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We shall employ a special case of the function (4.1) due to Jacobi.
Let p e f + 1 and ß be a primitive e-th root of unity. In (4.1) take
oc ßn («-integer). We know ([3] page 395) that if e does not divide n then

(4.2) F{ßn)F(ß-n)

and if we put
{ßn) F

(4.3) R(n, m)^v > v ' 'p'

then
e— 1 e— 1

(4.4) R(n,m) £ ßnh £ ß~(m+n)k (h, k).

From (4.2) and (4.3) it follows that if e does not divide m, n and m + n then

(4.5) R («, m) R( — n, — m) p

and from (4.4) it follows that R( — n, — m) is got from R (n, m) by replacing

ß by ß_1. Let now e 4 and ß yj — 1 ; using (4.4) we get

R( 1, 1) (A-B-C-D + 2E) + i(2D-2B) in casep 1 (mod 8)

R{1,1) (L-M-R-N+2S) + i(2M-2R) incase/? 5 (mod 8).

5. Proof completed

If/? 1 (mod 4) thenp splits in Z [/] as/? 7i n where n is prime in Z [/].

1 : p 1 (mod 8).

E zWx(» + i) E x(")x(ni) E + E + E + E
oH u t»eAo, ^-2» ^3- ^0 ^1 ^2 ^3

1 [T + Di - C - Bi] + i [£> + -Ei]
- 1 [C + Ei - C - Ei] -- Di]

[A—B — C—D + 2 E]+ [2D - 2B]
(5.1) £(1,1) (-2/+8(1,2) -1) -2 -B]
where R(1,1) - 1 (mod 2 (1 +i))f -IB - 2 by (3.5))

and E X2(v)x2(v + 1) (A-D + C-B) - (D-B+E -E)
Mv + (C -E +C

A + 3C—D —2E-1,
by (3.4)
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Therefore we have

S [x(-4a)R(l, 1) + x(-1)+ x2( — 4a)( — 1)]

We put 7i- R(1,1), then jr + 1 (mod 2 (1+0) •

Therefore S x(-4a)n-% - 4a) n - y2 - 4a)]

Let g be the primitive root mod p which we have already fixed in § 2. We

now have two possibilities :

(i) (-") ii.e.(C-\ y (d for all
\ti/4 \nj4

(ii) f?) - ii.e. (-) y(d) for all d.

*\Let x (d) — I where or it.w*
We shall show that 71* n. We have

p-l
71 — Z X(v) X(v +1) 1)(v + l)lip 1} m°d 7i*

0

— \y*{p 1}(1 +i(p — l)v + +vl(p 1})] mod 71*

In the last sum each term is divisible by p % ïî, because we know that
vk so 0 mod p unless p — \jk. Hence the right hand side of the above is

V

congruent to zero mod n*. Hence n 0 mod 7r* giving n 7r*.

Therefore

s=_i'^V—) 1» -
p J \ 71 /4 \ P / \ 71/4 \ P / \ 71 J4

- 4a\3 f — 4a\3
_

/u\3 /a\3
_71 — 71 1 — I - I 71 — 1- } 7C — 1

71 J 4 y 71 y 4 y7Ty 4 \^7Îy 4

ö\ /a\
7C — I - J 7C — 1

71/4 \7i:y4
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*•' * (;) - (91 " (S

« ©: • ©.

(iii) —- 1 since - 4 (1 + *)4 — a fourth power.
V 71 A V ^ A

This gives the required value of S.

Case 2 : p : 5 (mod 8). In this case as before

X X (V) X (v + 1) [N - L + R + M - 25 ] + i [2R - 2M ]

-£(1,1) (see [3])

and X Z2Wf(Hl) 3N + L -25 - R - M - 1,

using (3.4)', (3.5)', (3.6)', and therefore

S (-Z?)[-z(-4a)K(l,l) -z(-4a)K(M) - l.*2(-4a)]

Here R (I 1) (L~M~ R-N+2S)+ i(2M~2R)

(-2/+ 8 (1,0)+1) + i(2M-2R) (see [3])

We put R (1? 1) 7i, then n ^ 1 (mod (2 + 2/)) and we get

s z(-4fl)7r - x(-4a)7t - £2(-4a)]
VP/

and as before this

as required. This completes the proof of the Theorem.
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