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THE NUMBER OF SOLUTIONS OF THE CONGRUENCE
y? = x* — a(mod p)

by Surjit SINGH and A. R. RAJWADE

1. INTRODUCTION

The object of this paper is to proven the following theorem.

THEOREM. Let a be an integer not divisible by a given prime p. Then the

- number of solutions of the congruence y* == x* — a (mod p) is

p—1if p=3(mod 4).
|p — (a/m)s @ —(a/t)y,n— 1 if p = 1(mod 4).

where (=), is the biquadratic residue symbol and p = m T is the factorization
of p in the ring Z [i] of the Gaussian integers, n and & being both normalized
= 1 (mod (2 (1+1))).

Morlaye shows (see [4] Proposition 1) that if N is the number of solutions
of the congruence y* = x> — ax (mod p) and N’ the number of solution
of the congruence y* = x* — a (mod p) then N = N’ + 1. This is a short
proposition for the case p = 1(4) and so our theorem gets the number
of solutions of

y? = x> — ax(mod p)

3

by yet another elementary method. This latter equation: y?> = x*> — ax is

the elliptic curve with complex multiplication by / — 1. (See also a remark

by Swinnerton-Dyer in [1]). A proof of the latter result is also given in [2]
and [5]. These proofs, however, are not elementary.

We note here that both N and N’ can be computed trivially for the
case p == 3 (4).

To get N we proceed as follows:

Case 1. a is a quadratic non-residue mod p. Then corresponding to
y = 0, there exist only one x viz x = 0 satisfying

y? = x(x* —a) (mod p)




— 266 —

since x> — a==0(p) is not solvable. This gives one solution (0, 0). Let now
—1

x = +1, +£2,..., + {7_[_ , be a complete non-zero residue system mod p.

Of x* — ax and (=x)* — a(—x) = — (x*—ax) one is a quadratic residue

and the other a non-residue since — 1 is a non-residue, p being = 3 (4).

‘ -1
Hence as x takes the values + 1, + 2, ..., + 32— x> — ax becomes a

quadratic residue P times (perhaps with repetitions) and a non-residue

p—1

times. Each time it is a quadratic residue, we get 2 solutions. Hence

there exist p — 1 solutions, and together with (0, 0) gives p solutions as
required.

Case 2. a is a quadratic residue mod p, that is there exists an x,, such that
> = g (mod p). Then corresponding to y = 0 there exist 3 solutions,

—1
(0,0), (x4,0), (—x4,0). Letnowx = + 1, +2,..., + £—2~, but # + x,

Xo

(or 0) (all together p — 3 values). As above x> — ax becomes a quadratic

residue exactly times and so there exists p — 3 solutions, which

together with (0, 0), ( £+x,, 0) gives p solutions as required. To get N’ we
note that in this case the biquadratic residues of p are the same as quadratic
residues. Hence the congruence can be written as
y* = x* —a(mod p)

or (x+y)(x—y) = a(mod p)

or u.v = a(mod p)

which has p — 1 solutions as required. For the case p == 1 (mod 4) we
shall use results from cyclotomy for the factorization p — 1 = 4 f.

2. THE CONGRUENCE y? = (x* — a) (mod p)

t
Let <> be the Legendre symbol. The number of solutions of y* = x*
pP

— a (mod p) equals ) [1 + (x ;a)] =p+ ) <x_p—_a> =p + S.

X X

To get S we define first the biquadratic character y as follows:



'~ since ¥° (m) =

i
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Let g be a primitive root mod p. Then for any integer m (#0) there
exists a positive integer v such that m = g”(p). We put y (m) = (i)" where

I = \/ — 1 and put y (0) = 0. This defines y. We now have

8 = Z [T+20) +x0) + W] <y—;—?-)

Setting y =

()

ZY(Y)( >+Zy (y)< >+ZX (y< pa>

~— az we get:

z+1
[Z /(—a)/(7)( >+ Y i (- a)‘ﬁ(Z)( ; >

allz all z

+1
+ % /(—a)/(Z)( )} :

¥ (m) for all integers m.

Now we look at the sum

This equals

all z

Z/(Z)<Z;1>

> x(2) - 2. x(2).
z +1 = square z +1 = not square
But
0 = > 2@+ > 1@+ (=1,
‘ z +1 = square z +1 # square
i Therefore
1 ) 1@ =3 ) x@-1D) =1 % yu+)yu-1)
z +1 = square not zero us+o uF o
=3[ 2 xw+D -1 - x(-D].
all u
Now putu = 2v + 1.
- Therefore 1 > 22 =3[x@ Y x@x@+1) — x(=1].
z +1 = square not zero all v

allv

1
Hencer({?) <i}+~) =24 Y r@x@w+1).

Similarly for y* and 7 and therefore we get

()

[x(=4a) Y x@)x@+1) + 7(—4a) Z 2@ 7 +1)

allv allv

+x*(=4a) Y @) @+1D].

all v
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3. Cyc OTOMY FOR p =1 + 4 f.

Let g be a primitive root mod p which we have already fixed in § 2.
Divide the non-zero residues mod p into four classes 4,, 4,, A,, A3 by
putting m == g” in A; if v = i(mod 4). The cyclomic constants (4, k)
(0<Ch, k<<3) are defined to be the number of values of y, Iy <p— 2
for which

(3.1 y = g% (mod p), 14y =g*"*(mod p)

[i.e. for which ye 4,, 1 + y e A4,].
As results differ in the two cases p = 1 (mod &) and p = 5 (mod 8)
we look as these cases separately.

Case 1: p=1(mod 8). In this case p = 1 + 4 f where f is even. We
know [3] that
[ (h, k) = (k, h)
10 k) = (= k=)
Thus(1,2) = (2,3) = (1,3);(1, 1) = (0,3);(2,2) = (0,2);3,3) = (0, ).
Therefore of the 16 cyclotomic constants which may be written as a (4 X 4)
matrix, only five are different and we have

(3.2)

(0,00 (1,0) (2,0) (3,0 4 D C B |

O, 1) (I,1) @1 3,1 D B E E
(3.3 =

0,2) (1,2 (2,2) (3,2 C E C E

0,3 (1,3) (2,3) (3,3) | B E E D |

Consider the numbers 1,2, ...,p — 1. Each y e A, (there are f such y’s)
except the last (i.e. p — 1 which is in A4, in this case) is followed by y + 1
which may belong to 4,, 4,, A, or A;.

Similarly each y e A; without exception is followed by y + 1 which
may belong to 4,, A,, A, or A; and so on. Hence we get

(3.4) A+D+C+B=f—-1
(3.5) D+B+2E=f
(3.6) 2C + 2E = f.
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Case 2: p= 5(mod 8). In this case p = 4f + 1 where f is odd.
Now look at the congruence

(31)/ 1 +g4t+h 4. g4s+k = O(mOd p)

Denote the number of solutions of (3.1)" by {A, k}. Then clearly {4, k}
= {k, h} and the following relations are known [3]

(3.2 {— h,k — h} = {h, k} for any feven or odd
' {h, k} = (h, k+2) for f odd.
Thus {1,0} = {3,3}; {3,0} = {1,1}; {2,0} = {2,2} and {3,1} = {1,2}
= {3, 2}. '
Therefore the matrix of the cyclotomic constants {/, k} can be written
as |
{0,0} {1,0} {2,0} {3,00 | [ L M N R |
{0,1} {1,1} {2,1} {3,1} M R S S
3.3y =
{0,2} {1,2} {2,2} {3,2} N § N S
- {0,3} {1,3} {2,3} {3,3} | RS S M |

Since f'is odd, p — 1 belongs to 4, hence in this case as before
0,1) +(@0,1) +(0,2) +(0,3) = [
Lo+, D)+ (1,2)+(1,3) = f
2,0+2,H+2,2+2,3)=f—1.
Now using (3.2)" and (3.3)" we get

(3.4) L+M+N+R=f
(3.5) R+M+28 =f
(3.6) ON + 25 - = f-1.

4, THE JACOBI FUNCTION

Let o be any root (#1) of «?~! = 1. Write
r—2

4.1) F(a)= Y o (7" where (P =1 and { # 1.

k=o
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We shall employ a special case of the function (4.1) due to Jacobi.
Let p =ef + 1 and f be a primitive e-th root of unity. In (4.1) take
o = p" (n-integer). We know ([3] page 395) that if e does not divide » then

(4.2) FBYF @™ =(=D".p

and if we put

CF(B)F (B™)
(4.3) R(n,m) = FT
then
e—1 e—1
(4.4) R(m,m) = Y p™ % p=0mkp k).
h=0 k=0

From (4.2) and (4.3) it follows that if e does not divide m, n and m + n then
(4.5) R(m,m) R(—n, —m) = p
and from (4.4) it follows that R (—n, —m) is got from R (n, m) by replacing
Bby B~ Letnowe = 4and § = \/ — 1; using (4.4) we get
R(,1) = (A—B—C—D+2E) +i(2D—2B) incasep = 1 (mod 8)
R(1,1))=(L-M—-R—-N+2S8)+i(2QM—2R) incase p = 5 (mod 8).

5. PROOF COMPLETED

If p =1 (mod 4) then p splits in Z [i] as p = n 7 where n is prime in Z [i].
Case 1:p =1 (mod 8).
Y@@+ = ¥ g@z@+h) =Y+ Y +Y )

3

all v vedyg, A1, A2, A3, Ag Al A9

1[A+Di—C —Bi|+ilD+Bi —E —Ei]

—1[C +Ei—C —Ei]—-i[B+Ei—E — Di]
=[A—-B—-C~—-D+2E]+i[2D — 2B]

(5.1) = R(1,1) = (—2f+8(1,2) —1) = 2i[D — B]

where R(1,1) = — 1 (mod 2 (1+i)) (as D — B = f —2B — 2E by (3.5))

and Y 2@ 2@+1) =(A—D+C —B) —(D—B+E —E)
all +(C —E +C —E) —(B—E +E —-D)
=A4A+3C -D—-2E —-B = —1,

by (3.4)



— 271 —

Therefore we have

S = (—_—(f) [x(—4a)R(1,1) + 7 (—4a)R(1,1) + x> (—4a)(—1].
p
Weputn = — R(1, 1), thenn = + 1 (mod 2 (1+10)) .
Therefore S = <_—P;£>[_ x(—4da)n — j(—4a)7 — xz‘(—4a)]‘.

Let g be the primitive root mod p which we have already fixed in § 2. We
now have two possibilities:

Q) (%) —i e (i>4 — y(d) for all d.
: 4

(ii) (€> = —i ie. <d> = 7(d) for all d.
T/4 T/a

d
Let y(d) =<—-> where 7% = 7 or
4.

T

S

We shall show that z* = n. We have

p—1

==Y+l = =YD (@ +1)**D mod n*
0
= — [ D (1+3(p—Do+ ... +v* 77 D)] mod n*.

In the last sum each term is divisible by p = = 7, because we know that
Y v* = 0 mod p unless p — 1/k. Hence the right hand side of the above is

congruent to zero mod n*. Hence = = 0 mod =n* giving = = =¥,
Therefore

) -GG
A S IR 2
Q-

all «




, , d d\? d\?
using (i) (—-)=(—-] ={-
p uyn Uyn
. d\? d
i@ (=] =1z
/4 Uy

—4 —4
(111) (—~> = <~—> = 1 since — 4 = (1+.)* — a fourth power.
4 4

T T

This gives the required value of S.

Case 2: p == 5 (mod 8). In this case as before

Y 7@ y@w+1) =[N—-L+R+M—2S]+i[2R —2M]
= — R(1,1) (see [3))

and ) 7*(@) y*(w+1) =3N +L-2S —R-M = —1,
using (3.4), (3.5)', (3.6)’, and therefore

S = (;pc_z_) [ — x{—4a)R(1, ) —ji(—4a)R(1,1) — 1. (—4a)].

Here R(1,1) = (L—M—R—N+2S) + i 2M—2R)
= (=2 +8(1,0)+1) + i @M —2R) (see [3]) -

We put R(1,1) = =, then 7 = 1 (mod (2+2i)) and we get
g

S = (} /\[— 1(—da)m — 7 (—4a) & — 12 (—4a)]

and as before this

S ARCAR

as required. This completes the proof of the Theorem.
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