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LA CYCLOTOMIE JADIS ET NAGUERE !

par André WEIL

Littéralement, « cyclotomie » signifie « division du cercle». Les
géométres grecs ont enseigné & diviser le cercle en N parties égales, par la
régle et le compas, pour N de la forme 27, 2". 3, 2". 5, 2%, 15.

La découverte par Euler des relations entre fonctions trigonométriques
et exponentielles ramenait le probléme de la division du cercle a la résolution
des équations bindmes de la forme X" = 1. Gauss, a 19 ans, recut la
médaille Fields (plus exactement il 'aurait regue si elle avait existé) pour
avoir résolu I’équation X '” = 1 par une succession de racines carrées,
ce qui implique la division du cercle en 17 parties égales par la régle et le
compas. Bien entendu, ce résultat, pour sensationnel qu’il fit, n’était pour
Gauss qu'un premier pas dans la théorie des équations bindmes.

1. C’est donc a juste titre qu’on qualifie de « cyclotomiques » les corps
engendrés sur Q par les racines de I'unité, et leurs sous-corps, et le mot de
« cyclotomie » pourrait s’appliquer a tout ce qui les concerne; on sait
d’ailleurs, depuis Kronecker, que ces corps ne sont autres que les extensions
abéliennes de Q. Mais, depuis Jacobi, et pendant tout le xixe siécle, I'usage
s’est établi de réserver ce mot (en allemand, Kreist(h)eilung) a I’étude de
certaines sommes remarquables de racines de I'unité, qu’on a pris de nos
jours (depuis Hasse, semble-t-il) ’habitude d’appeler « sommes de Gauss »;
nous adopterons ce terme, qui est commode, mais historiquement peu
justifié. Plus précisément, nous conviendrons d’appeler somme de Gauss
relative au corps fini F, & ¢ = p" éléments toute somme

(1) G=G(Y = ) 1Y

X
X €
Ftl

oll y est un caractére du groupe multiplicatif F, et y un caractére non trivial
du groupe additif F, . Si ¢ est une racine primitive de X ? = 1, ’ensemble des
valeurs de  est {1, ¢, ..., 8" '}. Si y est d’ordre m, m divise ¢ — 1, et on
peut écrire ¢ — 1 = myv; on dira alors que G est d’ordre m; pour m = 1,

1 Exposé au séminaire Bourbaki, Paris, juin 1974.
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on a G = — 1. Si r est un générateur du groupe cyclique F, x est bien
défini par la donnée de { = y (r), et { est une racine primitive de Z™ = 1;
on peut écrire alors

@ G= T 0= T UL w0,

La premicre propriété de G (¥, ¥) qui nous saute aux yeux est que c’est un
entier algébrique du corps Q ({, ¢), et que tous ses conjugués sur Q sont
aussi des sommes de Gauss; si un automorphisme de Q ({, ¢) change { en
{* et ¢ en &¥ il change G (x, ¥) en G (i, ¥*). De plus, avec des « abus de
notations » évidents, on a ¥* (x) = ¥ (ux), et par suite:

(3) Gy = xw™ GO, ¥),

ce qui implique aussitdt que G (x. )™ est dans Q ().
Notons aussi dés maintenant qu’on a, pour G défini par (1):

@ GG =Y yey HyG—-» =Y 1@ ¥ ¢(Ez-1)

z#0 y#0
=q—1- ) x( ={

z# 0,1

qsiy #1
I1siy =1.

Si F, est le corps premier F, = Z/pZ, on pourra prendre ¥ (x) = &%, et on
aura

v—1

p—1 p—2 . m—1 ' . ]
(5) G = Z X(x) e* = 2_;0 (:igrl - i;O Ct Z 8r‘+mJ i

x=1 j=0

2. Nous avons anticipé sur ’ordre historique, auquel nous revenons a
présent. Les sommes (5) sont des cas particuliers des sommes introduites par
Lagrange dans son grand mémoire ([1 a]) sur la théorie algébrique des
équations (la théorie de Galois « avant la lettre »). C’est 1a que Lagrange
montre, entre autre, comment engendrer une extension cyclique de degré m
au moyen d’une racine m-iéme, apres adjonction, s’il y a lieu, des racines
m-iémes de l'unité (engendrement dit, bien & tort, « kummérien »). Il
introduit les sommes

(6) y =% +ox, + ... +a" tx,,

ou o™ = 1, et ol X, ..., Xx,, sont les racines d’'une équation de degré m, et
il observe que y™ est invariant par toute permutation circulaire des x;. Il
fait voir par exemple qu’on «explique » ainsi les formules classiques de
résolution par radicaux des équations du 3¢ et du 4¢ degré. Exposant a
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nouveau sa méthode dans son Traité de 1808 ([1 b], Note XIII), il donne
aux sommes (6) le nom de « résolvantes », qui leur est resté pendant tout
le x1xe siccle.

3. En 1801, dans la VIIe section des Disquisitiones ([2 a]), Gauss donne
un exposé complet de la « théorie de Galois » de Q (&) considére comme
extension cyclique de Q de degré p — 1. Il montre en particulier que, pour
p — 1 = mv, Q(¢) posséde un sous-corps k,, (et un seul) de degré m sur
Q, engendré sur Q par I'une quelconque des « périodes d’ordre m »:

V——l . .
(7) no= > & 0 <i<m),
j=0

celles-ci étant permutées circulairement par les automorphismes de Q ()
sur Q.

La question de la résolution par radicaux était trop implantée dans les
esprits pour que Gauss plt la laisser complétement de coté. Soit qu’il ait eu
connaissance directement ou indirectement de la méthode de Lagrange
(comme il est vraisemblable), soit qu’il I’ait retrouvée par lui-méme (comme
il est possible), il 'applique aux corps intermédiaires entre Q et Q (¢); st
k, est comme plus haut, et si k est un sous-corps de k,,, cela conduit a
former des résolvantes de Lagrange au moyen des #; et de racines de I'unité
auxiliaires, d’ordre < p. Pour k = Q, ces résolvantes ne sont autres que
les sommes (5). Mais Gauss ne semble pas leur attacher d’importance; il
note en passant la relation G G = p, et cela seulement pour dire que I'extrac-
tion de racines (G ™)'/™ se raméne A une racine carrée et a la division par m
d’un arc de cercle. Quand un peu plus tard Lagrange, dans son Traité
([1 b], Note XIV) donne un exposé des résultats de Gauss basé princi-
palement sur les sommes (5), il se fait vertement critiquer par Gauss, pour
n’avoir pas suffisamment tenu compte de ’ambiguité qui résulte de ’emploi
des racines de ’'unité d’ordre < p.

4. Comme Gauss le fait voir, les périodes #; ont une table de multipli-
cation

(8) min; = ZNijk Nk
k

ou les N, sont des entiers naturels, apparentés aux nombres de solutions
des congruences AX™ + BY™ = C (mod p). Ce fait a des conséquences
arithmétiques importantes, dont Gauss a apergu quelques-unes (pour le
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cas m = 3) des les Disq. Plus tard, il en a développé d’autres pour m = 4
([2 d]). Mais il s’est surtout intéressé au cas m = 2, le seul ou il ait cru
pouvoir utiliser les « sommes de Gauss » de préférence aux « périodes »
(sans doute parce qu’alors il n’y a pas a introduire d’irrationalité accessoire).
On a alors:

p—1
9) G=ng—n =1+2n =3 &,
x=0

Ici (3) donne G = + G, donc G % = + p d’aprés (4), le signe étant donné
par p = + 1 (mod 4). 1l s’ensuit que le corps quadratique k, contenu

dans Q (¢) est Q (\/?pj

5. Comme Gauss le signale dés les Disq., ce résultat se généralise a la
somme

ol o est une racine primitive N-iéme de 'unité, avec N impair quelconque;
ona G? = 4+ N, ce qui pose le probléme de la détermination du signe de
G, par exemple pour a = e*™/¥ ; énoncé sous cette forme, le probléme
n’est pas algébrique. « Nous observons », dit Gauss dans les Disq. (avec

une ambiguité sans doute voulue) qu'on a toujours G = + \/7\7— resp.

+ I \/7\7— En fait, il n’en obtint la démonstration qu’en 1805; celle-ci,
publiée en 1811 ([2 b]) s’apparente, d’une maniére trés visible pour nous,
a ses recherches (qu’il n’a pas publiées) sur les fonctions théta. Pour N = pg,
avec p, g premiers, Gauss en tire sa quatricme démonstration de la loi de
réciprocité quadratique. Ce travail a donné lieu, et jusqu’a une époque
toute récente, a d’'importantes généralisations, que nous laisserons compléte-
ment de coté.

6. En 1818, Gauss publia sa sixieme démonstration de la loi de récipro-
cité quadratique ([2 c]); elle est bas€e, elle aussi, sur les sommes de Gauss
d’ordre 2, mais envisagées d’un point de vue strictement algébrico-arithmé-
tique. Soit G défini par (9). Soit ¢ un nombre premier impair # p; posons
p=2p +1, g =29 + 1. Au moyen du symbole de Legendre, la loi

de réciprocité s’écrit:
' ~ 1
(p> , <Q> (e
q p



— 251 —

OnavuquonaG? = (—1)"p, dou
Gi! = (— l)p'q' . pq' = (- 1)p’q’ <B> mod ¢ .
q

Mais on a aussi, d’aprés la formule du bindme:

G! = qux2 = <g>G mod ¢,
x p

d’ott la loi de réciprocité, puisque G est premier a ¢g. Bien entendu Gauss ne
se permet pas (ostensiblement) d’écrire des congruences dans I’anneau
Z [¢]; il les remplace par des congruences modulo (¢, 1+ X + ... + X771
dans P'anneau Z [X]. Néanmoins il est incompréhensible que Jacobi,
Cauchy et Eisenstein, tour a tour, aient publié¢ des démonstrations virtuelle-
ment identiques a celle-1a (et qu’ils aient méme soulevé entre eux des ques-
tions de priorité a ce sujet) avant qu’Eisenstein ne fit observer qu’a la
présentation prés c’était toujours la sixiéme démonstration de Gauss.

7. Dans un projet de suite a la section VII des Disg. (]2 e]), Gauss, non
seulement donne la démonstration de G G = p, mais donne la formule de
multiplication des sommes de Gauss. D’aprés (1), on peut écrire:

GULWGU, W = Y 1® MY Ex+y)

x.y#0

= Y V@ADL Y @i M+ Y 1) (=x).

z#0 X+y=z x#0
x,y#0

- Posons y”" = yy'. La derniére somme est 0 si y'" # 1 et (g—1)y(—1) si
x'" = 1; lautre s’écrit J.G (x", ¥) & condition de poser:

(10) J=J0x) = Y xx)x(1-x).
x#0,1
Pour y” =1, on observe que x> x(1—x)"! est une bijection de

F, — {0, 1} sur F, — {0, —1}, ce qui donne pour J la valeur — y (—1) si
x #letg—2siy =y =1,donc,siy # 1:

(11) GOLY) G ) = qr(=1).
On est dans un cas trivial si y = 1 ou ' = 1. Siy, ¥, ¥ sont # 1, on a
(12) GG =T (LX) GO W) .

Si { est comme plus haut une racine primitive de Z™ = 1, et si les ordres
de y, x’ sont m ou des diviseurs de m, (10) montre que J = J (y, ¥’) est dans
7 [(]; d’aprés (12) et (4), ona JJ = q.
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Par récurrence, on tire de (12) la formule

(13) 1160wy =J G 1)

ou J est de nouveau un entier de Q ({) si les ordres des y; divisent m. Si on
pose x, = [l x ', on a, d’aprés (W2) et (11):

(14 1160w = a(-D-J |

ce qui montre que x,(—1).J dépend symétriquement de y,, X1, --r X
ceux-ci €étant soumis a la condition y, x4 ... x, = 1. Par exemple, considérons
un automorphisme t de Q ({); s’il change { en {*, il change y; en x}; si donc
(Xs» ---» Xn) €St une permutation de (x,, ..., x,), J sera invariant par 7. On
peut ainsi faire en sorte que J appartienne a un sous-corps donné de

Q (©.

8. Naturellement, chez Gauss et ses successeurs immédiats jusqu’a
Kummer, il ne s’agit que des sommes de Gauss relatives a un corps premier
F, et des sommes J correspondantes. Il ne semble pas que Gauss lui-méme
ait apercu 'importance arithmétique des entiers J. Pourtant, il aurait pu
étre frappé par le fait que, dés les cas m = 3 et m = 4, ces entiers donnent
la décomposition des nombres premiers rationnels dans les corps Q (j),
Q (i), ou j? = 1, i* = 1, ce fait lui était connu sous une autre forme (il
I’exprimait au moyen des « périodes »). Soit en effet p = 1 mod 3 (resp.
mod 4); soit y I'un des deux caractéres d’ordre 3 (resp. d’ordre 4) de F ;
alors J (i, x) est un facteur premier de p dans Q (j) (resp. Q (7)), et satisfait
de plus a d’importantes congruences. C’est ce que découvrit Jacobi; il eut
méme l'audace, en 1827, d’en faire part a Gauss ([3 a]), qui se montra
encourageant (avec une pointe de condescendance), mais pensa peut-étre,
tout comme un peu plus tard dans 'affaire des fonctions elliptiques, qu’un
jeune €éléphant marchait sur ses plates-bandes.

9. A la différence de Gauss, Jacobi reconnut aussitot la portée de cette
méthode « cyclotomique »; cela justifie le nom de « sommes de Jacobi »
qu’on donne de nos jours aux entiers J, bien qu’elles figurent déja, comme
on a vu, dans les papiers secrets de Gauss, et que Cauchy les ait introduites
et largement utilisées, & partir de 1829 (indépendamment de Jacobi), dans
quelques notes préliminaires et surtout dans son grand mémoire de 1830
sur la théorie des nombres ([4]), paru avec des notes additionnelles en 1840.
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Cauchy fut surtout frappé de la possibilité (qui résulte de la remarque de la
fin du n° 7) de construire des sommes J contenues dans une extension
quadratique donnée de Q. Soit par exemple / = 4n + 3 premier; soient
ro, ..., i, les résidus quadratiques mod /. Soit p =1 mod /; soit y un
~caractére d’ordre [ de F,; pour 0 <i <(m, soit y; = ¥''; alors (14) définit un
entier J du corps k = Q (\/ Tl), etonaJJ = p" . D’autre part, Cauchy
détermine la plus grande puissance p” de p qui divise J; il peut donc affirmer
que 4p"~172¥ peut s’écrire sous la forme x* + /y®. En langage moderne,
cela signifie qu’on a, dans k, (J) = p”p" 172", ou p est I'un des deux
facteurs premiers de p. C’est 14 un résultat non trivial sur le groupe des
classes d’idéaux de k, ou, dans le langage de 1’époque, sur le groupe des
classes de formes quadratiques de discriminant — /; Jacobi, en raisonnant
de méme (indépendamment de Cauchy), en tira méme la conjecture correcte
sur le nombre de ces classes, quelque temps avant que Dirichlet ne vérifiat
cette conjecture en un travail célébre (largement anticipé par Gauss, toujours

dans ses « papiers secrets »).

10. Jacobi s’intéressa surtout aux applications de la « méthode cyclo-
tomique » au probléme le plus briilant de la théorie des nombres a cette
époque, la recherche des lois de réciprocité des n-i€mes puissances pour
n > 2. Au sujet de la loi de réciprocité biquadratique, Gauss venait d’an-
noncer des résultats importants, en termes un peu grandiloquents (« myste-
rium maxime reconditum »). Fut-il vexé de voir Jacobi proclamer que ceux-
ci se déduisaient « trés simplement et trés facilement » de sa méthode ?
Toujours est-il qu’il ne publia jamais sa démonstration, qui était basée sur
des principes tout différents. Jacobi non plus, d’ailleurs; la sienne resta
enterrée dans ses notes de cours de Konigsberg (1836-37); au dire de Jacobi,
c'est celle méme qui fut obtenue indépendamment, un peu plus tard, par
Fisenstein encore étudiant. Pour les restes cubiques ([5a]), on peut en
présenter la partie essentielle comme suit.

Dans Z [j], 3 admet le diviseur premier p = j — 1. Pour tout nombre
premier 7, premier & 3, soit ¢ = N(n) = 3n + 1. Pour x premier a 7,
on notera (x/n) celle des racines de P'unité 1, j, j* qui est = x" mod =, et
“on étend ce «symbole de Legendre » & un « symbole de Jacobi » par la
régle (x/af) = (x/o) . (x/B). Soit p = 3v + 1 premier rationnel, et soit 7
'un de ses facteurs premiers dans Z [j]; on peut, d’une maniére et d’une
“seule, multiplier © par une racine (sixiéme) de 1 de maniére que 7 devienne
« primaire », c’est-a-dire = 1 mod 3. Posons y (x) = (x/n) pour xeF o
C’est un caractére d’ordre 3 de F,. Sur F,, on prend i (x) = ¢2™*/?, Posons
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G=Gy), J=J(x). On a alors G(3~,%) =G, G%=JG,
G3=pJ, GG =JJ = p, puis
p—1

> x"(1—x)" mod x.

x=1

I

(1 I = % z0x(1-9

p—1
Mais, pourn % 0 mod (p—1),ona ) x"= 0 mod p; doncJ = 0 mod .
1

Comme JJ = p, J/rn est donc une racine sixiéme de 1, qu’on détermine
comme suit. On a posé p =j— 1, doll p* = — 3j et j* = (1+p)*
=1 + pa mod 3. Posons y (x) = j' ®;onai(xy)=i(x) + i(y) mod 3,
d’ou

p—1

—1+2p)i(x)
1
— 1 mod 3,

If

J=p-=2 +p[p{;i(x) +p§i(1—x)]

I

et par suite J = — 7.
Soit maintenant ¢ premier dans Z [/], premier a 3p; soit s = N (o) =007}
onas=1 mod 3, y* = y, donc '

G =2y Y(sx) = ()G = (s/n) "' G mod o
Mais d’autre part, si s = 3¢ + 1:
G ! = (G = (—pn) = (—n*7/o) mod o .

On a (—1/o) = (—1/o)®> = 1, et aussi, par transport de structure, (7i/o)
= (n/6)" . Comme G est premier & ¢, la combinaison des relations ci-
dessus donne alors (s/n) = (w/s), ce qui est la « loi d’Eisenstein ». Si main-
tenant on prend p’ premier rationnel # p, = 1 mod 3, et que #’ soit un
facteur premier primaire de p’, on peut, dans ce qui précéde, remplacer
m, § successivement par m, p’ et par 7/, p et combiner les résultats. Cela
donne d’abord (n/n')* = (n'/n)*, d’ou évidemment (n/n’) = (n'/n).

On a ainsi tout I’essentiel de la loi de réciprocité cubique dans Z [j];
les résultats complémentaires sont faciles a obtenir. Notons aussi dés main-
tenant, sur 'exemple ci-dessus, une propriété¢ de J a laquelle Jacobi et ses
contemporains attachaient beaucoup d’importance. Pour x€F,, on a
y(x) = (x/7)"! = (x ") = x*"17" mod 7, donc, d’aprés (15):

p—1

2
J = ) xP(1—-x)* = ——<v>modﬁ.
v

x=1

Cette congruence, jointe & J= 0 mod =, détermine complétement J
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2y o
modulo p au moyen du coefficient binomial( ); compte tenu d’inégalités
v

triviales, on peut méme dire qu’elle détermine J, donc n, d’'une manicre
unique.

11. L’exemple du n°® 10 contient déja tous les traits caractéristiques de
«la cyclotomie », c’est-a-dire de la théorie des sommes de Gauss et de Jacobi,
telle qu’elle s’est développée au xix® siécle.

En premier lieu, pour utiliser ces sommes, il faut en déterminer la
décomposition en facteurs premiers dans les corps cyclotomiques auxquels
elles appartiennent. On a vu plus haut la solution pour les sommes d’ordre 3;
pour I'ordre 4, elle est analogue; Jacobi examina aussi les sommes d’ordre 5,
8, 12, en utilisant le fait (dont il s’apergut a cette occasion) que les corps
correspondants n’ont que des idéaux principaux. Pour aller plus loin,
évidemment, il fallait la création (par Kummer, & partir de 1845) de la
théorie des idéaux. Ce qui en limita quelque temps la portée, c’est que
Kummer (qui procédait par construction explicite des valuations dans les
corps en question) ne traita d’abord que les corps Q ({) avec (' = 1,
[ premier impair. L’un de ses premiers triomphes fut justement d’obtenir
la décomposition en idéaux premiers de G ' dans Z [/], pour (' = 1, chaque
fois que p est premier, = 1 mod /, et que G est une somme de Gauss
d’ordre /relative 4 F,. Un peu plus tard il s’apergut (non pas pour les sommes
de Gauss, mais, ce qui revient au méme, pour les sommes de Jacobi) qu’on
pouvait traiter de méme les corps finis F,, ceux-ci se présentant comme corps

de restes dans Z [{] modulo un idéal premier p (premier a /) de degré
> 1 (v. [6]).

12. La décomposition en facteurs premiers ne détermine les sommes en
question qu’a une unité pres; c’était déja insuffisant pour les sommes d’ordre
3et4; il en est ainsi & plus forte raison pour les sommes d’ordre /, puisqu’il
y a alors une infinité d’unités dans Z [{], d’aprés le théoréme de Dirichlet
(publié en 1846). Aussi recherche-t-on des précisions supplémentaires sous
forme de congruences. Comme au n° 11, celles-ci sont de deux sortes:

(a) les unes, pour les sommes relatives a F, (resp. F , avec g = p") donnent,
non seulement leur ordre, mais leur partie principale aux places déterminées
par les facteurs premiers de p;

(b) les autres, encore plus importantes, concernent le comportement local
de ces sommes dans Q, ({), ou plus généralement aux places correspondant
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aux facteurs premiers de m dans Q ({) s’il s’agit de sommes d’ordre m non
premier, et si (" = 1.

Ces questions ont conduit Kummer et Eisenstein a développer des
techniques trés raffinées d’analyse p-adique, malheureusement tombées par
la suite dans un profond oubli.

13. Enfin, soulignons a nouveau que, pour Eisenstein et Kummer, la
cyclotomie apparaissait surtout comme un moyen pour aborder le probléme
des lois de réciprocité, dans le cadre ou celui-ci s’est posé jusqu’a Hilbert.
Pour la loi des m-i¢mes puissances, ’exemple de Gauss suggérait de se
placer dans le corps Q ({) et non au-dela, avec {, comme toujours, racine
primitive de Z™ = 1. Pour p premier & m dans Z [{], de norme ¢, et x
premier &4 p, on note (x/p) celle des racines ¢’ qui est = x“@~ /™ mod p;
on étend ce « symbole de Legendre » & un « symbole de Jacobi » par la
régle (x/ab) = (x/a).(x/b). On se propose alors d’obtenir une expression,
la plus explicite possible, pour (x/y). (x/y)”*, et aussi les « lois complé-
mentaires » donnant (x/p) quand x est une unité ou bien divise .

Finalement les espoirs placés par Jacobi, Eisenstein et Kummer dans la
cyclotomie ne se réaliserent que partiellement. Elle donne la «loi d’Eisen-
stein », c’est-a-dire la valeur de (x/y) . (y/x)"! quand x (ou y) est dans Z;
ce n’est déja pas un mince résultat. Pour m = 4, par un hasard heureux, on
peut en tirer I’énoncé complet de la loi de réciprocité biquadratique au
moyen des propriétés axiomatiques « évidentes » du symbole (x/y), c’est-a-
dire, comme on dirait de nos jours, en faisant de la K-théorie; c’est ce que
faisait sans doute Jacobi dans son cours de Konisgberg, et c’est ce que fit
Eisenstein, qui par la suite appliqua ses idées sur la K-théorie a des problémes
beaucoup plus généraux. Mais de plus en plus, jusqu’a la fin de sa courte vie,
Eisenstein se consacra plutdt a la mise en ceuvre de la théorie des fonctions
elliptiques en vue de ses applications arithmétiques; c’est de 1a en particulier
qu’il tire les lois de réciprocité pour m = 8. Pendant le méme temps,
Kummer, se limitant une fois pour toutes aux lois des /-iémes puissances
pour [ premier impair (et méme en fait pour / « régulier »), faisait servir la
cyclotomie, avec plein succés, a la recherche des « lois complémentaires »,
mais, a son grand chagrin, dut constater vers 1853 qu’avec ces résultats et la
loi d’Eisenstein elle avait fourni tout ce dont elle était capable.

14. En 1890, Stickelberger reprit et compléta les résultats de Jacobi,
Kummer et Eisenstein qui donnent la partie principale des sommes de Gauss
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et d’Eisenstein. Nous allons résumer son travail ([7]) en langage p-adique,
ce qui ne change rien au fond des choses mais permet d’étre bref.
Soient p premier, ¢ = p", et » une racine primitive de W41 = 1;
= Q, (w) est 'extension non ramifiée de Q, de degré n; on peut identifier
F, avec Z, [w]/(p), et F, avec Z,/(p). Les automorphismes de k sur Q,
transforment w en w?’ pour 0 <v < n, de sorte que, si 7 désigne la trace
prise dans k/Q,, on a:

ipn—l

(16) t(@) = o + 0 + ... + o ,
et ¢ (w') est dans Z,.

Soit ¢ une racine primitive de X' ? = 1 dans une extension de k; pour
a € Z,, on définit & de la maniére évidente (par continuité p-adique, si 'on
veut). Alors x - &™), pour x € Z, [w], définit, par passage au quotient, un
caractére 1//' du groupe additif F,. D’autre part, I’ensemble des racines de

= X dans k est M = {0, 1, o, ..., a)q_z}; ce sont les représentants
multiplicatifs de ¥, dans k. Si donc, pour x € Z, [w], on note u, I’élément
de M qui est = x mod p, x— u, définit par passage au quotient un
caractére de Fq a valeurs dans k, et tout caractére de F 4> & valeurs dans &,
est de la forme x > u;“. Toutes les sommes de Gauss relatives & F,, sauf la
somme triviale égale a — 1, s’écrivent donc dans k (g) sous la forme:

(17) go = 2 u&®  (0<a<g-—-1),
n

la somme étant étendue aux pe M * = M — {0}.

Dans k (¢), m = ¢ — 1 est un élément premier, et on a, pour tout
2 4,

(18) & = (1+7) = ijni (‘j)

d’ou, pour g,, la série convergente

(19) 9a = Z Aa,inia at - Z (t(u)>

Exprimons #(u) au moyen de (16), et observons que lidentité formelle
(1+7)*s = [[(1+T)*» donne

(7)=x GG

L’Enseignement mathém., t. XX, fasc. 3-4. 17

On obtient:
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@) Au= Y zu~an(".”p)

(ip) u p Ly

ou 0 <p < n, ou la deuxieme somme est étendue a ue M *, et la premiére
a tous les systémes d’indices (i,, ..., i,— ;) tels que Y i, = i; pour a donné,
on va déterminer la plus petite valeur de i pour laquelle 4,; # 0. Les
coeflicients du bindme qui figurent au second membre sont des polyndmes
en u & coefficients dans Q; d’ailleurs ) u” a la valeur ¢ — 1 ou 0 suivant
que b est ou non multiple de ¢ — 1.

Puisque 0 < @ < ¢ — 1, on peut écrire a = Y a, p® avec 0 <a, < p
pour 0 <p < n.Ona

21) > a, = min (}j,|>.j,p" = a mod ¢—1;j,>0 0<p<n)),

le minimum étant atteint seulement pour j, = a,, ..., j,_1 = a,_;. En effet,
si 'un des j,, par exemple j;, est > p, on peut diminuer )_ j, en remplagant
Japarj, —petj,.q (resp.j,siA=n—1)parj,,., + 1 (resp.j, + 1); mais
si tous les j, sont < p,ona ), j,p* = a,d’oltj, = a, pour tout p.

Cela posé, supposons 4,; # 0. Le second membre de (20) doit donc
contenir un terme de degré = 0 mod g — 1; cela implique qu’il y a des
entiers i,, j, tels que Y. i, = i, 0 <j, <i, Y j,p’ = a mod g — 1, donc
z> Y a, d’aprés (21). De plus, si i =) a,, ces conditions impliquent

= j, = a, pour tout p, ce qui donne:

(2 Ao = (@-D TG

La partie principale de g, est donc — [](n"?/a,!). C'est le résultat définitif
P

sur la question; on peut dire que pour I’essentiel il se trouvait déja dans
Kummer. On en déduit évidemment la partie principale des sommes de
Jacobi, que Jacobi avait déja calculée dans des cas assez généraux ([3 b]).
Les méthodes de Stickelberger et de Kummer, et méme sans doute celles de
Jacobi, ne différent pas, pour I’essentiel, de celle qu'on vient d’exposer.
Comme ce résultat donne I'ordre de toute somme de Gauss (ou de Jacobi)
relative a F, en toute place p-adique, il contient évidemment aussi la décom-
position de toutes ces sommes en facteurs premiers.

15. Tout cela ne touche pas a la question (b) du n° 12, qui, en revanche,
est liée, d’une part a la démonstration de la loi d’Fisenstein, et d’autre part
a la propriété des sommes de Jacobi de définir des caractéres de Hecke.
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Commengons par la premiére, en nous plagant d’abord dans le cas le plus
général; nous suivons Eisenstein ([5 b]) librement, mais d’assez pres.

Soit { une racine primitive de Z™ = 1; soit £k = Q ({}. Soit p ideal
premier (premier a m) dans k, de norme g = p"; on identifie F, avec
Z [(]/p; alors (x/p) détermine un caractére y d’ordre m: sur F,. Soit ¢ une
racine primitive de X' ¥ = 1; soit ¢ la trace prise dans F,/F,; x |- ') est
un caractére additif y de F,. Posons @ (p) = (—1)" G (x, ¥)™; @ ne dépend
pas du choix de ¢; on 1’étend a tous les idéaux premiers & m dans k par la
régle @ (ab) = @ (a) @ (b). Appliquant le résultat du n° 14 & G (y, ¥) aux
places de k déterminées par p et ses conjugués, on trouve facilement la

~décomposition de I'idéal principal (@ (p)), puis de (@ (a)), en facteurs

premiers; elle est donnée par une puissance symbolique

(23) | (@ () = a®,

~ou O est un ¢lément de ’anneau de groupe du groupe de Galois de k/Q,

défini comme suit. Pour tout ¢ e (Z/mZ)*, soit o, automorphisme de k
qui change { en {*. Alors on a

(24) O =Y to!

O<t<m
(t,m)=1

(résultat obtenu par Kummer pour m premier).

En particulier, on peut appliquer (23) & un idéal principal a = (), de

~sorte qu’on peut écrire

(24) D (o) = &),

ou ¢ () est une unité de k. Mais d’autre part la valeur absolue des sommes
de Gauss est donnée par (4); on en déduit aussitdt | D (a) lz = N (a)";
. tenant compte de (23) et (24), il s’ensuit que 'unité ¢ («), ainsi que tous ses
1 conjugués dans k, sont de valeur absolue 1. Le théoréme de Kronecker
| montre qu’alors ¢ («) est une racine de I'unité, de la forme + (.

Soit maintenant p’ un idéal premier, premier & m, de norme q = p™

= mv + 1. Pour p, x, Y comme précédemment, et p premier 2 p’, posons
G =G (yy);ona:

G? = Ty (@x) = x(@)"'G = <]—V%>_ G mod p .

Mais on a aussi (cf. le cas m = 3 au n° 10):

Gq’-l — (Gm)v = ((—l)m,@(p)> = <i(£2> mod pr '
p p
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11 s’ensuit qu’on a, chaque fois que N (a), N (b) sont premiers entre eux et

am:
N (®) [P\
)= (57)

puisqu’il en est ainsi pour a = p, b = p’. Prenons a = (), et appliquons
(24), en observant qu’on a, par transport de structure, pour fu = 1 mod m,

c’est-a-dire 6, = o, ':
Oy Ty u
o o o\ .
@9=@9=Gﬂ
On obtient ainsi:

e ) () ()
o b N (b)

16. Pour tirer de 1a la loi d’Eisenstein, nous nous restreignons mainte-
nant (comme le faisait Eisenstein dés le début) au cas ou m est un nombre
premier impair /. Dans ce cas, on a, avec G = G (y, i//) comme tout a
I’heure:

(=6 = = T 2@ =~ T w(x) =1 modl,

x#0 xX#

donc @ (a) = 1 mod / quel que soit a (ce qui répond a la question (b) du
n® 12), et par suite ¢ («) = + 1 chaque fois que o est tel que a® =1
mod ({—1)%; il suffit pour cela qu'on ait « = x mod ({—1)* avec
x € Z. — [Z; Eisenstein dit alors que « est « primaire ». En langage moderne,
ces résultats font voir aussi que a — @ (a) est un « caractére de Hecke » (un
« Grossencharakter ») de conducteur ({ —1)2. Si dans (25) on prend « « pri-
maire », et qu'on prenne pour b un idéal premier p de norme g = p", on
obtient (p/a)" = («/p)". Mais n divise [ — 1, donc est premier a /. On
a donc (p/o) = (a/p), d’ol finalement (a/a) = («/a) chaque fois que a
est entier rationnel premier a /, et que o est premier a a et « primaire ». C’est
la loi d’Eisenstein.

17. En ce qui concerne les développements plus récents, nous serons
trés brefs.

Pour mémoire, rappelons que les sommes de Gauss figurent parmi les
facteurs constants locaux dans les équations fonctionnelles des fonctions L ;
ces facteurs sont dits aussi « nombres radiciels » (« root-numbers »,
« Wurzelzahlen »), sans doute parce que Hilbert, qui avait une sorte de
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génie pour les mauvaises terminologies, s’était avisé de baptiser « Wurzel-
zahl» ce quavant lui on nommait «résolvante de Lagrange», et
« Lagrange’sche Wurzelzahl » ce qu’on a nommé ici somme de Gauss. Les
facteurs constants des équations fonctionnelles, pour les séries L de
Dirichlet, apparaissent pour la premiére fois dans le calcul de L (1) par
Dirichlet; ce calcul n’est pas autre chose, en substance, que la vérification
de I’équation fonctionnelle qui relie L (1) & L (0). Naturellement, ils repa-
raissent, sous une forme plus générale, dans les équations fonctionnelles
des fonctions L de Hecke, puis d’Artin. Ils ont fait ’objet de travaux
considérables de Dwork et de Langlands, complétés en dernier lieu par
Deligne. Langlands a mis en évidence le role essentiel joué par ces facteurs
dans la théorie des représentations. L’auteur de ces lignes offre une médaille
(en chocolat) & celui qui proposera la meilleure dénomination pour les fac-
teurs en question.

18. Lorsqu’on rencontre des nombres algébriques qui, ainsi que tous
leurs conjugués, ont une valeur absolue de la forme p™/? avec p premier, on
est toujours tenté, de nos jours, de se demander si ce sont des racines de
fonctions z€ta en caractéristique p. Il en est effectivement ainsi des sommes
de Gauss et de Jacobi, comme Hasse et Davenport s’en sont apergus en
1934 ([8]; cf. [9 a]); c’est mEéme a cette occasion qu’ils ont découvert I'im-
portante relation entre sommes de Gauss a laquelle leur nom est resté
attaché. En particulier, les sommes de Jacobi d’ordre m sont racines (ou
poles, suivant la dimension) des fonctions zéta des variétés ) a; X7 = 0;
rétrospectivement, on constate que des cas particuliers, exprimés dans un
autre langage, étaient déja connus de Gauss, et que des cas assez généraux
sont implicites chez Kummer. Notons en passant, a titre de curiosité
historique, que le célebre Tagebuch de Gauss s’ouvre et se referme sur la
cyclotomie: il débute, en date du 30 mars 1796, par la division du cercle
en 17 parties; il se termine, le 9 juillet 1814, par une note sur le nombre de
solutions de 1 = x? + y* + x?y? dans F, relié¢ & «la théorie des résidus
biquadratiques » (donc aux « périodes » d’ordre 4).

Quant a la relation de Hasse-Davenport, elle relie les sommes de Gauss
d’ordre m dans F, et dans une extension F, de F,. Soit Q = ¢"; soient ¢
et n la trace et la norme dans Fy/F,; soit G = G (i, ) une somme de Gauss
relative a F,; soit G’ la somme de Gauss de G (x o n, \ o t) relative & F,.
Alors on a — G’ = (—G)". Soit dit en passant, ceci montre une fois de
plus qu’on a pris « le mauvais signe » dans la notation usuelle des sommes
de Gauss. Il n’est sans doute pas trop tard pour rectifier cette faute.




— 262 —

19.-On peut appliquer les résultats cités au n° 18, sur les fonctions zéta
des variétés > a; X7 = 0 (et, notons-le en passant, de toutes les variétés
qu’on peut définir comme quotients de ces derniéres par des groupes finis
d’automorphismes) au calcul des fonctions zéta de ces mémes variétés sur des
corps de nombres algébriques. On trouve que ces fonctions sont des produits
de fonctions L de Hecke, ce qui revient a dire que les sommes de Jacobi
définissent des caracteres de Hecke dans les corps cyclotomiques. Comme on
I’a vu au n° 16, un cas particulier important (relatif aux sommes (—G)', ou
G est une somme de Gauss d’ordre / premier impair) formait le fond de la
démonstration d’Eisenstein pour sa loi de réciprocité. En fait, il s’agit la
d’un résultat trés général sur les caractéres de Hecke « cyclotomiques »
dans tous les corps abéliens sur Q (cf. [9 b, c¢]); naturellement, ce sont les
corps totalement imaginaires qui sont intéressants de ce point de vue.

Une fois obtenus ces caractéres, on peut se proposer d’étudier les
fonctions L de Hecke qui leur correspondent, et notamment leurs valeurs
L (s) pour s entier. Il y a lieu de citer a ce sujet un résultat remarquable de
Chowla et Selberg (v. [10]); convenablement interprété, celui-ci fait voir que
la valeur, en s = 1, de la fonction L définie par un certain caractére « cyclo-

tomique » sur Q (\/ :—n) (pour n premier = 3 mod 4, c’est celui méme
qu’on a défini d’aprés Cauchy au n° 9) s’exprime élémentairement au moyen
de n et des valeurs de la fonction I' (s) pour s = a/n, 0 < a < n. On
pourrait sans doute aller beaucoup plus loin dans cette voie.
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