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THE NUMBER OF SOLUTIONS OF THE CONGRUENCE

y2 x4 - a (mod p)

by Surjit Singh and A. R. Rajwade

1. Introduction

The object of this paper is to prove the following theorem.

Theorem. Let a be an integer not divisible by a given prime p. Then the

number of solutions of the congruence y2 x4 — a (mod p) is

p — 1 if p 3 (mod 4).

p — (a/7i)4 7Ï - (a/7Ë)47i - 1 if p m. 1 (mod 4)

where (-77)4 is the biquadratic residue symbol andp n n is the factorization
ofp in the ring Z [z] of the Gaussian integers, n and n being both normalized

1 (mod (2 (1 + /))).
Morlaye shows (see [4] Proposition 1) that if N is the number of solutions

of the congruence y2 =5 x3 — ax (mod p) and N ' the number of solution
of the congruence y2 x4 - a (mod p) then N N ' + 1. This is a short

proposition for the case p 1 (4) and so our theorem gets the number
of solutions of

y2 x3 — ax (mod p)

by yet another elementary method. This latter equation: y2 x3 — ax is

the elliptic curve with complex multiplication by J - 1. (See also a remark
by Swinnerton-Dyer in [1]). A proof of the latter result is also given in [2]
and [5]. These proofs, however, are not elementary.

We note here that both N and Nr can be computed trivially for the

case p 3 (4).

To get N we proceed as follows:

Case 1. a is a quadratic non-residue mod p. Then corresponding to
y 0, there exist only one x viz x 0 satisfying

y2 x (x2 — a) (mod p)
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since x2: — a 0 (p) is not solvable. This gives one solution (0, 0). Let now

p — 1

x ±1, ±2,..., ±—-—, be a complete non-zero residue system modp.

Of x3 - ax and ('-x)3 - a —x) - (x3 -ax) one is a quadratic residue
and the other a non-residue since - 1 is a non-residue, p being 3 (4).

p — 1

Hence as x takes the values + 1, + 2, + x3 — ax becomes a_ _ 2

p — 1

quadratic residue ——— times (perhaps with repetitions) and a non-residue

P — 1

—-— times. Each time it is a quadratic residue, we get 2 solutions. Hence

there exist p — 1 solutions, and together with (0, 0) gives p solutions as

required.

Case 2. a is a quadratic residue mod p, that is there exists an x0 such that
x02 sis a (mod p). Then corresponding to y 0 there exist 3 solutions,

p — 1

(0, 0), (x0, 0), (-x0, 0). Let now x + 1, ± 2, +—-—, but ^ ± x0

(or 0) (all together p — 3 values). As above x3 - ax becomes a quadratic
P — 3

residue exactly ——— times and so there exists p — 3 solutions, which

together with (0, 0), (±x0, 0) gives p solutions as required. To get N ' we

note that in this case the biquadratic residues of p are the same as quadratic
residues. Hence the congruence can be written as

y2 x2 — a (mod p)

or (x + y) (x — y) a (mod p)

or u.v a (mod p)

which has p — 1 solutions as required. For the case px\ (mod 4) we
shall use results from cyclotomy for the factorization p — 1 — 4/.

2. The congruence y2 (x4 — a) (mod p)

Let - J be the Legendre symbol. The number of solutions of y2 ==* x4

x
1 +

4x —a
\Pj

- a (mod p) equals £
To get S we define first the biquadratic character x as follows:

p + Z p + s.
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