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THE NUMBER OF SOLUTIONS OF THE CONGRUENCE
y? = x* — a(mod p)

by Surjit SINGH and A. R. RAJWADE

1. INTRODUCTION

The object of this paper is to proven the following theorem.

THEOREM. Let a be an integer not divisible by a given prime p. Then the

- number of solutions of the congruence y* == x* — a (mod p) is

p—1if p=3(mod 4).
|p — (a/m)s @ —(a/t)y,n— 1 if p = 1(mod 4).

where (=), is the biquadratic residue symbol and p = m T is the factorization
of p in the ring Z [i] of the Gaussian integers, n and & being both normalized
= 1 (mod (2 (1+1))).

Morlaye shows (see [4] Proposition 1) that if N is the number of solutions
of the congruence y* = x> — ax (mod p) and N’ the number of solution
of the congruence y* = x* — a (mod p) then N = N’ + 1. This is a short
proposition for the case p = 1(4) and so our theorem gets the number
of solutions of

y? = x> — ax(mod p)

3

by yet another elementary method. This latter equation: y?> = x*> — ax is

the elliptic curve with complex multiplication by / — 1. (See also a remark

by Swinnerton-Dyer in [1]). A proof of the latter result is also given in [2]
and [5]. These proofs, however, are not elementary.

We note here that both N and N’ can be computed trivially for the
case p == 3 (4).

To get N we proceed as follows:

Case 1. a is a quadratic non-residue mod p. Then corresponding to
y = 0, there exist only one x viz x = 0 satisfying

y? = x(x* —a) (mod p)
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since x> — a==0(p) is not solvable. This gives one solution (0, 0). Let now
—1

x = +1, +£2,..., + {7_[_ , be a complete non-zero residue system mod p.

Of x* — ax and (=x)* — a(—x) = — (x*—ax) one is a quadratic residue

and the other a non-residue since — 1 is a non-residue, p being = 3 (4).

‘ -1
Hence as x takes the values + 1, + 2, ..., + 32— x> — ax becomes a

quadratic residue P times (perhaps with repetitions) and a non-residue

p—1

times. Each time it is a quadratic residue, we get 2 solutions. Hence

there exist p — 1 solutions, and together with (0, 0) gives p solutions as
required.

Case 2. a is a quadratic residue mod p, that is there exists an x,, such that
> = g (mod p). Then corresponding to y = 0 there exist 3 solutions,

—1
(0,0), (x4,0), (—x4,0). Letnowx = + 1, +2,..., + £—2~, but # + x,

Xo

(or 0) (all together p — 3 values). As above x> — ax becomes a quadratic

residue exactly times and so there exists p — 3 solutions, which

together with (0, 0), ( £+x,, 0) gives p solutions as required. To get N’ we
note that in this case the biquadratic residues of p are the same as quadratic
residues. Hence the congruence can be written as
y* = x* —a(mod p)

or (x+y)(x—y) = a(mod p)

or u.v = a(mod p)

which has p — 1 solutions as required. For the case p == 1 (mod 4) we
shall use results from cyclotomy for the factorization p — 1 = 4 f.

2. THE CONGRUENCE y? = (x* — a) (mod p)

t
Let <> be the Legendre symbol. The number of solutions of y* = x*
pP

— a (mod p) equals ) [1 + (x ;a)] =p+ ) <x_p—_a> =p + S.

X X

To get S we define first the biquadratic character y as follows:
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