
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1974)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THE NUMBER OF SOLUTIONS OF THE CONGRUENCE $y^2 \equiv
x^4 – a(mod \quad p)$

Autor: Singh, Surjit / Rajwade, A. R.

DOI: https://doi.org/10.5169/seals-46910

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-46910
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


THE NUMBER OF SOLUTIONS OF THE CONGRUENCE

y2 x4 - a (mod p)

by Surjit Singh and A. R. Rajwade

1. Introduction

The object of this paper is to prove the following theorem.

Theorem. Let a be an integer not divisible by a given prime p. Then the

number of solutions of the congruence y2 x4 — a (mod p) is

p — 1 if p 3 (mod 4).

p — (a/7i)4 7Ï - (a/7Ë)47i - 1 if p m. 1 (mod 4)

where (-77)4 is the biquadratic residue symbol andp n n is the factorization
ofp in the ring Z [z] of the Gaussian integers, n and n being both normalized

1 (mod (2 (1 + /))).
Morlaye shows (see [4] Proposition 1) that if N is the number of solutions

of the congruence y2 =5 x3 — ax (mod p) and N ' the number of solution
of the congruence y2 x4 - a (mod p) then N N ' + 1. This is a short

proposition for the case p 1 (4) and so our theorem gets the number
of solutions of

y2 x3 — ax (mod p)

by yet another elementary method. This latter equation: y2 x3 — ax is

the elliptic curve with complex multiplication by J - 1. (See also a remark
by Swinnerton-Dyer in [1]). A proof of the latter result is also given in [2]
and [5]. These proofs, however, are not elementary.

We note here that both N and Nr can be computed trivially for the

case p 3 (4).

To get N we proceed as follows:

Case 1. a is a quadratic non-residue mod p. Then corresponding to
y 0, there exist only one x viz x 0 satisfying

y2 x (x2 — a) (mod p)
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since x2: — a 0 (p) is not solvable. This gives one solution (0, 0). Let now

p — 1

x ±1, ±2,..., ±—-—, be a complete non-zero residue system modp.

Of x3 - ax and ('-x)3 - a —x) - (x3 -ax) one is a quadratic residue
and the other a non-residue since - 1 is a non-residue, p being 3 (4).

p — 1

Hence as x takes the values + 1, + 2, + x3 — ax becomes a_ _ 2

p — 1

quadratic residue ——— times (perhaps with repetitions) and a non-residue

P — 1

—-— times. Each time it is a quadratic residue, we get 2 solutions. Hence

there exist p — 1 solutions, and together with (0, 0) gives p solutions as

required.

Case 2. a is a quadratic residue mod p, that is there exists an x0 such that
x02 sis a (mod p). Then corresponding to y 0 there exist 3 solutions,

p — 1

(0, 0), (x0, 0), (-x0, 0). Let now x + 1, ± 2, +—-—, but ^ ± x0

(or 0) (all together p — 3 values). As above x3 - ax becomes a quadratic
P — 3

residue exactly ——— times and so there exists p — 3 solutions, which

together with (0, 0), (±x0, 0) gives p solutions as required. To get N ' we

note that in this case the biquadratic residues of p are the same as quadratic
residues. Hence the congruence can be written as

y2 x2 — a (mod p)

or (x + y) (x — y) a (mod p)

or u.v a (mod p)

which has p — 1 solutions as required. For the case px\ (mod 4) we
shall use results from cyclotomy for the factorization p — 1 — 4/.

2. The congruence y2 (x4 — a) (mod p)

Let - J be the Legendre symbol. The number of solutions of y2 ==* x4

x
1 +

4x —a
\Pj

- a (mod p) equals £
To get S we define first the biquadratic character x as follows:

p + Z p + s.
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Let g be a primitive root mod p. Then for any integer m (#0) there
exists a positive integer v such that ra as gv (p). We put % (m) 0T where

i -J - 1 and put x (0) 0. This defines x- We now have

sE [i + zOO +x2(y)+ z3O0]

I zw(y) + Z z2 + Z X3(>0

Setting y — az we get :

z +1

y — a^

S ~ (— )Z z(-ö)z(z)f^2) + Z z2(-«)z2(z)
\ P J _allz V P J all z

+ E
all z \ P /

since /3 (m) y (m) for all integers m.
Now we look at the sum

fz +1
Z z 0)

p
This equals

Z z(z) - z *(*)
z U square z +1 m not square

But

°= Z z(z)+ z Z (z) + Z — 1)
z + 1 square z +1 ft square

Therefore

Z zO) i Z z("2-i) I Z z(« +1)z("-1)
z + 1 square not zero u ^ o u ^ o

iL X % (w + Ï) X i) — x — i)] •

all u

Now put u 2v + I.
Therefore £ X (*} ~ ± [* (4) I X (p) X (v + 1) - * -1)]

z + 1 square not zero all v

Hence ^(z)( —) z(4) Z X (») Z (» +1)
a'Hz \ P J allv

Similarly for y2 and y and therefore we get

S \-f) [z(-4a) Z Z(»)l(» + l) + f(-4a) Z Z0)x0 + 1)
\ P allv Mv

+ Z2 - 4 a)ZZ2 0) Z2 0 +1)].



3. Cyc otomy for p 1 + 4/.

Let g be a primitive root mod p which we have already fixed in § 2.

Divide the non-zero residues mod p into four classes A0, Au A2, A3 by
putting m in A{ if v i (mod 4). The cyclomic constants (A, k)
(0</z, k<3) are defined to be the number of values of y, l<y < p — 2

for which

(3.1) y EE g4t+h (mod p), 1 + y c(mod p)

[i.e. for which y e 1 + ye Ak]>

As results differ in the two cases p m 1 (mod 8) and p 5 (mod 8)

we look as these cases separately.

Case 1 : p
know [3] that

(3.2)

1 (mod 8). In this case p1 + 4 / where is even. We

(A, k) (k, h)

(h, k) (-h,k-h
Thus (1,2) (2, 3) (1,3); (1,1) (0, 3); (2, 2) (0,2); (3, 3) (0,1).
Therefore of the 16 cyclotomic constants which may be written as a (4 x 4)

matrix, only five are different and we have

(3.3)

Consider the numbers 1,2, ...,p — 1. Each y e A0 (there are / such y's)

except the last (i.e. p — 1 which is in A0 in this case) is followed by y + 1

which may belong to A0, Al9 A2 or A3.

Similarly each y e Ax without exception is followed by y + 1 which

may belong to A0, Au A2 or A3 and so on. Hence we get

(0, 0) 0,0) (2,0) (3,0) "A D C B

(0,1) (1,1) (2, 1) (3, 1) D B E E

(0, 2) (1,2) (2, 2) (3, 2) C E C E

(0, 3) (1,3) (2, 3) (3, 3)
_

B E E D

(3.4)

(3.5)

(3.6)

A + D + C + B=f - 1

D + B + 2E f
2C + 2E —
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Case 2 : p 5 (mod 8). In this case p 4/ + 1 where / is odd.

Now look at the congruence

(3.1)' 1 + „4t + h + g4s+k 0(mod p).

Denote the number of solutions of (3.1)' by {h, k). Then clearly {h, k}
{/c, h) and the following relations are known [3]

{ — h, k - h} {h, k} for any/ even or odd

{h,k} (A, £ + 2) for/ odd.

Thus {1, 0} {3, 3}; {3, 0} - {1, 1}; {2, 0} {2, 2} and {3, 1} {1, 2}
{3, 2}.
Therefore the matrix of the cyclotomic constants { } can be written

(3.2)'

as

(3.3)'

'{0,0} {1,0} {2,0} {3,0}

{0,1} {1,1} {2,1} {3,1}

{0,2} {1,2} {2,2} {3,2}

L M N R

M R S S

N S N S

R S S M{0,3} {1,3} {2,3} {3,3}

Since fis odd, p —1 belongs to A2 hence in this case as before

(0, 1) + (0, 1) + (0, 2) + (0, 3)

(1,0)+ (1, 1) + (1, 2) + (1, 3) /
(2, 0) + (2, 1) + (2, 2) + (2, 3) 1

Now using (3.2)' and (3.3)' we get

(3.4)' L + M+ N+ R=f
(3.5)' R + M + 2Sf
(3.6)' 21V + 2S -1

4. The Jacobi function

Let a be any root (^1) of 1 1. Write
p-2

(4.1) F (a) Yj akCwhereÇp 1 and Ç # 1

k o
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We shall employ a special case of the function (4.1) due to Jacobi.
Let p e f + 1 and ß be a primitive e-th root of unity. In (4.1) take
oc ßn («-integer). We know ([3] page 395) that if e does not divide n then

(4.2) F{ßn)F(ß-n)

and if we put
{ßn) F

(4.3) R(n, m)^v > v ' 'p'

then
e— 1 e— 1

(4.4) R(n,m) £ ßnh £ ß~(m+n)k (h, k).

From (4.2) and (4.3) it follows that if e does not divide m, n and m + n then

(4.5) R («, m) R( — n, — m) p

and from (4.4) it follows that R( — n, — m) is got from R (n, m) by replacing

ß by ß_1. Let now e 4 and ß yj — 1 ; using (4.4) we get

R( 1, 1) (A-B-C-D + 2E) + i(2D-2B) in casep 1 (mod 8)

R{1,1) (L-M-R-N+2S) + i(2M-2R) incase/? 5 (mod 8).

5. Proof completed

If/? 1 (mod 4) thenp splits in Z [/] as/? 7i n where n is prime in Z [/].

1 : p 1 (mod 8).

E zWx(» + i) E x(")x(ni) E + E + E + E
oH u t»eAo, ^-2» ^3- ^0 ^1 ^2 ^3

1 [T + Di - C - Bi] + i [£> + -Ei]
- 1 [C + Ei - C - Ei] -- Di]

[A—B — C—D + 2 E]+ [2D - 2B]
(5.1) £(1,1) (-2/+8(1,2) -1) -2 -B]
where R(1,1) - 1 (mod 2 (1 +i))f -IB - 2 by (3.5))

and E X2(v)x2(v + 1) (A-D + C-B) - (D-B+E -E)
Mv + (C -E +C

A + 3C—D —2E-1,
by (3.4)
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Therefore we have

S [x(-4a)R(l, 1) + x(-1)+ x2( — 4a)( — 1)]

We put 7i- R(1,1), then jr + 1 (mod 2 (1+0) •

Therefore S x(-4a)n-% - 4a) n - y2 - 4a)]

Let g be the primitive root mod p which we have already fixed in § 2. We

now have two possibilities :

(i) (-") ii.e.(C-\ y (d for all
\ti/4 \nj4

(ii) f?) - ii.e. (-) y(d) for all d.

*\Let x (d) — I where or it.w*
We shall show that 71* n. We have

p-l
71 — Z X(v) X(v +1) 1)(v + l)lip 1} m°d 7i*

0

— \y*{p 1}(1 +i(p — l)v + +vl(p 1})] mod 71*

In the last sum each term is divisible by p % ïî, because we know that
vk so 0 mod p unless p — \jk. Hence the right hand side of the above is

V

congruent to zero mod n*. Hence n 0 mod 7r* giving n 7r*.

Therefore

s=_i'^V—) 1» -
p J \ 71 /4 \ P / \ 71/4 \ P / \ 71 J4

- 4a\3 f — 4a\3
_

/u\3 /a\3
_71 — 71 1 — I - I 71 — 1- } 7C — 1

71 J 4 y 71 y 4 y7Ty 4 \^7Îy 4

ö\ /a\
7C — I - J 7C — 1

71/4 \7i:y4
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*•' * (;) - (91 " (S

« ©: • ©.

(iii) —- 1 since - 4 (1 + *)4 — a fourth power.
V 71 A V ^ A

This gives the required value of S.

Case 2 : p : 5 (mod 8). In this case as before

X X (V) X (v + 1) [N - L + R + M - 25 ] + i [2R - 2M ]

-£(1,1) (see [3])

and X Z2Wf(Hl) 3N + L -25 - R - M - 1,

using (3.4)', (3.5)', (3.6)', and therefore

S (-Z?)[-z(-4a)K(l,l) -z(-4a)K(M) - l.*2(-4a)]

Here R (I 1) (L~M~ R-N+2S)+ i(2M~2R)

(-2/+ 8 (1,0)+1) + i(2M-2R) (see [3])

We put R (1? 1) 7i, then n ^ 1 (mod (2 + 2/)) and we get

s z(-4fl)7r - x(-4a)7t - £2(-4a)]
VP/

and as before this

as required. This completes the proof of the Theorem.
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