Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 20 (1974)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: SUR CERTAINES APPLICATIONS GENERIQUES D'UNE VARIETE
CLOSE A 3 DIMENSIONS DANS LE PLAN

Autor: Burlet, Oscar / de Rham, Georges

DOl: https://doi.org/10.5169/seals-46911

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-46911
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SUR CERTAINES APPLICATIONS GENERIQUES
D’UNE VARIETE CLOSE A 3 DIMENSIONS DANS LE PLAN

par Oscar BURLET et Georges DE RHAM

Les applications différentiables génériques d’une variété close a trois
dimensions M dans le plan, ou plus généralement dans une surface diffé-
rentiable, comme on le rappelle ci-dessous, peuvent présenter trois types
de singularités. Nous considérons celles qui ne présentent pas de singularités
du type (II), que nous appelons génériques spéciales. Apres un rappel de
définitions et de certaines propriétés (§1 et §2), nous démontrons (§3) que si
¥ la variété M admet une application générique spéciale dans le plan, son
) - groupe fondamental est libre. Dans le §4, par une méthode un peu différente,
 nous déterminons toutes les variétés M admettant des applications génériques
spéciales dans R?: ce sont en fait toutes les variétés M actuellement connues
dont le groupe fondamental est libre. De plus, pour chacune d’elles, nous
montrons que ces applications se répartissent en un nombre fini de classes
qui peuvent €tre caractérisées tres simplement (th. V et VI).

1. Soit fune application différentiable (C*”) d’une variété close (compacte,
sans bord) & 3 dimensions M dans le plan R*. Un point x de M est appelé
point singulier de f, (ou point critique de 1) si le rang de la dérivée /' (x),
application linéaire de 1’espace tangent & M en x dans R?, est plus petit
que 2. D’application f est dite générique si, pour tout point singulier @, on
peut trouver un voisinage U de a et des coordonnées x,, x,, x5 dans U
nulles en a, ainsi que des coordonnées y,, y, dans R? 4 I'aide desquelles
J soit représentée dans U par 'un des systémes d’équations suivantes:

[}H:Xl [y1=x1 Vi = X4
(D 1 (1) i (I11)
LJ’z'—’xi‘*‘x% L)’z“—'x%"x% Y2 = X3 4 X X3 — X3

De tels systémes de coordonnées seront dits adaptés d f en a.
Le terme « générique » est motivé par le fait que, dans I’espace de toutes
les applications C ® de M dans R”, muni d’une topologie convenable et

naturelle, 'ensemble des applications génériques est un ouvert partout
dense. (Théoréme de Whitney [8]).
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Dans le voisinage U d’un point singulier a, la fibre au-dessus de f (a),
c’est-a-dire ’ensemble des points x de U tels que 7 (x) = f (a), se réduit au
point a dans le cas (I), se compose des deux arcs (x;=0, x,=x;) et
(x1=0, x,= —x3) dans le cas (II), et de la courbe (x, =0, x3=x3) dans le
cas (III).

Une application générique f peut donc présenter trois types de points
singuliers, correspondant respectivement aux équations (I), (IT) et (III). Les
points singuliers situés dans le voisinage d’un point a du type (I) ou (II)
sont définis, & ’aide de coordonnées adaptées a f en a, par (x,=x;=0)
et sont tous du méme type que a, tandis qu’au voisinage d’un point du type
(IIT) ils sont définis par (x,=0, x, =3x3), comme on le voit en examinant
la matrice de f’(x), c’est-a-dire la matrice S_j: (i=1,2; k=1,2,3). Si

k
(3¢, 0, c) est un point singulier voisin du point a de type (III), on obtient
des coordonnées Xy, X,, X5 et Y,, ¥, adaptées a f en ce point en posant

-—C)2

X1=x1—3c7‘,X2=,\2,X3—(x3—c)3|c|\/1+ 3
h

Y, = y; — 3¢, Y, =y, =2
et les équations (III) deviennent
Y, =X, Y, =X -5 X3

Le point singulier (3¢?, 0, ¢) est donc du type (I) si ¢ < 0 et du type (II)
si ¢ > 0.

Il résulte de 1a que I’ensemble des points singuliers d’une application
générique f est -une sous-variété a une dimension de M, réunion finie de
courbes lisses, simples, fermées et disjointes. On 'appelle le pli de fet on le
désignera par 2. Les points singuliers du type (I) et du type (II) forment
deux ouverts disjoints de X, dont les composantes connexes sont appelées
arcs réguliers du pli, de type (I) ou (II) selon le cas. Les points singuliers du
type (III), appelés points cuspidaux, sont en nombre fini, chacun d’eux sépare
deux arcs réguliers du pli, qui sont 'un du type (I) et I'autre du type (II).

Notons que si x;, X,, x5 sont des coordonnées adaptées a fen le point a
du pli 2, comme coordonnée sur X au voisinage de a, on peut prendre x,
si a est du type (I) ou (II), et x5 si a est du type (III).

Rappelons encore qu’un point critigue d’une fonction, c’est-a-dire un
point ou sa différentielle premiére est nulle, est dit non dégénéré si sa difté-
rentielle seconde est une forme quadratique non dégénérée. Une fonction
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qui n’a que des points critiques non dégénérés est appelée une fonction de
Morse. Une application différentiable est une submersion si sa dérivee est
partout surjective, et une immersion si sa dérivée est partout injective.

PROPOSITION. 1 Soit f: M — R? une application générique de la variété
close M dans le plan R* et @ : R* —» R une fonction sans points critiques,
telle que la restriction ¢ O f | Y de @ o fau pli n’ait que des points critiques
non dégénérés. Alors ¢ o f est une fonction de Morse sur M.

Démonstration. Un point régulier de f ne peut pas €tre un point critique
de @ o f, car (po f) = @’ o f’ y est surjective. Au voisinage d’un point a
du pli, utilisons des coordonnées adaptées & fen a, et soit

@ (yi,y2) = ao + by, +byy, +61y% + ..

le développement taylorien de ¢ autour de f(a) = (0, 0). Si @ est de I'un
des types (I) ou (II), on a:

(@O f)(X1,X5,%X,) = ag + by x; + bz(x§i'x§) + ¢4 x% + ..

avec le signe + pour le type (I) et — pour le type (II), les termes non écrits
étant de degré > 3. Si b; # 0, ce n’est pas un point critique, si b; = 0,
alors b, # 0 parce que ¢ est sans points critiques et c¢; # 0 sinon
pof | Y = a,+ ¢y x; + ... aurait un point critique dégénéré, de sorte
que a est un point critique non dégénéré de ¢ o f. Remarquons ici que si
a est du type (I1), x5 étant précédé du signe —, @ o f ne peut avoir en a ni
maximum ni minimum.
Si enfin a est du type (III) on a:

(@ Of)(xy,%y,X3) = ap + byx; + b, (x§+x1x3——xg) + ¢4 x‘;‘ + ..

Si b, était nul, comme x, = 0 et x; = 3x3 sur 2, on aurait ¢ of| z
= 2b, x3 + ... et @ serait un point critique dégénéré pour ¢ o f| Z. Donc
by # Oetan’est pasun point critique de ¢ o f, qui est donc bien une fonction
de Morse.

CoROLLAIRE. Toute application générique f: M — R* doit présenter
des points critiques de type (I).

En effet, on peut toujours trouver des fonctions ¢ : R?> — R sans points
critiques pour lesquelles ¢ o f | 2 est une fonction de Morse. (cf. R. Thom
[6]). Alors ¢ o f est une fonction de Morse sur M qui, M étant compacte,
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posseéde au moins un maximum et un minimum, qui sont atteints en des
points critiques nécessairement du type (I).

2. Considérons une variété a n dimensions M, séparée a base dénombra-
ble, sans bord, C®, mais pas nécessairement compacte, et une submersion
f M — R%aq fibres compactes, c’est-a-dire que ’'image réciproque f ~ ! (b)
de tout point b € R? est compacte.

Les composantes connexes des fibres ! (b) sont les feuilles d’un
Seuilletage & de M. En effet, comme f est une submersion, pour tout y € M
on peut trouver un voisinage U de Y avec un difféomorphisme ¢ de U sur
le produit D? x D" de deux disques a g et n — g dimensions, de maniére
que, p, désignant la projection de ce produit sur le premier facteur D7, on
ait f| U= p,o ¢.Sibe D% et dans ce cas seulement, f ~* (b) contient une
feuille passant dans U et lintersection f~*(b)n U= ¢ top t(b)
= ¢~ 1 (b x D" %) est connexe. Deux feuilles distinctes passant dans U ne
peuvent appartenir & une méme fibre de f, puisque f prend sur ces deux
feuilles deux valeurs distinctes. Par suite, un point y € M ne peut adhérer a
une feuille qui ne le contient pas. Chaque feuille est ainsi un ensemble fermé,
donc compact puisque contenu dans un compact.

Si p, désigne la projection de D? X D" 1 sur D", pour tout ce D" ¢,
o toprt(c) =@ ' (D'xc) est une sous-variété de U transversale aux
feuilles, qui coupe toute feuille passant dans U en un point unique.

Nous allons montrer que les feuilles de & sont les fibres d’une fibration
localement triviale de M. A cet effet, introduisons sur M une métrique
riemannienne et, étant donné une feuille C et un nombre r > 0, considérons
I’ensemble N (C, r) des couples (¥, ) formés par un point ye C et un
vecteur # tangent & M en y et orthogonal & C, de longueur | n | < r. Muni
de la projection qui envoie (y, n7) en (y, 0), c’est un fibré dont les fibres sont
des disques de dimension ¢g. Pourvu que r soit assez petit, il existe dans M
un arc géodésique unique d’origine y, tangent a » en y, orienté comme
et de longueur | n | En désignant par F (y, ) 'extrémité de cet arc, on définit
une application F : N (C,r) > M. Si r est assez petit, F est un difféo-
morphisme de N (C, r) sur le voisinage V' de C formé des points de M dont
la distance a C est < r. A la projection de N(C,r) qui envoie (y,n) en (y,0)
correspond par F la projection p de V sur C qui envoie F (y, n) sur y. La
fibre p~ ! (y) est une sous-vatiété de V, difféomorphe au disque D?, ortho-
gonal & C en y, et I'on peut supposer r assez petit pour qu’elle soit trans-
versale aux feuilles de # en chacun de ses points, quel que soit y € C. (Ces
propriétés bien connues découlent, en tenant compte de la compacité de C,
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du théoréme des fonctions implicites et du théoréme d’existence relatif aux
équations différentielles).

Ainsi, r étant choisi assez petit, ¥ est un voisinage ouvert de C, muni
d’une application p : ¥ — C qui en fait un fibré de base C, dont les fibres
p~ 1 (y) sont transversales aux feuilles de #. Comme f est une submersion,
la restriction de f£a p~ ! (y) est une immersion dans R?, et nous pouvons
encore supposer r assez petit pour que ce soit un plongement, quel que soit
y e C. 1l existe alors un disque D? de centre f(y) dans RY, contenu dans
f(p~" (1) pour tout y € C.

Considérons maintenant Pouvert W = V n f ! (D%, désignons par
P = f| Wetp, = p| W les restrictions de f et de p a W. Pour tout
y € C, p, réalise un difféomorphisme de p, ' (y) sur D?, de sorte que pour
tout € DP, Iintersection p; ' (1) n p; * (y) se réduit & un point z € W, pour
lequel p; (z) = u et p, (z) = y.. Il en résulte que lapplication de W sur
DP x C qui envoie z en (py (2), p, (z)) est un difféomorphisme. Le feuilletage
F est par suite une fibration localement triviale, dont ’espace de base est
~ Pensemble & lui-méme, muni de la topologie d’espace quotient, la pro-
jection canonique 7 : M — & envoyant chaque point sur la feuille qui le
contient. L’application f détermine localement la structure différentiable
de # et définit globalement une immersion o« de & dans R?, telle que
f=aom.

Nous avons ainsi établi le théoréme suivant, (analogue au « Théoréme
- de la fibration » de R. Thom [7]: Une submersion qui est une application
propre définit une fibration localement triviale).

THEOREME 1. Soit M une variété différentiable de dimension n et
S+ M — R une submersion a fibres compactes. Les composantes connexes des
fibres de f sont alors compactes, ce sont les fibres d’une fibration localement
triviale de M, et il existe une immersion o de [’espace de base F de cette
Jibration dans R? telle que, n étant la projection de M sur %, ’on ait f = 0.0 7.

3. Nous allons considérer les applications génériques qui ne présentent
pas de points singuliers du type (II), et que nous appellerons applications
- génériques spéciales. Remarquons que l’absence de points singuliers du
type (II) entraine que tous les points singuliers sont du type (I), puisqu’au-
voisinage d’un point singulier du type (III) se trouvent des points singuliers
des types (I) et (IT). Une application générique spéciale n’a donc que des
points singuliers du type (I). Cette définition est également valable pour des

applications dans une surface différentiable.
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PROPOSITION. Si f est une application générique spéciale de S > dans R?,
le pli X de f est un cercle non noué.

Pour établir cette proposition, il suffit de prouver que 7, (S 3—X) est
1somorphe a Z, car en vertu du théoréme de dualité d’Alexander, il en
résultera que 2 se_ compose d’une seule courbe fermée simple et d’aprés le
lemme de Dehn-Papakyriakopoulos, cette courbe ne sera pas nouée.

Si un point singulier est contenu dans une fibre £~ (b), il y est isolé et
par suite f 7' (b)) N (S *—2) est compact. La restriction de fa S3 — X
est alors une submersion a fibres compactes et ’on peut appliquer le théo-
réme I: il existe une fibration localement triviale n:S8°— X % a fibres

compactes et connexes, et une immersion « : % — R? telle que f = « o 7.
L’espace de base # est leI‘S une surface ouverte.
Soit xoeS°* — %, yo = n(x,), F=mn"1'(x,). Dans la suite exacte

d’homotopie de la fibration 7 (cf. par exemple Hu [2], p. 152).
Ty (F, yo) = 1y (F, Xo) = 7y (S3——2,x0) - 7 (£, o) -

onamn,(#,y, = 0 parce que & est une surface ouverte, 7, (£, xy) =
et n, (F, x,) = Z parce que F est un cercle, d’outi la suite exacte:

0—->Z ->m(S°—2,x0) » 7, (F,y0) =0

Montrons que 'image de 7, (S > — X, x,) dans 7, (Z, y,) se réduit a zéro.
Cela entrainera 7, (#,y,) = O et Z = 7, (S°>—2X, x,), ce qui achévera
la démonstration.

Il s’agit donc de montrer que la projection n (y) dans & de toute courbe
y fermée en x, dans S > — X est homotope & zéro dans &#. Comme 7y est
homotope a zéro dans S 3, I'application de S ' dans S > — ¥ qui définit
vy peut s’étendre en une application dans S °, H : D* — S *, du disque D?
bordé par S . On peut supposer que H est différentiable et transverse & X.
Alors H ~'(2) est un ensemble fini de points P, ..., P,. En modifiant
éventuellement H au voisinage de ces points, on peut faire en sorte qu’il
existe de petits disques D, (i=1, ..., s) intérieur & D? et deux & deux disjoints,
D, étant centré en P; et H (D;) étant un disque, transverse a 2, défini a
I’aide de coordonnées adaptées a fen H (P)) par (x, =0, x5 + x3 <e), 'image
par H du bord de D, étant la fibre y, définie par (x, =0, x3 +x3 =¢). Comme

7 (y,) se réduit A un point de &, on a une application H de D* dans & égale
a mo H hors des D; et constante égale & = (y;) dans D;, ce qui montre que
7 (y) est homotope a zéro dans &. c.q.f.d.
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TutoreME 1. S’il existe une application générique spéciale de la variété
close & 3 dimensions M dans le plan, le groupe fondamental de M est libre.

La démonstration suit les mémes lignes que celle de la proposition
. précédente. Si f:M — R® est une application générique spéciale, sa
restriction f | M — X est une submersion a fibres compactes et I'on peut
écrire f = aom,oun : M — X — & est une fibration localement triviale &
fibres connexes compactes, & une surface ouverte et o : F — R? une
immersion. Choississons un point base x, dans M — X en sorte que la
fibre F de 7 passant par x, soit contenue dans une boule de M. En vertu des
équations (I), il suffit de prendre x, assez voisin du pli. Soit y, = 7 (xo),
F = 7' (y,). On a encore la suite exacte:

i £

0 — 7y (F,xo) > 1y (M—2,xp) - my (F,yo) = 0
ce qui entraine
(1) i (F,y0) = ny (M =2, x0)/Im 1,

. Toute courbe fermée en x, dans M étant homotope a une courbe contenue
dans M — X, linclusion j: M — X — M induit un homomorphisme
surjectif j, 7, (M—2, xo) = n{ (M, x,), ce qui entraine

(2) my (M, xo) = my (M —2Z, x¢)/ker j,

Tt e

T TONTRRTA T T r DT s T AR  T

Ensuite, comme dans le cas de la proposition précédente, on voit que st une
courbe y fermée en x, dans M — X est homotope a zéro dans M, son
image n (y) est homotope a zéro dans &, ce qui signifie que ker j, < ker 7,
= im i,. D’autre part, comme F est contenu dans une boule de M, F est
homotope a zéro dans M, ce qui signifie que 1m 7, < ker j,. Donc im i,
= ker j,, et, en vertu de (1) et (2), n, (M, xy) = 7, (£, yy). Ce dernier
groupe étant libre, le théoréme II est établi.

B chi

R

s s s

4. Le théoréme suivant, tout en permettant de retrouver le théoréme II
et la proposition du §3 sans utiliser le lemme de Dehn-Papakyriakopoulos,
nous conduira a des résultats plus précis sur la structure des variétés M et
de leurs applications génériques spéciales f.

h

TaEorReME III. a) Soit M une variété close @ trois dimensions et f une
application générique spéciale de M dans R*. Le quotient de M par la relation
d’équivalence qui identifie les points d’une méme composante connexe des
fibres de f est une surface compacte A avec un bord correspondant au pli >
de f, et f = 00w out m est la projection de M sur A et o une immersion de A
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dans R*. De plus, M est le quotient d’un fibré en cercles localement trivial
M’ de base A par la relation d ‘équivalence qui identifie les points d’une
méme fibre du bord, la projection de M ' sur M étant n’, sa projection sur A
estp =rmomn, :

b) Réciproquement, étant donné une surface compacte A, un fibré en
cercles localement trivial M ' de base A et une immersion o de A dans R?,
le quotient de M ' par la relation d’équivalence qui identifie les points d’une
méme fibre du bord est une variété M sur laquelle existe une structure dif-
férentiable telle que, m étant la projection de M sur A, [’application o 0 1 de
M dans R* soit générique spéciale.

Notons que A est nécessairement orientable, car, parmi les surfaces
compactes, celles qui sont orientables et ont un bord, et celles-la seulement,
admettent des immersions dans R2.

Démonstration. a) En vertu du théoréme I, comme on a vu au début
du §3, I'image de M — X dans A4 est une surface ouverte &, munie de la
structure différentiable définie par la submersion f | (M — 2). D’autre part,
chaque point a de X étant a lui seul une composante connexe d’une fibre
de f, la rectriction de = & X est un homéomorphisme sur 4 — #. A Taide
de coordonnées adaptées a f en a, f est définie par les équations (I) du §1:
Yy, = X4, ¥, = X3 + x3. Le voisinage {x:f + x5+ xi < 32} de a est appliqué
sur le domaine {y% +y, <&y, >0}, 'arc x, = x3 = 0 de X venant sur
I’arc y, = 0 du bord de ce domaine. Cela montre que A4 est bien une surface
dont I'intérieur est 4 = % et dont le bord 4 — % est homéomorphe a X.
De plus, en prenant y,, ¥y, comme coordonnées locales au voisinage du
point 7 (@) du bord de A, on définit une structure différentiable sur 4 qui
prolonge celle de & et telle que « soit une immersion.

D’aprés le théoreme I, M — X est un fibré en cercles localement trivial
de base # = A.Lasurface A4 est orientable, puisqu’elle admet une immersion
o« dans R?. En enlevant de 4 le long de chaque courbe de son bord un étroit
ruban, on obtient une surface 4, < A4 difféomorphe & 4. Ce difféomorphisme
se reléve en un isomorphisme du sous-fibré p~' (4,) de M — X sur un
fibré M ' de base A, dont l'intérieur est isomorphe a M — X. Il est clair
qu’en réduisant a un point chaque fibre du bord de M’ on retrouve M.

On voit qu’on passe de M a M’ en faisant en quelque sorte éclater le
pli de f: chaque courbe I' de X est transformée en une surface qui est un
fibré en cercles de base I'. Si M est orientable, cette surface sera un tore,
mais si M n’est pas orientable, ce pourra aussi €tre une bouteille de Klein.
Ces surfaces forment le bord de M .
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b) Partant de A4, « et M ', on forme M et on a les projections 7, 7’ et
p =mnon’ de Msur A, de M ' sur M et de M ' sur A. A chaque courbe C
du bord de A4 correspond une surface p~ ' (C) du bord de M’ et une
courbe I’ = -1 (C) = ' (p~ ! (C)) dans M. Soit X la réunion des courbes
I'. La restriction de n’ & lintérieur de M’ est un homéomorphisme sur
M — X, qui définit une structure différentiable telle que = [ (M—X) soit
une submersion de M — X sur A4, de sorte que f/ = o 0 7 n’a pas de points
singuliers dans M — X.

Pour prolonger cette structure différentiable a toute la variét€ M,
considérons un point a de I'une des courbes I" et le point correspondant
7 (a) du bord de 4. On peut introduire dans 4 des coordonnées locales
¥y, ¥, nulles en ce point, telles que {|y{ | < 1,0 < y, < 1} définisse un
voisinage de 7 (a) dans 4, {| y, | < 1,y, = 0} étant I'image = (L) dans le
bord de A d’un arc L de I'. On peut identifier ce voisinage de = (a) au
produit L X [0, 1] de L par l'intervalle 0 < y, < 1. Comme le fibré M’
est localement trivial, I'image réciproque de ce voisinage dans M ' peut
étre représentée par W = L X [0,1[ X S*', et son image V = =’ (W)
est un voisinage de a dans M. Considérons alors I’application de la couronne
[0, I[ x §* sur le disque D* = {|z| <1} bordé par S'', définic en
posant z = ./ 'y, €, et application correspondante x de W sur L x D?
qui envoie (¥4, y,, €°) en (yl,z=\/;;ei0). Toute fibre y; x 0 x St de
W dans le bord de M’ étant réduite a un point (y,, 0), tandis que u est
injective ailleurs, on voit qu’il existe un homéomorphisme % de L x D?
sur V tel que n'l W = ho pu. La structure différentiable de L x D? est
alors transportée par 4 dans V, ce qui fournit le prolongement cherché.
Prenons dans V' les coordonnées locales x{, x,, x5 définies & "aide de / par
X1 =Y, X = Rez, x5 =1Imz et prenons au voisinage de f (a)
= o 0 7 (a) dans R? les coordonnées locales y,, y, définies & I'aide de «.
Alors f est définie au voisinage de a par y, = x;, ¥, = x5 + x3. Donc
chaque point de X est un point singulier du type (I) et f est bien une appli-
cation générique spéciale de M dans R? avec le pli 2. c.q.f.d.

On déduit de 1a que le groupe fondamental de M est isomorphe & celui
de A4, qui est comme on sait le groupe libre de rang r = 2¢ + b — 1, ou
g est le genre de 4 et b le nombre des courbes de son bord. Mais nous allons
obtenir un résultat plus précis.

Rappelons que la somme connexe de deux variétés closes M, et M, est
une variété notée M, # M, qu’on obtient en enlevant dans chacune d’elles
Pintérieur d’une boule, ce qui fournit deux variétés bordées chacune par
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une sphére, qu’on réunit ensuite en identifiant ces deux spheéres (I'identifica-
tion devant tenir compte des orientations dans le cas de variétés orientées).
Les variétés et les boules étant supposées différentiables, le choix de ces
derniéres n’importe pas, et 'opération # est associative et commutative.
La somme connexe M, # M, est ainsi une variété qui peut étre partagée
par une sphére S en deux variétés qui sont changées en M, et M, lorsqu’on
adjoint a chacune une boule de bord S.

Désignons par V, la somme connexe de r copies de S 2 x S1, V, se
réduisant a2 S *et V; 4 .82 x S, par V| la variété non orientable quotient
de S? x S par le groupe d’ordre 2 engendré par la transformation
résultant d’une symétrie de S ? par rapport A un plan diamétral combinée
avec une symétriec de S par rapport a son centre, et par ¥, la somme
connexe de V' { etder — 1 copiesde S 2 x S 1.

THEOREME 1V. Les variétés closes a 3 dimensions qui admettent des
applications génériques spéciales dans R* sont les variétés V, (r=0,1, 2, ...)
et V,(r=1,2,..). 1l n’y en a pas d’autres.

Il est clair que V, est orientable, tandis que V| ne I’est pas. Leurs groupes
fondamentaux n, (V,) et n, (V) sont libres de rang r. Ce sont les seules
variétés closes a 3 dimensions connues jouissant de cette propriété. Si la
conjecture de Poincaré était établie, on serait assuré qu’il n’y en a pas
d’autres. (cf. Milnor [4]).

Pour la démonstration, partons du théoréme III, d’aprés lequel toute
variété close a 3 dimensions M admettant une application générique spéciale
fdans R? est associée & un fibré en cercles M ' dont la base est une surface 4
et le groupe fondamental 7, (M) = n, (4) estlibrederangr = g + b — 1,
g étant le genre de 4 et b le nombre des courbes du bord de 4, d’ailleurs
égal au nombre de courbes du pli de f. On sait d’autre part que le fibré M’
est orientable si ses fibres peuvent €tre orientées d’une maniére cohérente
et dans ce cas M est trivial: M’ = A4 x S 1,

Si M est simplement connexe, r = g = 0et b = 1, 4 est un disque et
le fibré M’ = A x S est trivial. Pour voir que M = S, représentons
S 3 par I’espace euclidien R> complété avec un point & 1’0o, et 4 par un
un disque plan bordé par un cercle C. Par une inversion qui rejette un
point de C & 1’co, on peut se ramener au cas ou C est une droite et 4 un
demi-plan limité par C. L’application n’: 4 X S' - §? qui envoie
(a,e9), ot aec A et e®eS !, sur le point x du cercle d’axe C passant par a
tel que le demi-plan limité par C contenant x fasse un angle 6 avec 4,
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induit un homéomorphisme de 4 x §* sur R®> — C et projette le fibré
C x S 'sur C, de sorte que M = S >,

Remarquons que si L est un arc joignant deux points de C dans A4 et
délimitant avec C un domaine D, n~ ' (L) est une sphére qui borde la
boule 7~ ! (D) engendrée par la révolution de D autour de C.

Sir = 1,alorsg = Oetd = 2, A est une couronne, produit 4 = C X [
d’un cercle C par un segment I. Soit M ' un fibré en cercles de base A4 et
p: M’ — A saprojection. Pour toutxe I, p~ ! (C x x) est un fibré en cercles
de base C, c’est donc un tore T ou une bouteille de Klein K, de sorte que
M' =TxTouKxI Pourtout yeC, p~! (y x I) est un fibré en cercles
de base I, c’est donc une couronne S * x I et son image 7’ (p”1 (y x I))
dans M est une sphére S 2, puisque chacun des cercles bordant cette couronne
y est réduit & un point. Par suite M =z’ (p~ ' (C x 1 )) est un fibré en sphéres
de base C. Danslecasou M ' = T X I, M est orientable, ce fibré en spheres
est trivial et M = C X §2 =8 x S§?=V,. Mais si M' = K X I,
M ' et M ne sont pas orientables, le revétement orientable & deux feuillets
de K étant T, celui de K X lestT x Ietceluide M est V,, de sorte que M
est le quotient non orientable V' | de V.

Pour traiter le cas r > 1, procédant par récurrence, nous admettons que
les seules variétés M associées a des fibrés en cercles dont la base est une
surface 4, avec un groupe fondamental de rang' r — 1 sont V,_, et V ,_,.
Or on sait que toute surface 4 dont le groupe fondrmental est de rang r
peut étre obtenue a partir d’'un disque en lui attachant successivement r
anses, donc a partir d’une surface 4, en lui attachant une anse. Attacher
une anse a la surface 4, c’est lui adjoindre un quadrilatére B en identifiant
~ deux cotés opposés de B a deux arcs disjoints du bord 0 4, de 4,, de
maniére & obtenir une surface 4 = 4, U B orientable comme A4, I’est
supposé€e, 'intersection 4, N B se réduisant aux deux arcs de l’attache-
ment. Si ces deux arcs appartiennent a la méme courbe de 0 4,, 4 a le
- méme genre que A, et ¢ A contient une courbe de plus que 0 4,, tandis
- que s’ils appartiennent a deux courbes distinctes de 0 4, le genre de A4 est
~ supérieur d’une unité a celui de 4, et le nombre des courbes de § 4 inférieur
- d’une unité au nombre des courbes de d 4,. Dans 'un et 'autre cas, Uentier
- r =g+ b — 1 est augmenté d’une unité et passe de »r — 1 & r en allant de
Ay a A. (voir fig. 1).

Tout fibré en cercles M ' de base A contient les deux sous-fibrés M ,
- =p° ' (4,) de base A, et B = p~ ! (B) de base B. Inversément, en partant
. de fibrés en cercles M ¢ de base 4, et B’ de base B, on peut obtenir un fibré
- en cercles M ' de base 4 en identifiant les fibres correspondant 4 un méme
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point des arcs d’attachement. Mais il faut tenir compte, dans cette identifi-
cation, de I’orientation des fibres. Si M , est orientable, ses fibres peuvent
€tre orientées d’une maniére cohérente, de méme que celles de B’, et I'on
peut supposer que ces orientations coincident au dessus de I'un des arcs
d’attachement, selon qu’alors elles coincident ou non sur ’autre arc d’atta-
chement, M’ sera orientable ou non. Ainsi, a chaque fibré en cercles
orientable M , de base A, correspondent deux fibres en cercles M ' de base
A, T'un orientable et I’autre non orientable. Si M, n’est pas orientable,
M ' ne le sera naturellement pas non plus.

Fig. 1

A ces fibrés correspondent les variétés closes M et M, qui s’en déduisent
en réduisant & un point chaque fibre du bord. Par ’hypothése de récurrence,
My, =V,_,ouV,_,, selon quelle est orientable ou non. Pour établir le
théoréme IV, il suffira donc de montrer que, si- My = V,._{, M est la
somme connexe de M et de V ou de V| selon que M est orientable ou non,
et siMy, =V ,_,, M est la somme connexe de M, et de V.
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A cet effet, nous montrerons d’abord que, dans tous les cas, M peut
s’obtenir & partir de M, et de S ? x [ en enlevant de M, les intérieurs de
deux boules et en identifiant les deux sphéres bordant la variété restante
avec celles bordant S > x I. Désignons par 7, la projection de M, sur 4,
7 étant toujours celle de M sur A, et par L, et L, les deux arcs d’attache-
ment, qui sont en méme temps deux codtés opposés du quadrilatere B
(fig.1).

Les sphéres n~ % (L,) et n~ ' (L,) bordent n~ ' (4,), ainsi que
n"1(B). Comme B =S*xB=S'"x1Ix1 on voit que n~* (B)
= § 2 x I, car en réduisant & un point les fibres de S ! X I correspondant
aux extrémités de I on obtient une sphére S 2. Il suffit alors de montrer que
n~1(A4,) est homéomorphe & une variété qu'on déduit de M, = ny ! (4,)
en enlevant les intérieurs de deux boules.

Pour cela, joignons les extrémités de L, et celles de L, par deux arcs
intérieurs a A4,, délimitant avec L et L, deux disques disjoints D, et D,,
et soit 4, la surface obtenue & partir de 4, en enlevant les intérieurs de ces
disques (fig. 2). Alors 771 (4,,) se déduit de my ! (4,) en enlevant les inté-
rieurs des deux boules ng* (D) et ng * (D,), d’autre part, 7~ (4,,) est
homéomorphe & ™" (4,), car il existe un homéomorphisme de 4, sur 4,
se réduisant a l'identité hors d’un voisinage de D; et D, qui s’étend
en un homéomorphisme de 77! (4,,) sur 7~ (4,).

Fig. 2

Si M, est orientable, la variété M est orientable ou non selon que les
orientations de 7~ ' (L) et =1 (L,) induites par une orientation de M,
sont aussi induites par une méme orientation de 7~ (B) ou non, nous allons
montrer que M = M, # V,; dans le premier cas et M = M, # V| dans
- le second cas. De plus, nous verrons que si M o N’est pas orientable, ces
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deux sommes connexes sont identiques, M = M, #V, = M, #V ;.
Comme M, = V,_, ou V ,_; en vertu de I’hypothése de récurrence, cela
achévera la démonstration.

Désignons par B; = ny ' (D,) et B, = my ' (D,) les deux boules dont
I'intérieur doit étre enlevé de M, et les spheres qui les bordent identifiées a
celles qui bordent S * X [ pour former M. Joignons un point du bord de
B, a un point du bord de B, par un arc L intérieur a M. Paramétrons L
sur lintervalle [0, 1] et 7 sur [1,2]. On peut former un voisinage tubulaire
de L dans M, représenté par le produit D* X L = D, x [0, 1] de L avec
un disque D?, de maniére que D? X 1 soit contenu dans le bord de B; et
D? x 0 dans le bord de B,. La réunion de B, et B, avec ce voisinage tubu-
laire est une boule topologique, en forme d’haltére, bordée par une sphére
S. C’est I'intérieur de cet haltére que nous enlevons de M, pour obtenir
I’'une des variétés bordées par S dans M. L’autre partie de M bordée par S
est la réunion du voisinage tubulaire D?* % [0,1] avec n~'(B) =
S 2 x [1,2], o0 D* x 1et D? x 0sont identifiés avec des disques contenus
respectivement dans les bords S % x 1 et S? x 2 de n~ ! (B). Considérons
D?* comme inclus dans S 2, le voisinage tubulaire est alors inclus dans
S 2 x [0, 1] et les identifications ci-dessus se prolongent en identifications
de S§% x 1 et §? x 0 avec les sphéres bordant n~ ' (B), les extrémités
1, 0 de [0, 1] étant identifiées avec celles 1, 2 de [1, 2] la réunion de [0, 1]

t [1, 2] forme un cercle S ! et celle de S % x [0, 1] avec S ? x [1,2] un
fibré en sphéres de base S . Le second morceau de M bordé par S se déduit
de ce fibré en sphéres en enlevant 'intérieur de la boule (S *— D?) x [0, 1].
Ce fibré en sphéres de base S ! ne peut étre que S 2 x S ! ou son quotient
non orientable. Si M, est orientable, ce sera le premier ou le second selon
que M est orientable ou non. Si M, n’est pas orientable, M ne I’est pas non
plus, mais ce fibré en sphéres de base S ! pourra étre orientable ou non
selon le choix de I’arc L dont on a pris un voisinage tubulaire, car on peut
trouver deux chemins L, et L, joignant les m€mes points dans M, tels que
les orientations de leurs voisinages tubulaires concordent a I'une des extré-
mités et pas a 'autre. La démonstration du théoréme IV est ainsi achevée.

Disons que deux applications génériques spéciales f et f; de M dans
R? appartiennent & la méme classe, si les fibrés en cercles qui leur sont
associés selon le théoréme Illa sont isomorphes. Si @ et m; sont les pro-
jections correspondantes de M sur les surfaces 4 et 4, bases de ces fibrés,
cela signifie qu’il existe des difféomorphismes /; de A sur 4, et # de M sur
Mtelsque n;oh ! = homn Sialors f=aqometf; =oa;,0mn;, ona
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fi = a,0h,; 0moh, et comme &, O /; est une immersion de 4 dans R?,
on voit que toutes les applications génériques de la méme classe que f
seront données par I’expression « 0 7 0 A, oll « est une immersion arbitraire
de 4 dans R? et h un automorphisme arbitraire de M.

Si M est orientable, M = V,, le fibré en cercles M ' étant trivial, a
chaque surface A dont le groupe fondamental est de rang r correspond une
et une seule classe. 4 est déterminée, & un difféomorphisme prés, par le
nombre b des courbes de son bord, qui est aussi le nombre des courbes du
pli des applications de cette classe, et, puisque r = 2 g + b — 1, doit
satisfaire aux conditions

b=r+1(mod 2),1 =b=r +1 (1)
D’ou:

THEOREME V. Les applications génériques spéciales de V, dans R* se
répartissent en [5] + 1 classes, correspondant aux entiers b satisfaisant aux
conditions (1). Toutes les applications d’une méme classe sont données par
[’expression « onoh, o n:V,—> A est la projection associée a [’une
d’entre elles, h un automorphisme arbitraire de V, et o une immersion arbi-
traire de A dans R*.

Si M est non orientable, M = V., supposons donné un fibré en cercle
- M’ de base 4 et la projection associée © : M — A définissant une classe
- d’applications génériques spéciales de M dans R?. Le revétement orientable

4 deux feuillets M de M est associé & un sous-groupe d’indice 2 de 7, (M)
auquel correspond par I'isomorphisme n, (M) ~ n, (4) un sous-groupe

d’indice 2 de 7, (A) et un revétement a 2 feuillets 4 de A4, et il y a une pro-

A A A

jection 7 : M — A telle que py et p, désignant les projections de revéte-

A

. ment de A sur 4 et de M sur M, p,om = mo p,. Le fibré en cercles M’

A A

associé & M et 7 est le revétement orientable a 2 feuillets de M ', 1l est

A

dtrivial;, M7 = A X S’ et la transformation de revé€tement, qui renverse
Porientation, résulte (2 une isotopie prés) de la transformation de revéte-
A

ment de A4 combinée avec la symétrie de S ' par rapport & un diamétre.

A
Inversément, supposons donné un revétement a 2 feuillets 4 de la surface

compacte A, orientable avec bord, 7, (4) étant de rang r. Le quotient de

M ' A x S par le groupe d’ordre 2 engendré par la transformation
définie ci-dessus est un fibré en cercles non orientable M ’, la projection de
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M ' sur A induit une projection 7 de la variété M = V| sur A4 qui définit
une classe d’applications génériques spéciales de M. Ainsi, les classes de ces
applications correspondent aux revétements a deux feuillets de A, qui
eux-mémes correspondent aux sous-groupes d’indice 2 de m (A4).

Un sous-groupe d’indice 2 est toujours invariant et contient le sous-
groupe des commutateurs, il est donc déterminé par un sous-groupe d’indice
2 du groupe d’homologie H, (A), et il suffit de considérer, 'homologie
(mod 2), de sorte que H, (A4) est le produit direct de r groupes d’ordre 2.
Ce sous-groupe d’indice 2 est le noyau d’'un homomorphisme y de H, (A4)
sur le groupe multiplicatif (I, —1) qu’on appellera le caractere du revéte-
ment. Pour toute courbe fermée C dans A4, désignons par y (C) 'image + 1
de sa classe d’homologie. Si Cy, C,, ..., C, sont les courbes du bord de A4,
comme leur somme est homologue a zéro, le nombre de celles pour lesquelles
v (C,) = — 1 doit étre pair. Soit 2¢ ce nombre. Si le genre g de 4 est nul.
c’est-a-dire si b = r + 1, alors ¢ # 0 sinon, comme les C; engendrent
H, (A4), y ne prendrait jamais la valeur — 1. On a donc:

1<cég sig =0 et Oécég sig>0 (2

Deux sous-groupes d’indice 2 de H; (4) qui sont conjugués par un
automorphisme de 4 correspondent a la méme classe d’applications géné-
riques spéciales de M dans R>. Nous dirons alors que les caractéres cor-
respondants sont équivalents. 11 est clair que le nombre ¢ aura la méme valeur
pour deux caractéres équivalents. Nous allons montrer que réciproquement,
si ¢ a la méme valeur, les deux caracteéres sont équivalents. Kemarquons
encore que les courbes C; de dA4 pour lesquelles y (C;) = — 1 corres-
pondent aux surfaces non orientables (bouteilles de Klein) qui bordent
M ' et aux courbes du pli de = qui n’ont pas de voisinage orientable.

THEOREME VI. A chaque couple d’entiers b, c¢ satisfaisant aux conditions
(1) et (2) correspond une classe d’applications génériques spéciales de
V" dans R?, et inversement ; b est le nombre des courbes du pli des applications
de la classe et 2¢ le nombre de ces courbes qui n’ont pas de voisinage orientable.

Soient C; (i = 1, 2, ..., b) les courbes du bord de la surface orientable A.
D’aprés ce qui précede, pour établir ce théoréme, 1l suffit de montrer qu’a
chaque entier ¢ satisfaisant & (2) correspondent des caractéres y qui sont
tous équivalents. Comme toute permutation des C; peut étre induite par un
automorphisme de A4, on peut se borner a considérer les y tels que
¥y (C)= —1pour 1 <i<2cety(C) =1 pouri>2c.
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Supposons d’abord ¢ = 0. Alors g > 0 et 'on peut trouver sur 4 une
courbe fermée simple I'non homologue & une combinaison des C;. En posant
pour toute courbe fermée C transversale a I', y (C) = 1 ou — 1 selon que
le nombre des points d’intersection de C avec I' est pair ou impair, on
définit un caractére y satisfaisant & la condition ¢ = 0. Il résulte des pro-
priétés topologiques bien connues des surfaces que tout autre caractere y’
satisfaisant a4 cette méme condition peut €tre défini de la méme manicre a
partir d’'une autre courbe I'" analogue a I', et comme I peut &tre changée
en I' par un automorphisme de 4, y et x’ sont équivalents. On peut construire
le révetement & 2 feuillets associé & y en prenant deux exemplaires de la
surface 4 coupée le long de I' et en les recollant de maniére a former une
ligne de croisement au-dessus de I'.

Supposons maintenant ¢ > 0. Soient L; (i = 1, 2, ..., ¢) ¢ arcs simples
deux-a-deux disjoints, L; joignant C,;_ & C,; a I'intérieur de 4. En posant,
pour toute courbe fermée C transversale a L =L, + L, + ... + L,
¥ (C) = 1 ou — 1 selon que le nombre des points d’intersection de C avec
L est pair ou impair, on définit un caractére satisfaisant aux conditions
requises. C’est le seul pour lequel y (C) = 1 pour toute courbe fermée ne
coupant pas L, et si g = 0 il n’y en a pas d’autre. Mais si g > 0, on voit,

comme dans le cas ¢ = 0, que tout autre caractére y’ peut étre défini 2
l'aide d’une courbe fermée simple I' non homologue a une combinaison
‘des C; et ne coupant pas les L,, en posant, pour toute courbe fermée C
transversale a I' + L, ' (C) = 1 ou — 1 selon que le nombre de points
d’intersection de C avec I' + L est pair ou impair. On peut ensuite trouver
un arc L ; ayant les mémes extrémités que L,, ne coupant pas les autres
carcs L, tel que L { — L soit homologue a I', et I’on voit que y' peut aussi
~étre défini par la condition que, pour toute courbe fermée C transversale a
fL’ =L, +L,+..+L_ ¥ (C)=1o0u —1 selon que le nombre des
points d’intersection de C avec L ' est pair ou impair. Comme L ’ peut étre
changé en L par un automorphisme de 4, y’ est équivalent & y. Remarquons
encore pour terminer que le revétement & 2 feuillets associé a ¥ peut €tre
construit en prenant deux exemplaires de la surface 4 coupée le long des L;
et en les recollant de maniére & former une ligne de croisement au-dessus
de chacun des L.

REMARQUES.

Dans [5], F. Raymond a classé les actions de S ! sur les variétés a 3
dimensions. Il se trouve que, dans le cas des variétés orientables V., les
classes d’applications génériques spéciales sont en bijection avec les classes
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d’actions de S ' pour lesquelles il y a des points fixes et pas d’orbites
singuliéres. Effectivement, a ’aide du théoréme 11, il est facile de construire
une action correspondante de S ! sur V..

D’aprés les théoréme V et VI seules quelques variétés tres particuliéres
admettent des applications génériques sans points singuliers du type (II)
et (IIT) dans le plan.

Il n’en est plus de méme lorsqu’on considére les applications génériques
pouvant présenter des points singuliers-du type (I) et (II).

En effet, des travaux de H. Levine [3], il résulte que toute variété close a
trois dimensions admet une application générique dans le plan dont le pli
comporte deux composantes connexes, 1’'une formée de points singuliers du
type (I) et autre formée de points singuliers du type (II).

Citons pour terminer le travail de diplome de M. Bina-Motlagh [1] ou
figurent de nombreux exemples d’applications génériques de S * dans le

plan.
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