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SUR CERTAINES APPLICATIONS GÉNÉRIQUES
D'UNE VARIÉTÉ CLOSE A 3 DIMENSIONS DANS LE PLAN

par Oscar Burlet et Georges de Rham

Les applications différentiables génériques d'une variété close à trois
dimensions M dans le plan, ou plus généralement dans une surface diffé-

rentiable, comme on le rappelle ci-dessous, peuvent présenter trois types
de singularités. Nous considérons celles qui ne présentent pas de singularités
du type (II), que nous appelons génériques spéciales. Après un rappel de

définitions et de certaines propriétés (§1 et §2), nous démontrons (§3) que si

la variété M admet une application générique spéciale dans le plan, son

groupe fondamental est libre. Dans le §4, par une méthode un peu différente,
nous déterminons toutes les variétés M admettant des applications génériques
spéciales dans R2 : ce sont en fait toutes les variétés M actuellement connues
dont le groupe fondamental est libre. De plus, pour chacune d'elles, nous
montrons que ces applications se répartissent en un nombre fini de classes

qui peuvent être caractérisées très simplement (th. V et VI).

1. Soit/une application différentiable (C00) d'une variété close (compacte,
sans bord) à 3 dimensions M dans le plan R2. Un point x de M est appelé
point singulier de/, (ou point critique de/) si le rang de la dérivée/' (v),
application linéaire de l'espace tangent àlenx dans R2, est plus petit
que 2. L'application/est dite générique si, pour tout point singulier a, on
peut trouver un voisinage U de a et des coordonnées xu x2, x3 dans U
nulles en a, ainsi que des coordonnées yuy2 dans R2, à l'aide desquelles

/ soit représentée dans U par l'un des systèmes d'équations suivantes:

(I)
yi

— x\ + x\
(II)

3>i

y2 xi 4
(ni)

.vi

y2 x2 + Xi x3 4
De tels systèmes de coordonnées seront dits adaptés àftna.

Le terme « générique » est motivé par le fait que, dans l'espace de toutes
les applications C 00 de M dans R2, muni d'une topologie convenable et

naturelle, l'ensemble des applications génériques est un ouvert partout
dense. (Théorème de Whitney [8]).
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Dans le voisinage U d'un point singulier a, la fibre au-dessus de /(a),
c'est-à-dire l'ensemble des points x de U tels que f(x) f (a), se réduit au
point a dans le cas (I), se compose des deux arcs (x1=0, x2:= x3) et

(*1 =0, x2 ~x3) dans le cas (II), et de la courbe {pc1 =0, x\ x\) dans le

cas (III).
Une application générique / peut donc présenter trois types de points

singuliers, correspondant respectivement aux équations (I), (II) et (III). Les

points singuliers situés dans le voisinage d'un point a du type (I) ou (II)
sont définis, à l'aide de coordonnées adaptées à / en a, par (x2 x3 0)
et sont tous du même type que a, tandis qu'au voisinage d'un point du type
(III) ils sont définis par (x2 —0, x1 3xl), comme on le voit en examinant

ôy •

la matrice de f'(x), c'est-à-dire la matrice —- (/ 1,2; k 1, 2, 3). Si
ôxk

(3c2, 0, c) est un point singulier voisin du point a de type (III), on obtient
des coordonnées Xl9 X2, X3 et Yu Y2 adaptées à/en ce point en posant

Xi -3c2, X2 x2, X3 (x3-c)3\c\V 1 + (V\"',>
3 c

Yi — yi — 3c2 Y2 y2 - 2c3

et les équations (III) deviennent

y y y 2 _c_ y 2
l — A i ï2 — A 2 ~ \c\ A 3

Le point singulier (3c2, 0, c) est donc du type (I) si c < 0 et du type (II)
si c > 0.

Il résulte de là que l'ensemble des points singuliers d'une application
générique / est une sous-variété à une dimension de M, réunion finie de

courbes lisses, simples, fermées et disjointes. On l'appelle le pli def et on le

désignera par I. Les points singuliers du type (I) et du type (II) forment
deux ouverts disjoints de Z, dont les composantes connexes sont appelées

arcs réguliers du pli, de type (I) ou (II) selon le cas. Les points singuliers du

type (III), appelés points cuspidaux, sont en nombre fini, chacun d'eux sépare

deux arcs réguliers du pli, qui sont l'un du type (I) et l'autre du type (II).
Notons que si xu x2, x3 sont des coordonnées adaptées à/en le point a

du pli 27, comme coordonnée sur Y au voisinage de a, on peut prendre x1
si a est du type (I) ou (II), et x3 si a est du type (III).

Rappelons encore qu'un point critique d'une fonction, c'est-à-dire un
point où sa différentielle première est nulle, est dit non dégénéré si sa

différentielle seconde est une forme quadratique non dégénérée. Une fonction
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qui n'a que des points critiques non dégénérés est appelée mit fonction de

Morse. Une application differentiate est une submersion si sa dérivée est

partout surjective, et une immersion si sa dérivée est partout injective.

Proposition. I Soit f: M R2 une application générique de la variété

close M dans le plan R2 et cp : R2 -» R une fonction sans points critiques,
telle que la restriction cp o f | 1 de cp of au pli n \ait que des points critiques

non dégénérés. Alors cp o f est une fonction de Morse sur M.

Démonstration. Un point régulier de/ ne peut pas être un point critique
de cp of car (cpof)' cp' of y est surjective. Au voisinage d'un point a

du pli, utilisons des coordonnées adaptées à/en a, et soit

<Kj>i> J>2) a0 + b1yl + b2 y 2 + Ci y\ +

le développement taylorien de cp autour de f (a) (0, 0). Si a est de l'un
des types (I) ou (II), on a:

((,0 /)(.V|,.V,..V,) a0 + b1*1+ \ ±*3) + cx x\ +

avec le signe + pour le type (I) et — pour le type (II), les termes non écrits
étant de degré > 3. Si b1 ^ 0, ce n'est pas un point critique, si bx 0,

alors b2 ^ 0 parce que cp est sans points critiques et c1 ^ 0 sinon
cp of \ I a0 + cîx\+ aurait un point critique dégénéré, de sorte

que a est un point critique non dégénéré de cp of Remarquons ici que si
a est du type (II), x2 étant précédé du signe —, cp of ne peut avoir en a ni
maximum ni minimum.

Si enfin a est du type (III) on a :

(cp of) (x1, x25 ^3) ~ a$ bi x^ b2 (x2 + x1x3 — x3) + c1 vy +

Si bx était nul, comme x2 0 et x1 3x3 sur I, 011 aurait cp o/| 1
lb2x\ + ...et a serait un point critique dégénéré pour cp of | E. Donc

bt ^ 0 et a n'est pas un point critique de cp o /, qui est donc bien une fonction
de Morse.

Corollaire. Toute application générique f : M -> R2 doit présenter
des points critiques de type (I).

En effet, on peut toujours trouver des fonctions cp : R2 -» R sans points
critiques pour lesquelles cp o /1 E est une fonction de Morse, (cf. R. Thom
[6]). Alors cp o/est une fonction de Morse sur M qui, M étant compacte,
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possède au moins un maximum et un minimum, qui sont atteints en des

points critiques nécessairement du type (I).

2. Considérons une variété à n dimensions M, séparée à base dénombra-
ble, sans bord, C00, mais pas nécessairement compacte, et une submersion

f : M - Rq à fibres compactes, c'est-à-dire que l'image réciproque / "1 (b)
de tout point b e Rq est compacte.

Les composantes connexes des fibres / ~1 (b) sont les feuilles d'un
feuilletage de M. En effet, comme/ est une submersion, pour tout y e M
on peut trouver un voisinage U de Y avec un difféomorphisme cp de U sur
le produit Dq x Dn~q de deux disques à q et n — q dimensions, de manière

que, pi désignant la projection de ce produit sur le premier facteur Dq, on
ait /1 U pL o (p. Si b e Dq, et dans ce cas seulement, / ~1 (b) contient une
feuille passant dans U et l'intersection f~1 (b) n U cp~1 o p\1 (b)

(p~~1 (b x Dn~q) est connexe. Deux feuilles distinctes passant dans U ne

peuvent appartenir à une même fibre de fi puisque / prend sur ces deux
feuilles deux valeurs distinctes. Par suite, un point ye M ne peut adhérer à

une feuille qui ne le contient pas. Chaque feuille est ainsi un ensemble fermé,
donc compact puisque contenu dans un compact.

Si p2 désigne la projection de Dq x Dn~q sur Dn~q, pour tout c e Dn~q,

<P~
1 ° Pi

1
(c) (P~1 xc) est une sous-variété de U transversale aux

feuilles, qui coupe toute feuille passant dans U en un point unique.

Nous allons montrer que les feuilles de dF sont les fibres d'une fibration
localement triviale de M. A cet effet, introduisons sur M une métrique
riemannienne et, étant donné une feuille C et un nombre r > 0, considérons
l'ensemble N (C, r) des couples (>', fi) formés par un point y e C et un
vecteur q tangent à M en y et orthogonal à C, de longueur \rj\ < r. Muni
de la projection qui envoie (y, fi) en (y, 0), c'est un fibré dont les fibres sont
des disques de dimension q. Pourvu que r soit assez petit, il existe dans M
un arc géodésique unique d'origine y, tangent à q en y, orienté comme q

et de longueur | q |. En désignant par F (y, q) l'extrémité de cet arc, on définit
une application F : N (C, r) M. Si r est assez petit, F est un
difféomorphisme de N (C, r) sur le voisinage F de C formé des points de M dont
la distance à C est < r. A la projection de N(C,r) qui envoie (y,q) en (/,0)
correspond par F la projection p de V sur C qui envoie F (y, q) sur y. La
fibre p"1 (y) est une sous-vatiété de F, difféomorphe au disque Dq, orthogonal

à C en y, et l'on peut supposer r assez petit pour qu'elle soit
transversale aux feuilles de #* en chacun de ses points, quel que soit y e C. (Ces

propriétés bien connues découlent, en tenant compte de la compacité de C,
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du théorème des fonctions implicites et du théorème d'existence relatif aux

équations différentielles).
Ainsi, r étant choisi assez petit, V est un voisinage ouvert de C, muni

d'une application p : V -> C qui en fait un fibré de base C, dont les fibres

P~1 00 sont transversales aux feuilles de Comme/est une submersion,

la restriction de/à p~x (y) est une immersion dans Rq, et nous pouvons
encore supposer r assez petit pour que ce soit un plongement, quel que soit

y g C. Il existe alors un disque Dq de centre f (y) dans Rq, contenu dans

f(p~1 0)) P°ur tout je C.

Considérons maintenant l'ouvert W— V n f'1 (Dq), désignons par
P î f\ W et p2 p | W les restrictions de / et de p à W. Pour tout
y e C, p1 réalise un difféomorphisme de pj 1 (y) sur Dp, de sorte que pour
tout u e Dp, l'intersection pi1 (u) n pi1 (j;) se réduit à un point z e W, pour
lequel Pi(z) u et p2 (z) y.. Il en résulte que l'application de W sur
Dp x C qui envoie zen^ (z), p2 (z)) est un difféomorphisme. Le feuilletage

est par suite une fibration localement triviale, dont l'espace de base est

l'ensemble lui-même, muni de la topologie d'espace quotient, la
projection canonique n : M -» W envoyant chaque point sur la feuille qui le

contient. L'application f détermine localement la structure différentiable
de 3F et définit globalement une immersion a de f dans Rq, telle que

f 01 O 71.

Nous avons ainsi établi le théorème suivant, (analogue au « Théorème
de la fibration » de R. Thom [7] : Une submersion qui est une application
propre définit une fibration localement triviale).

Theoreme I. Soit M une variété différentiable de dimension n et

/ : M -» Rq une submersion à fibres compactes. Les composantes connexes des

fibres de f sont alors compactes, ce sont les fibres d'une fibration localement
triviale de M, et il existe une immersion a de l'espace de base 3F de cette
fibration dans Rq telle que, n étant la projection de M sur 3F, l'on aitf a o n.

3. Nous allons considérer les applications génériques qui ne présentent
pas de points singuliers du type (II), et que nous appellerons applications
génériques spéciales. Remarquons que l'absence de points singuliers du
type (II) entraîne que tous les points singuliers sont du type (I), puisqu'au
voisinage d'un point singulier du type (III) se trouvent des points singuliers
des types (I) et (II). Une application générique spéciale n'a donc que des

points singuliers du type (I). Cette définition est également valable pour des
applications dans une surface différentiable.
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Proposition. Si f est une application générique spéciale de S 3 dans F2,
le pli S de f est un cercle non noué.

Pour établir cette proposition, il suffit de prouver que n1(S 3-1) est

isomorphe à Z, car en vertu du théorème de dualité d'Alexander, il en
résultera que S se. compose d'une seule courbe fermée simple et d'après le

lemme de Dehn-Papakyriakopoulos, cette courbe ne sera pas nouée.
Si un point singulier est contenu dans une fibre / ~1 (<h), il y est isolé et

par suite / ~1 (b) n (S 3 -1) est compact. La restriction de / à S 3 - Z
est alors une submersion à fibres compactes et l'on peut appliquer le théorème

I : il existe une fibration localement triviale n : S 3 — Z ^ ä fibres

compactes et connexes, et une immersion a : 3F -> R2 telle que / a o n.
L'espace de base 3F est alors une surface ouverte.

Soit x0e S 3 — Z, y0 7i (x0), F 7i_1(x0). Dans la suite exacte

d'homotopie de la fibration n (cf. par exemple Hu [2], p. 152).

-*ni(F,x0) -> 7t! (S 3 - -^n1(^r,y0)

on a 7i2 y0) 0 parce que 3F est une surface ouverte, n0 (F, x0) 0

et 7zl (F, x0) Z parce que F est un cercle, d'où la suite exacte:

0 -» Z -> ti1 (S 3
— I, x0) nl (3F ^ y0) -> 0

Montrons que l'image de n1 (S 3 — I, x0) dans nL (3F, j;0) se réduit à zéro.
Cela entraînera n1 (3F, y0) 0 et Z n1 (S 3 -1, x0), ce qui achèvera

la démonstration.
Il s'agit donc de montrer que la projection n (y) dans 3F de toute courbe

y fermée en x0 dans S 3 - I est homotope à zéro dans Comme y est

homotope à zéro dans S 3, l'application de S 1 dans S 3 — I qui définit

y peut s'étendre en une application dans S 3, H : D2 -> S 3, du disque D2

bordé par S 1. On peut supposer que H est differentiate et transverse à I.
Alors H'1^) est un ensemble fini de points P1,...,PS. En modifiant
éventuellement H au voisinage de ces points, on peut faire en sorte qu'il
existe de petits disques Dt (i= 1, s) intérieur à D2 et deux à deux disjoints,
Dt étant centré en Pt et H (Df) étant un disque, transverse à I, défini à

l'aide de coordonnées adaptées à/en H(Pi) par (x± 0, x\ + x\ <e), l'image

par H du bord de Dt étant la fibre yt définie par (xx 0, x\ + x\ — c). Comme

n (yt) se réduit à un point de on a une application H de D2 dans #* égale
à 7i o H hors des Dt et constante égale à n (yt) dans Db ce qui montre que
7i (y) est homotope à zéro dans 3F. c.q.f.d.
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Theoreme II. S'il existe une application générique spéciale de la variété

close à 3 dimensions M dans le plan, le groupe fondamental de M est libre.

La démonstration suit les mêmes lignes que celle de la proposition

précédente. Si / : M -> R2 est une application générique spéciale, sa

restriction f\ M - I est une submersion à fibres compactes et l'on peut
écrire / a o n, où n : M - I -» SF est une fibration localement triviale à

fibres connexes compactes, une surface ouverte et a : #" -» R2 une

immersion. Choisissons un point base x0 dans M — I en sorte que la

fibre F de % passant par x0 soit contenue dans une boule de M. En vertu des

équations (I), il suffit de prendre x0 assez voisin du pli. Soit y0 n O0),

F 7i~1 (y0). On a encore la suite exacte:

i* ** _0 —> 711 (F, x0) —> 7l1 (M — Z, X0) TCi >'o) 0

ce qui entraîne

(1) yo) (M-I,x0)/lm i#

Toute courbe fermée en i0 dans M étant homo tope à une courbe contenue
dans M — 27, l'inclusion j : M - I -> M induit un homomorphisme
surjectif f : nx (M—I, x0) -> n1 (M, x0), ce qui entraîne

(2) 71 (M,x0) 7Z1 (M-T,x0)/ker j/
1

;;j Ensuite, comme dans le cas de la proposition précédente, on voit que si une
j courbe y fermée en x0 dans M — I est homotope à zéro dans M, son
I image n (y) est homotope à zéro dans ce qui signifie que kery* c= ker
I im / D'autre part, comme F est contenu dans une boule de M, F est
S homotope à zéro dans M, ce qui signifie que im i% c: ker/,. Donc im L

ker /,, et, en vertu de (1) et (2), %l (M, x0) n1 (^,y0). Ce dernier

groupe étant libre, le théorème II est établi.

4. Le théorème suivant, tout en permettant de retrouver le théorème II
I et la proposition du §3 sans utiliser le lemme de Dehn-Papakyriakopoulos,
j nous conduira à des résultats plus précis sur la structure des variétés M et

de leurs applications génériques spéciales /.

Theoreme III. a) Soit M une variété close à trois dimensions et f une
application générique spéciale de M dans R2. Le quotient de Mpar la relation
d'équivalence qui identifie les points d'une même composante connexe des

fibres de f est une surface compacte A avec un bord correspondant au pli I
def etf a o n où n est la projection de M sur A et a une immersion de A
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dans R2. De plus, M est le quotient d'un fibré en cercles localement trivial
M ' de base A par la relation d'équivalence qui identifie les points d'une
même fibre du bord, la projection de M ' sur M étant n\ sa projection sur A
est p 71 o 7ir.

b) Réciproquement, étant donné une surface compacte A, un fibré en

cercles localement trivial M ' de base A et une immersion a de A dans R2,
le quotient de M ' par la relation d'équivalence qui identifie les points d'une
même fibre du bord est une variété M sur laquelle existe une structure dif-
férentiable telle que, n étant la projection de M sur A, l'application a o n de

M dans R2 soit générique spéciale.

Notons que A est nécessairement orientable, car, parmi les surfaces

compactes, celles qui sont orientables et ont un bord, et celles-là seulement,
admettent des immersions dans R2.

Démonstration, a) En vertu du théorème I, comme on a vu au début
du §3, l'image de M — I dans A est une surface ouverte 3F

^ munie de la
structure difïérentiable définie par la submersion/1 (M—I). D'autre part,
chaque point a de I étant à lui seul une composante connexe d'une fibre
de /, la rectriction de % à I est un homéomorphisme sur A — 3F. A l'aide
de coordonnées adaptées à/en a,/est définie par les équations (I) du §1:

y î xi> y2 x2 + x3- Le voisinage {x\ + x\ + x\ < s2} de a est appliqué
sur le domaine {y\ + y2 <£, y2 > 0}, l'arc x2 x3 0 de E venant sur
l'arc y 2 — 0 du bord de ce domaine. Cela montre que A est bien une surface

dont l'intérieur est Â 3F et dont le bord A — est homéomorphe à I.
De plus, en prenant yu y2 comme coordonnées locales au voisinage du

point Ti (a) du bord de A, on définit une structure differentiate sur A qui
prolonge celle de 3F et telle que oc soit une immersion.

D'après le théorème I, M - I est un fibré en cercles localement trivial
de base 3F À. La surface A est orientable, puisqu'elle admet une immersion
a dans R2. En enlevant de A le long de chaque courbe de son bord un étroit
ruban, on obtient une surface A x cz À difféomorphe à A. Ce difféomorphisme
se relève en un isomorphisme du sous-fibré p'1 (A J de M — I sur un
fibré M ' de base A, dont l'intérieur est isomorphe à M — I. Il est clair
qu'en réduisant à un point chaque fibre du bord de M' on retrouve M.

On voit qu'on passe de M à M ' en faisant en quelque sorte éclater le

pli de / : chaque courbe r de I est transformée en une surface qui est un
fibré en cercles de base T. Si M est orientable, cette surface sera un tore,
mais si M n'est pas orientable, ce pourra aussi être une bouteille de Klein.
Ces surfaces forment le bord de M '.
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b) Partant de A, a et M ', on forme M 11 on a les projections n, n' et

p 7i o 7i' de M sur A, de M ' sur M et de M ' sur A. A chaque courbe C

du bord de A correspond une surface p~x (C) du bord de M' et une

courbe T n~1 (C) n (p~1 (C)) dans M. Soit I la réunion des courbes

T. La restriction de %' à l'intérieur de M ' est un homéomorphisme sur

M — I, qui définit une structure différentiable telle que n | (M—Z) soit

une submersion dq M — S sur À, de sorte que / a o n n'a pas de points
singuliers dans M — Z.

Pour prolonger cette structure différentiable à toute la variété M,
considérons un point a de l'une des courbes r et le point correspondant
7i (a) du bord de A. On peut introduire dans A des coordonnées locales

y 2 nulles en ce point, telles que {| y1 | < 1,0 < y2 < 1} définisse un
voisinage de n (a) dans A, {| yx | < 1, y2 0} étant l'image n (L) dans le

bord de A d'un arc L de F. On peut identifier ce voisinage de n (a) au

produit L x [0, 1[ de L par l'intervalle 0 < y2 < 1. Comme le fibré M '

est localement trivial, l'image réciproque de ce voisinage dans M ' peut
être représentée par W L x [0, 1[ x s 1, et son image V n (W)
est un voisinage de a dans M. Considérons alors l'application de la couronne
[0, 1[ x S 1

sur le disque D2 {( z | < 1 } bordé par S \ définie en

posant z yj y2eld, et l'application correspondante p de W sur L x D2

qui envoie (yi,y2, <?w) en (y1,z=y/y2eld). Toute fibre yt x 0 x s 1 de

W dans le bord de M' étant réduite à un point (yu 0), tandis que p est

injective ailleurs, on voit qu'il existe un homéomorphisme h de L x D2
sur V tel que n | W h o p. La structure différentiable de L x D2 est
alors transportée par h dans V, ce qui fournit le prolongement cherché.
Prenons dans V les coordonnées locales xu x2, x3 définies à l'aide de h par
xi y i> x2 Re z, x3 Im z, et prenons au voisinage de / (a)

a o n (a) dans R2 les coordonnées locales yl9 y2 définies à l'aide de a.
Alors / est définie au voisinage de a par yt xu y2 x2 + x3. Donc
chaque point de 1 est un point singulier du type (I) et/ est bien une
application générique spéciale de M dans R2 avec le pli Z. c.q.f.d.

On déduit de là que le groupe fondamental de M est isomorphe à celui
de A9 qui est comme on sait le groupe libre de rang r 2g L b - 1, où
g est le genre de A et b le nombre des courbes de son bord. Mais nous allons
obtenir un résultat plus précis.

Rappelons que la somme connexe de deux variétés closes et M2 est
une variété notée M1 # M2 qu'on obtient en enlevant dans chacune d'elles
l'intérieur d'une boule, ce qui fournit deux variétés. bordées chacune par
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une sphère, qu'on réunit ensuite en identifiant ces deux sphères (l'identification

devant tenir compte des orientations dans le cas de variétés orientées).
Les variétés et les boules étant supposées différentiables, le choix de ces

dernières n'importe pas, et l'opération # est associative et commutative.
La somme connexe M1 # M2 est ainsi une variété qui peut être partagée

par une sphère S en deux variétés qui sont changées en et M2 lorsqu'on
adjoint à chacune une boule de bord S.

Désignons par Vr la somme connexe de r copies de S 2 x S 1, V0 se

réduisant à S 3 et Lx à £ 2 x S 1, par V î la variété non orientable quotient
de S 2 x s 1

par le groupe d'ordre 2 engendré par la transformation
résultant d'une symétrie de S 2

par rapport à un plan diamétral combinée

avec une symétrie de S 1

par rapport à son centre, et par V* la somme
connexe de V l et de r — 1 copies de S 2 x S L

Theoreme IV. Les variétés closes à 3 dimensions qui admettent des

applications génériques spéciales dans R2 sont les variétés Vr (r 0, 1,2,
et V* (r= 1,2, Il n 'y en a pas d'autres.

Il est clair que Vr est orientable, tandis que V *
ne l'est pas. Leurs groupes

fondamentaux n1 (Vr) et n1 (V*r) sont libres de rang r. Ce sont les seules

variétés closes à 3 dimensions connues jouissant de cette propriété. Si la

conjecture de Poincaré était établie, on serait assuré qu'il n'y en a pas
d'autres, (cf. Milnor [4]).

Pour la démonstration, partons du théorème III, d'après lequel toute
variété close à 3 dimensions M admettant une application générique spéciale

/dans R2 est associée à un fibré en cercles M ' dont la base est une surface A

et le groupe fondamental n1 (M) tl1 (A) est libre de rang r g + b — 1,

g étant le genre de A et b le nombre des courbes du bord de A, d'ailleurs
égal au nombre de courbes du pli de /. On sait d'autre part que le fibré M '

est orientable si ses fibres peuvent être orientées d'une manière cohérente

et dans ce cas M' est trivial: M ' A x S 1.

Si M est simplement connexe, r g 0 et b 1, A est un disque et
le fibré M ' A x S 1 est trivial. Pour voir que M S 3, représentons
S 3

par l'espace euclidien R3 complété avec un point à Loo, et A par un

un disque plan bordé par un cercle C. Par une inversion qui rejette un
point de C à Loo, on peut se ramener au cas où C est une droite et A un
demi-plan limité par C. L'application n' : A x- S 1

-> S 3 qui envoie

(a, ew), où a e A et ew e S 1, sur le point x du cercle d'axe C passant par a
tel que le demi-plan limité par C contenant x fasse un angle 0 avec A,
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induit un homéomorphisme de À x S 1
sur R3 — C et projette le fibré

C x S 1
sur C, de sorte que M S 3.

Remarquons que si L est un arc joignant deux points de C dans A et

délimitant avec C un domaine D, n'1 (L) est une sphère qui borde la

boule 7T—
1 (D) engendrée par la révolution de D autour de C.

Si r 1, alors g 0 et è 2, ^ est une couronne, produit A C x I
d'un cercle C par un segment I. Soit M ' un fibré en cercles de base A et

p : M ' A sa projection. Pour tout xel.p"1 (C x x) est un fibré en cercles

de base C, c'est donc un tore T ou une bouteille de Klein K, de sorte que

M' T x I ou K x /. Pour tout yeC,p~1(y x /) est un fibré en cercles

de base /, c'est donc une couronne S 1 x / et son image 71' (/;-1 (y x /))
dans M est une sphère S 2, puisque chacun des cercles bordant cette couronne

y est réduit à un point. Par suite M — nf (p~1 (C x /)) est un fibré en sphères

de base C. Dans le cas où M ' T x j9 M est orientable, ce fibré en sphères

est trivial et M=CxS2 S1 x S 2 V1. Mais si M ' K x /?

M ' et M ne sont pas orientables, le revêtement orientable à deux feuillets
de K étant T, celui de K x ] est T x / et celui de M est Fl5 de sorte que M
est le quotient non orientable V* de V1.

Pour traiter le cas r > 1, procédant par récurrence, nous admettons que
les seules variétés M associées à des fibrés en cercles dont la base est une
surface A0 avec un groupe fondamental de rang r — 1 sont Vr„1 et V*-1.
Or on sait que toute surface A dont le groupe fondamental est de rang r
peut être obtenue à partir d'un disque en lui attachant successivement r
anses, donc à partir d'une surface A0 en lui attachant une anse. Attacher
une anse à la surface A0, c'est lui adjoindre un quadrilatère B en identifiant
deux côtés opposés de B à deux arcs disjoints du bord ô A0 de A0, de

manière à obtenir une surface A A0 u B orientable comme A0 l'est
supposée, l'intersection A0 n B se réduisant aux deux arcs de l'attachement.

Si ces deux arcs appartiennent à la même courbe de ô A0, A a le

même genre que A0 et dA contient une courbe de plus que d A0, tandis
que s'ils appartiennent à deux courbes distinctes de ô A0, le genre de A est
supérieur d'une unité à celui de A 0 et le nombre des courbes de d A inférieur
d'une unité au nombre des courbes de d A0. Dans l'un et l'autre cas, l'entier
r g + b - 1 est augmenté d'une unité et passe de r - 1 à r en allant de

A0 à A. (voir fig. 1).

Tout fibré en cercles M ' de base A contient les deux sous-fibrés M'0
P~1 04o) de base A0et B' p~1 (B) de base B. Inversément, en partant

de fibrés en cercles M q de base A0 et B' de base B, on peut obtenir un fibré
en cercles M ' de base A en identifiant les fibres correspondant à un même
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point des arcs d'attachement. Mais il faut tenir compte, dans cette identification,

de l'orientation des fibres. Si M 0' est orientable, ses fibres peuvent
être orientées d'une manière cohérente, de même que celles de B', et l'on
peut supposer que ces orientations coïncident au dessus de l'un des arcs

d'attachement, selon qu'alors elles coïncident ou non sur l'autre arc
d'attachement, M' sera orientable ou non. Ainsi, à chaque fibré en cercles

orientable M0' de base A0 correspondent deux fibres en cercles M ' de base

A, l'un orientable et l'autre non orientable. Si M0' n'est pas orientable,
M ' ne le sera naturellement pas non plus.

Fig. 1

A ces fibrés correspondent les variétés closes M et M0 qui s'en déduisent

en réduisant à un point chaque fibre du bord. Par l'hypothèse de récurrence,

M0 ou F*_ l9 selon qu'elle est orientable ou non. Pour établir le
théorème IV, il suffira donc de montrer que, si-M0 Fr_ l5 M est la
somme connexe de M0 et de V1 ou de V\ selon que M est orientable ou non>

et si Mo V*-l9 M est la somme connexe de M0 et de V1.
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A cet effet, nous montrerons d'abord que, dans tous les cas, M peut
s'obtenir à partir de M0 et de 5 2 x / en enlevant de M0 les intérieurs de

deux boules et en identifiant les deux sphères bordant la variété restante

avec celles bordant S 2 x I. Désignons par n0 la projection de M0 sur A0,
n étant toujours celle de M sur A, et par Lx et L2 les deux arcs d'attachement,

qui sont en même temps deux côtés opposés du quadrilatère B

Les sphères 7i_1 (L1) et 7i_1 (L2) bordent 7r-1 (A0), ainsi que
7i— 1 (B). Comme B' S1xB S1xIxI, on voit que n~1 (B)

S 2 x /? car en réduisant à un point les fibres de S 1 x / correspondant
aux extrémités de I on obtient une sphère S 2. Il suffit alors de montrer que
7E~1 (A0) est homéomorphe à une variété qu'on déduit de M0 tzq

1 (A0)
en enlevant les intérieurs de deux boules.

Pour cela, joignons les extrémités de Li et celles de L2 par deux arcs
intérieurs à A0, délimitant avec L1 et L2 deux disques disjoints D1 et D2,
et soit A00 la surface obtenue à partir de A0 en enlevant les intérieurs de ces

disques (fig. 2). Alors n~1 (A00) se déduit de 7TÖ1 (A0) en enlevant les
intérieurs des deux boules 7cô1(Di) et nô

1
(Z>2), d'autre part, 7i_1(A00) est

homéomorphe à n~1 (A0), car il existe un homéomorphisme de A00 sur A0
se réduisant à l'identité hors d'un voisinage de Li et D2 qui s'étend
en un homéomorphisme de n~1 0400) sur n~1 (A0).

Si M0 est orientable, la variété M est orientable ou non selon que les
orientations de n 1 (Li) et n_1 (L2) induites par une orientation de M0
sont aussi induites par une même orientation de n~1 (.B) ou non, nous allons
montrer que M M0#V1 dans le premier cas et M M0 # V* dans
le second cas. De plus, nous verrons que si M0 n'est pas orientable, ces

Fig. 2
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deux sommes connexes sont identiques, M M0 # V1 M0 # V *.

Comme M0 Vr^1 ou en vertu de l'hypothèse de récurrence, cela

achèvera la démonstration.
Désignons par B1 nô1 (DJ et B2 tïq

1 (D2) les deux boules dont
l'intérieur doit être enlevé de M0 et les sphères qui les bordent identifiées à

celles qui bordent S 2 x / pour former M. Joignons un point du bord de

Bi à un point du bord de B2 par un arc L intérieur à M0. Paramétrons L
sur l'intervalle [0, 1] et I sur [1,2]. On peut former un voisinage tubulaire
de L dans M0, représenté par le produit D2 x L D2 x [0, 1] de L avec

un disque D2, de manière que D2 x 1 soit contenu dans le bord de Bx et
D2 x 0 dans le bord de B2. La réunion de Bt et B2 avec ce voisinage tubulaire

est une boule topologique, en forme d'haltère, bordée par une sphère
S. C'est l'intérieur de cet haltère que nous enlevons de M0 pour obtenir
l'une des variétés bordées par S dans M. L'autre partie de M bordée par S

est la réunion du voisinage tubulaire D2 x [0,1] avec n~1(B)
S2 x [1,2], où D2 x letD2 x 0 sont identifiés avec des disques contenus

respectivement dans les bords S2 * l et S2 x2 de n~1 (B). Considérons
D2 comme inclus dans S 2, le voisinage tubulaire est alors inclus dans

S 2 x [0, 1] et les identifications ci-dessus se prolongent en identifications
de £ 2 x 1 et £ 2 x 0 avec les sphères bordant 71_1 (B), les extrémités
1, 0 de [0, 1] étant identifiées avec celles 1, 2 de [1, 2] la réunion de [0, 1]

et [1, 2] forme un cercle S 1 et celle de S 2 x [0, 1] avec S 2 x [i5 2] un
fibré en sphères de base S 1. Le second morceau de M bordé par S se déduit
de ce fibré en sphères en enlevant l'intérieur de la boule {S2 — D2) x [0, 1].

Ce fibré en sphères de base S 1
ne peut être que S 2 x s 1 ou son quotient

non orientable. Si M0 est orientable, ce sera le premier ou le second selon

que M est orientable ou non. Si M0 n'est pas orientable, M ne l'est pas non
plus, mais ce fibré en sphères de base S 1

pourra être orientable ou non
selon le choix de l'arc L dont on a pris un voisinage tubulaire, car on peut
trouver deux chemins Lx et L2 joignant les mêmes points dans M0, tels que
les orientations de leurs voisinages tubulaires concordent à l'une des extrémités

et pas à l'autre. La démonstration du théorème IV est ainsi achevée.

Disons que deux applications génériques spéciales / et f1 de M dans

R2 appartiennent à la même classe, si les fibrés en cercles qui leur sont
associés selon le théorème Illa sont isomorphes. Si n et sont les

projections correspondantes de M sur les surfaces A et A1 bases de ces fibrés,
cela signifie qu'il existe des difféomorphismes h1 de A sur A x et h de M sur

M tels que n1o h'1 h1o n. Si alors f oc0 o n et f1 oc1 o n1, on a
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a1o l^o no ft, et comme a1 o h± est une immersion de A dans R2,

on voit que toutes les applications génériques de la même classe que /
seront données par l'expression a o n o ft, où a est une immersion arbitraire
de A dans R2 et ft un automorphisme arbitraire de M.

Si M est orientable, M Vn le fibré en cercles M ' étant trivial, à

chaque surface A dont le groupe fondamental est de rang r correspond une

et une seule classe. A est déterminée, à un difféomorphisme près, par le

nombre b des courbes de son bord, qui est aussi le nombre des courbes du

pli des applications de cette classe, et, puisque r 2 g + b — 1, doit
satisfaire aux conditions

b r + 1 (mod 2), 1 £= b ^ r + 1 (1)

D'où:

Theoreme Y. Les applications génériques spéciales de Vr dans R2 se

répartissent en [|] + 1 classes, correspondant aux entiers b satisfaisant aux
conditions (1). Toutes les applications d'une même classe sont données par
l'expression a o n o ft, où n : Vr -» A est la projection associée à l'une
d'entre elles, h un automorphisme arbitraire de Vr et a une immersion
arbitraire de A dans R2.

Si M est non orientable, M V*r, supposons donné un fibré en cercle

M ' de base A et la projection associée n : M A définissant une classe

d'applications génériques spéciales de M dans R2. Le revêtement orientable

à deux feuillets M de M est associé à un sous-groupe d'indice 2 de n1 (M)
auquel correspond par l'isomorphisme n1 (M) ~ (A) un sous-groupe

A
d'indice 2 de n1 (A) et un revêtement à 2 feuillets A de A, et il y a une pro-

A A A
jection n : M -» A telle que, p1 et p2 désignant les projections de revête-

A A A
ment de A sur A et de M sur M, p± o % no p2. Le fibré en cercles M'

A A
associé à M et n est le revêtement orientable à 2 feuillets de Mr, il est

A A

trivial; M ' A x S ' et la transformation de revêtement, qui renverse
l'orientation, résulte (à une isotopie près) de la transformation de revête-

A

ment de A combinée avec la symétrie de S 1
par rapport à un diamètre.

A
Inversément, supposons donné un revêtement à 2 feuillets A de la surface

compacte A, orientable avec bord, n1 (A) étant de rang r. Le quotient de
A A

M ' Ax S1
par le groupe d'ordre 2 engendré par la transformation

définie ci-dessus est un fibré en cercles non orientable M la projection de
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M ' sur A induit une projection n de la variété M V *

sur A qui définit
une classe d'applications génériques spéciales de M. Ainsi, les classes de ces

applications correspondent aux revêtements à deux feuillets de A, qui
eux-mêmes correspondent aux sous-groupes d'indice 2 de n1 (A).

Un sous-groupe d'indice 2 est toujours invariant et contient le sous-

groupe des commutateurs, il est donc déterminé par un sous-groupe d'indice
2 du groupe d'homologie H1 (A), et il suffit de considérer, l'homologie
(mod 2), de sorte que H1 (A) est le produit direct de r groupes d'ordre 2.

Ce sous-groupe d'indice 2 est le noyau d'un homomorphisme % de H1 (.A)

sur le groupe multiplicatif (1, —1) qu'on appellera le caractère du revêtement.

Pour toute courbe fermée C dans A, désignons par % (C) l'image + 1

de sa classe d'homologie. Si C1? C2, C b sont les courbes du bord de A,
comme leur somme est homologue à zéro, le nombre de celles pour lesquelles

X (Ct) — 1 doit être pair. Soit 2c ce nombre. Si le genre g de A est nul.
c'est-à-dire si b r -b l? alors c ^ 0 sinon, comme les Ct engendrent

H1 (A), x prendrait jamais la valeur — 1. On a donc:

b b
1 < c — — si g=0 et 0 ^ c ^ - si g > 0 (2)

Deux sous-groupes d'indice 2 de H1 (A) qui sont conjugués par un
automorphisme de A correspondent à la même classe d'applications
génériques spéciales de M dans R2. Nous dirons alors que les caractères

correspondants sont équivalents. Il est clair que le nombre c aura la même valeur

pour deux caractères équivalents. Nous allons montrer que réciproquement,
si c a la même valeur, les deux caractères sont équivalents. Remarquons
encore que les courbes Ct de dA pour lesquelles x (Ci) ~ 1

correspondent aux surfaces non orientables (bouteilles de Klein) qui bordent

M ' et aux courbes du pli de % qui n'ont pas de voisinage orientable.

Theoreme VI. A chaque couple d'entiers b, c satisfaisant aux conditions

(1) et (2) correspond une classe d'applications génériques spéciales de

V*Y dans R2, et inversement ; b est le nombre des courbes du pli des applications
de la classe et 2c le nombre de ces courbes qui n 'ontpas de voisinage orientable.

Soient C{ (i 1, 2, b) les courbes du bord de la surface orientable A.

D'après ce qui précède, pour établir ce théorème, il suffit de montrer qu'à
chaque entier c satisfaisant à (2) correspondent des caractères x <ffii sont

tous équivalents. Comme toute permutation des C{ peut être induite par un

automorphisme de A, on peut se borner à considérer les x tels fiue

X (Ci) — 1 pour 1 < z < 2c et x (Q) 1 Pour z > 2c.
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Supposons d'abord c 0. Alors g > 0 et l'on peut trouver sur A une

courbe fermée simple E non homologue à une combinaison des Ct. En posant

pour toute courbe fermée C transversale à F, x (C) 1 ou — 1 selon que
le nombre des points d'intersection de C avec r est pair ou impair, on

définit un caractère x satisfaisant à la condition c 0. Il résulte des

propriétés topoiogiques bien connues des surfaces que tout autre caractère %'

satisfaisant à cette même condition peut être défini de la même manière à

partir d'une autre courbe r' analogue à r, et comme f peut être changée

en F par un automorphisme de A, x et % sont équivalents. On peut construire
le rêvetement à 2 feuillets associé à % en prenant deux exemplaires de la

surface A coupée le long de f et en les recollant de manière à former une

ligne de croisement au-dessus de E.

Supposons maintenant c > 0. Soient Lt (î 1, 2, c) c arcs simples
deux-à-deux disjoints, Lt joignant C2i-1 à C2i à l'intérieur de A. En posant,

pour toute courbe fermée C transversale à L L1 + L2 + + Ec,

X (C) 1 ou - 1 selon que le nombre des points d'intersection de C avec

L est pair ou impair, on définit un caractère satisfaisant aux conditions
requises. C'est le seul pour lequel x (C) 1 pour toute courbe fermée ne

coupant pas L, et si g 0 il n'y en a pas d'autre. Mais si g > 0, on voit,
comme dans le cas c 0, que tout autre caractère %' peut être défini à
l'aide d'une courbe fermée simple E non homologue à une combinaison
des Ct et ne coupant pas les Lu en posant, pour toute courbe fermée C
transversale à JH + L, x' (C) 1 ou — 1 selon que le nombre de points
d'intersection de C avec F + L est pair ou impair. On peut ensuite trouver
un arc L [ ayant les mêmes extrémités que L1? ne coupant pas les autres
arcs L,., tel que L [ - Lx soit homologue à F, et l'on voit que x Peut aussi
être défini par la condition que, pour toute courbe fermée C transversale à

L ' ~ L i' + L2 4- + L ç, x' (O 1 ou - 1 selon que le nombre des

points d'intersection de C avec L ' est pair ou impair. Comme L ' peut être
changé en L par un automorphisme de A, x' est équivalent à x> Remarquons
encore pour terminer que le revêtement à 2 feuillets associé à x Peut être
construit en prenant deux exemplaires de la surface A coupée le long des L£
et en les recollant de manière à former une ligne de croisement au-dessus
de chacun des Lv

Remarques.

Dans [5], F. Raymond a classé les actions de S 1
sur les variétés à 3

dimensions. Il se trouve que, dans le cas des variétés orientables Vr9 les
classes d'applications génériques spéciales sont en bijection avec les classes
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d'actions de S 1
pour lesquelles il y a des points fixes et pas d'orbites

singulières. Effectivement, à l'aide du théorème II, il est facile de construire
une action correspondante de S 1

sur Vr.

D'après les théorème V et VI seules quelques variétés très particulières
admettent des applications génériques sans points singuliers du type (II)
et (III) dans le plan.

Il n'en est plus de même lorsqu'on considère les applications génériques

pouvant présenter des points singuliers du type (I) et (II).
En effet, des travaux de H. Levine [3], il résulte que toute variété close à

trois dimensions admet une application générique dans le plan dont le pli
comporte deux composantes connexes, l'une formée de points singuliers du

type (I) et l'autre formée de points singuliers du type (II).
Citons pour terminer le travail de diplôme de M. Bina-Motlagh [1] où

figurent de nombreux exemples d'applications génériques de S 3 dans le

plan.
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