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A CONSTRUCTION OF GAUSS

by C. W. Barnes

1. Introduction

Every prime of the form 4 n + 1 can be expressed uniquely as the sum

of two squares. Suppose p x2 + y2 where p is a prime of the form
4 n + 1. A construction for x and y was given by Legendre [8] in terms of
the continued fraction for yjp. In [1] we gave a new construction for a; and

y, again using the continued fraction for yjp. A summary of the various
constructions is given in Davenport [5], pages 120-123.

Gauss [6] remarked that if p 4 n + 1, and if a and ß are defined by

(2n) p p
ß

——1^2
(m°d p), a (2n) ß (mod p), where | a | < -, | ß | < - then

p a2 + ß2; a particularly simple construction to state. Proofs of the
construction of Gauss were given by Cauchy [4], page 414, and Jacobsthal
[7]; however, neither of them is simple.

In the present note we give a simple proof of the construction of Gauss
based on the method in [1].

2. Continued Fractions

We continue with the notation in [1]. The results we need can be found
in Perron [9]. We denote the simple continued fraction

ao + 1

(1) a1 + 1

a2 +

1

+ —
an
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by [a0, au an]. For 0 m n we denote the numerator and denominator
of the mth approximant to [<a0, au by .Tm and Bm respectively.

Ifp is a prime of the form 4 n + 1, then

(2) -y/^7 [flo, #1* • • • 5 ß/u) •••> ^1?

in the usual notation for a periodic continued fraction. The symmetric part
of the period does not have a central term. In [1] we proved that p
~ x2 + y2 where

(3) X PBnßm-1 - ^m^m-1

(4) y A2m-pB2m

A mand where — is the m approximant to (2). We also showed that
Bm

Am+ -4/n— 1
(5) P r2 D 2 •

3. The Quadratic Character of

(2 n)!2 (n !)2
'

p J

It is well known that ifp is a prime of the form 4 n + 1 then { —— }2

— 1 (modp); that is, (2ft) I2 — 1 (modp). We make use of this in the

(2n)
Lemma. If p 4 n + 1 is a prime then T is a quadratic residue

2 (ft

of p.
(2ft)

Proof. We use Euler's criterion. Thus if we suppose that is a
2 (ft

(2ft) Lzi
quadratic nonresidue of p we have { ——^ } 2 — 1 (mod p) and thus

p—l p—l
{ (2ft) !2 } — { 2 (ft !)2 } (modp). Since (2ft) !2 — 1 (modp) and

p—i

ft P"1 1 (mod p) we have (—1)" — —2 2 (mod /?), or (— l)n+1
p2+l

— 1) s using the standard result for the quadratic character of 2 with res-


	2. Continued Fractions

