-) ; that is, the quadratic charac-

P P

ter of x with respect to p is the same as the quadratic character of 2 with
respect to /?.

Suppose 2 is a quadratic residue of /?. Then


	3. The Quadratic Character of $\frac{(2n)!}{2(n!)^2}$

