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s LA CYCLOTOMIE JADIS ET NAGUÈRE 1

;j par André Weil

i Littéralement, « cyclotomie » signifie « division du cercle ». Les

;j géomètres grecs ont enseigné à diviser le cercle en N parties égales, par la

j règle et le compas, pour N de la forme 2n, 2". 3, 2". 5, 2". 15.

:\ La découverte par Euler des relations entre fonctions trigonométriques
p et exponentielles ramenait le problème de la division du cercle à la résolution
|| des équations binômes de la forme Xn 1. Gauss, à 19 ans, reçut la

[j médaille Fields (plus exactement il l'aurait reçue si elle avait existé) pour
Il avoir résolu l'équation X 17 1 par une succession de racines carrées,

y ce qui implique la division du cercle en 17 parties égales par la règle et le

r" compas. Bien entendu, ce résultat, pour sensationnel qu'il fût, n'était pour
{

Gauss qu'un premier pas dans la théorie des équations binômes.

1. C'est donc à juste titre qu'on qualifie de « cyclotomiques » les corps
engendrés sur Q par les racines de l'unité, et leurs sous-corps, et le mot de

(\ « cyclotomie » pourrait s'appliquer à tout ce qui les concerne ; on sait
r;; d'ailleurs, depuis Kronecker, que ces corps ne sont autres que les extensions
' abéliennes de Q. Mais, depuis Jacobi, et pendant tout le xixe siècle, l'usage

y s'est établi de réserver ce mot (en allemand, Kreist (h)eilung) à l'étude de

I certaines sommes remarquables de racines de l'unité, qu'on a pris de nos

| jours (depuis Hasse, semble-t-il) l'habitude d'appeler « sommes de Gauss »;
ï; nous adopterons ce terme, qui est commode, mais historiquement peu
I justifié. Plus précisément, nous conviendrons d'appeler somme de Gauss

relative au corps fini Fq à q pn éléments toute somme

(1) G G(x,*) y x(x)^(x)

où x est un caractère du groupe multiplicatif F *, et \J/ un caractère non trivial
du groupe additif Fq. Si e est une racine primitive de Xp 1, l'ensemble des

valeurs de \j/ est (1, s, ap_1}. Si % est d'ordre m, m divise ^ — 1, et on
peut écrire q - 1 mv; on dira alors que G est d'ordre m; pour m 1,

1 Exposé au séminaire Bourbaki, Paris, juin 1974.
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on a G — 1. Si r est un générateur du groupe cyclique F *, % est bien
défini par la donnée de Ç x (r), et Ç est une racine primitive de Z m 1 ;

on peut écrire alors

q — 2 m—1 v—1

(2) G E O (/•') I C E ^
t 0 i 0 j — 0

La première propriété de G (/, qui nous saute aux yeux est que c'est un
entier algébrique du corps Q s), et que tous ses conjugués sur Q sont
aussi des sommes de Gauss ; si un automorphisme de Q (£, e) change en
C et s en e", il change G (x, */0 en G (x\ ^u). De plus, avec des « abus de

notations » évidents, on a i//u (x) \J/ (ux), et par suite:

(3) G(x,|//") xi^y1
ce qui implique aussitôt que G (x. \j/)m est dans Q (Q.

Notons aussi dès maintenant qu'on a, pour G défini par (1):

(4) GG£ xixy'^^ix-y) £ xU) E "AO^-l))
x,j; z=ÉO

q - 1 - E Z(z)
z*0,l

<2 si x # 1

1 si x 1
•

Si Fç est le corps premier Fp Z/pZ, on pourra prendre \j/ (x) £x, et on

aura
p—1 p—2 m—1 v—1

(5) G X z(x)s* E C'sri E E *ri+my-
x 1 j 0 i — 0 7 0

2. Nous avons anticipé sur l'ordre historique, auquel nous revenons à

présent. Les sommes (5) sont des cas particuliers des sommes introduites par
Lagrange dans son grand mémoire ([1 a]) sur la théorie algébrique des

équations (la théorie de Galois « avant la lettre »). C'est là que Lagrange

montre, entre autre, comment engendrer une extension cyclique de degré m

au moyen d'une racine ra-ième, après adjonction, s'il y a lieu, des racines

m-ièmes de l'unité (engendrement dit, bien à tort, « kummérien »). Il
introduit les sommes

(6) y xi + olx2 + + a"1 xm

où ocm 1, et où xl5 xm sont les racines d'une équation de degré m, et

il observe que ym est invariant par toute permutation circulaire des xt. Il
fait voir par exemple qu'on « explique » ainsi les formules classiques de

résolution par radicaux des équations du 3e et du 4e degré. Exposant à
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nouveau sa méthode dans son Traité de 1808 ([1 b], Note XIII), il donne

aux sommes (6) le nom de « résolvantes », qui leur est resté pendant tout
le xixe siècle.

3. En 1801, dans la VIIe section des Disquisitiones ([2 a]), Gauss donne

un exposé complet de la « théorie de Galois » de Q (s) considéré comme
extension cyclique de Q de degré p — 1. Il montre en particulier que, pour
p - 1 rav, Q (s) possède un sous-corps km (et un seul) de degré m sur

Q, engendré sur Q par l'une quelconque des « périodes d'ordre m » :

(7) ff; y erl + mj (0 <i < m),
j=o

celles-ci étant permutées circulairement par les automorphismes de Q (e)

sur Q.
La question de la résolution par radicaux était trop implantée dans les

esprits pour que Gauss pût la laisser complètement de côté. Soit qu'il ait eu
connaissance directement ou indirectement de la méthode de Lagrange
(comme il est vraisemblable), soit qu'il l'ait retrouvée par lui-même (comme
il est possible), il l'applique aux corps intermédiaires entre Q et Q (s) ; si

km est comme plus haut, et si k est un sous-corps de km, cela conduit à

former des résolvantes de Lagrange au moyen des r}t et de racines de l'unité
auxiliaires, d'ordre < p. Pour k Q, ces résolvantes ne sont autres que
les sommes (5). Mais Gauss ne semble pas leur attacher d'importance; il
note en passant la relation G G p, et cela seulement pour dire que l'extraction

de racines (G w)1/w se ramène à une racine carrée et à la division par m
d'un arc de cercle. Quand un peu plus tard Lagrange, dans son Traité
([1 b], Note XIV) donne un exposé des résultats de Gauss basé

principalement sur les sommes (5), il se fait vertement critiquer par Gauss, pour
n'avoir pas suffisamment tenu compte de l'ambiguïté qui résulte de l'emploi
des racines de l'unité d'ordre < p.

4. Comme Gauss le fait voir, les périodes rjt ont une table de multiplication

(8) NiJkrjk
k

où les Nijk sont des entiers naturels, apparentés aux nombres de solutions
des congruences AXm + BYmC (mod p). Ce fait a des conséquences
arithmétiques importantes, dont Gauss a aperçu quelques-unes (pour le
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cas m 3) dès les Disq. Plus tard, il en a développé d'autres pour m 4

([2 d]). Mais il s'est surtout intéressé au cas m 2, le seul où il ait cru
pouvoir utiliser les « sommes de Gauss » de préférence aux « périodes »

(sans doute parce qu'alors il n'y a pas à introduire d'irrationalité accessoire).
On a alors :

(9) Gf/o — Vi1 + 2t]0y s*2
•

jc 0

Ici (3) donne G ± G, donc G 2 ± p d'après (4), le signe étant donné

par p ± 1 (mod 4). 11 s'ensuit que le corps quadratique k2 contenu

dans Q (e) est Q (y/ ±p).

5. Comme Gauss le signale dès les Disq., ce résultat se généralise à la

somme

N— 1

• .G £ a*2,
x 0

où a est une racine primitive TV-ième de l'unité, avec N impair quelconque ;

on a G 2 ± TV, ce qui pose le problème de la détermination du signe de

G, par exemple pour a e2mlN ; énoncé sous cette forme, le problème
n'est pas algébrique. « Nous observons », dit Gauss dans les Disq. (avec

une ambiguïté sans doute voulue) qu'on a toujours G + y/;N resp.

+ iy/N. En fait, il n'en obtint la démonstration qu'en 1805; celle-ci,

publiée en 1811 ([2 b]) s'apparente, d'une manière très visible pour nous,
à ses recherches (qu'il n'a pas publiées) sur les fonctions thêta. Pour N pq,
avec p, q premiers, Gauss en tire sa quatrième démonstration de la loi de

réciprocité quadratique. Ce travail a donné lieu, et jusqu'à une époque
toute récente, à d'importantes généralisations, que nous laisserons complètement

de côté.

6. En 1818, Gauss publia sa sixième démonstration de la loi de réciprocité

quadratique ([2 c]) ; elle est basée, elle aussi, sur les sommes de Gauss

d'ordre 2, mais envisagées d'un point de vue strictement algébrico-arithmé-
tique. Soit G défini par (9). Soit q un nombre premier impair ^ p\ posons

p 2pf + 1, q 2q' + 1. Au moyen du symbole de Legendre, la loi
de réciprocité s'écrit:
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On a vu qu'on a G 2 (— 1 Y' p, d'où

Gq~l —l)pY-pg' —l)pY^-^ mod q.

Mais on a aussi, d'après la formule du binôme:

GqE e,x2 (~J G mod <? >

d'où la loi de réciprocité, puisque G est premier à q. Bien entendu Gauss ne

se permet pas (ostensiblement) d'écrire des congruences dans l'anneau

Z [s]; il les remplace par des congruences modulo (q, \+ X + + Xp~x)
dans l'anneau Z [X]. Néanmoins il est incompréhensible que Jacobi,
Cauchy et Eisenstein, tour à tour, aient publié des démonstrations virtuellement

identiques à celle-là (et qu'ils aient même soulevé entre eux des questions

de priorité à ce sujet) avant qu'Eisenstein ne fit observer qu'à la
présentation près c'était toujours la sixième démonstration de Gauss.

7. Dans un projet de suite à la section VII des Disq. ([2 e]), Gauss, non
seulement donne la démonstration de G G p, mais donne la formule de

multiplication des sommes de Gauss. D'après (1), on peut écrire:

G(x,^)G(x,t/0y
x.yï 0

E <A(z)[ E /<>•)/0')] + E - v).
z^O x + y — z x^O

x,y^0

Posons x" XX'• La dernière somme est 0 si /' # 1 et (q— l)x(~ 1) si

X" 1', l'autre s'écrit J.G (%", ij/) à condition de poser:

(10) J =J(x,x)E Z«z(l-x).
JC 0,1

Pour x" U on observe que xH-x(l-x)"1 est une bijection de

F, - {0, 1} sur F, - {0, -1}, ce qui donne pour la valeur - (~ 1) si

X # 1 et q - 2 si x ^ ï 1> donc, si ^ 1 :

(H) G(x,il/) G(x~l,il/) qx(-l)
On est dans un cas trivial si %=* 1 ou x'1- Si x, ï, sont ^ 1, on a

(12) G(x,t)G()ï,#)«= J t/0

Si C est comme plus haut une racine primitive de Z m 1, et si les ordres
de x, X' sont m ou des diviseurs de m, (10) montre que / (x, /) est dans
Z [£]; d'après (12) et (4), on a J J q.
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Par récurrence, on tire de (12) la formule

n n

(13) ÏIG(X^) J • G (II

où J est de nouveau un entier de Q (Ç) si les ordres des Xi divisent m. Si on

pose Xo Uxr1,ona, d'après (W2) et (11):

ce qui montre que x0(—l).y dépend symétriquement de X0, Zi> X«*

ceux-ci étant soumis à la condition %0Xi — Xn ^ar exemple, considérons

un automorphisme t de Q (Q; s'il change £ en Ç, il change Xi en y-; si donc
(Xo> Xn) est une permutation de (x,, /n), J sera invariant par t. On

peut ainsi faire en sorte que J appartienne à un sous-corps donné de

8. Naturellement, chez Gauss et ses successeurs immédiats jusqu'à
Kummer, il ne s'agit que des sommes de Gauss relatives à un corps premier
Fp et des sommes J correspondantes. Il ne semble pas que Gauss lui-même
ait aperçu l'importance arithmétique des entiers J. Pourtant, il aurait pu
être frappé par le fait que, dès les cas m 3 et m 4, ces entiers donnent
la décomposition des nombres premiers rationnels dans les corps Q (/),
Q (/), où j3 1, /4 1; ce fait lui était connu sous une autre forme (il
l'exprimait au moyen des « périodes »). Soit en effet p 1 mod 3 (resp.
mod 4); soit x l'un des deux caractères d'ordre 3 (resp. d'ordre 4) de ;

alors J (x, x) est un facteur premier de p dans Q (j) (resp. Q (/)), et satisfait
de plus à d'importantes congruences. C'est ce que découvrit Jacobi; il eut
même l'audace, en 1827, d'en faire part à Gauss ([3 a]), qui se montra
encourageant (avec une pointe de condescendance), mais pensa peut-être,
tout comme un peu plus tard dans l'affaire des fonctions elliptiques, qu'un
jeune éléphant marchait sur ses plates-bandes.

9. A la différence de Gauss, Jacobi reconnut aussitôt la portée de cette

méthode « cyclotomique » ; cela justifie le nom de «sommes de Jacobi»
qu'on donne de nos jours aux entiers /, bien qu'elles figurent déjà, comme

on a vu, dans les papiers secrets de Gauss, et que Cauchy les ait introduites
et largement utilisées, à partir de 1829 (indépendamment de Jacobi), dans

quelques notes préliminaires et surtout dans son grand mémoire de 1830

sur la théorie des nombres ([4]), paru avec des notes additionnelles en 1840.

n

(14) Ei G "A) 1Xo(-1) • J

Q(0-



— 253 —

Cauchy fut surtout frappé de la possibilité (qui résulte de la remarque de la

fin du n° 7) de construire des sommes J contenues dans une extension

quadratique donnée de Q. Soit par exemple 7 4/2 + 3 premier; soient

r0, rn les résidus quadratiques mod /. Soit p= 1 mod /; soit % un
caractère d'ordre / de Fp; pour 0 < i < n, soit Xi %l\ alors (14) définit un

entier J du corps k Q (>/ —/), et on a J J pn~1. D'autre part, Cauchy

détermine la plus grande puissance pv de p qui divise J; il peut donc affirmer

que 4p"_1_2v peut s'écrire sous la forme x2 + ly2. En langage moderne,
cela signifie qu'on a, dans k, (J) pvpn~1~2v, où p est l'un des deux

facteurs premiers de p. C'est là un résultat non trivial sur le groupe des

classes d'idéaux de k, ou, dans le langage de l'époque, sur le groupe des

classes de formes quadratiques de discriminant — /; Jacobi, en raisonnant
de même (indépendamment de Cauchy), en tira même la conjecture correcte

sur le nombre de ces classes, quelque temps avant que Dirichlet ne vérifiât
cette conjecture en un travail célèbre (largement anticipé par Gauss, toujours
dans ses « papiers secrets »).

10. Jacobi s'intéressa surtout aux applications de la « méthode cyclo-
tomique » au problème le plus brûlant de la théorie des nombres à cette

époque, la recherche des lois de réciprocité des /2-ièmes puissances pour
n > 2. Au sujet de la loi de réciprocité biquadratique, Gauss venait
d'annoncer des résultats importants, en termes un peu grandiloquents (« myste-
rium maxime reconditum »). Fut-il vexé de voir Jacobi proclamer que ceux-
ci se déduisaient « très simplement et très facilement » de sa méthode

Toujours est-il qu'il ne publia jamais sa démonstration, qui était basée sur
des principes tout différents. Jacobi non plus, d'ailleurs; la sienne resta
enterrée dans ses notes de cours de Königsberg (1836-37); au dire de Jacobi,
c'est celle même qui fut obtenue indépendamment, un peu plus tard, par
Eisenstein encore étudiant. Pour les restes cubiques ([5 a]), on peut en

présenter la partie essentielle comme suit.
Dans Z [j], 3 admet le diviseur premier p j - 1. Pour tout nombre

premier n, premier à 3, soit q N (k) 3n + 1. Pour x premier à n,
on notera (x/n) celle des racines de l'unité 1, y, j2 qui est xil mod n, et
on étend ce « symbole de Legendre » à un « symbole de Jacobi » par la
règle (x/aß) (x/a). (x/ß). Soit p 3v + 1 premier rationnel, et soit n
l'un de ses facteurs premiers dans Z [j]; on peut, d'une manière et d'une
seule, multiplier n par une racine (sixième) de 1 de manière que % devienne
«primaire», c'est-à-dire 1 mod 3. Posons x (+) (x/n) pour xeF^;
c'est un caractère d'ordre 3 de F*. Sur Fp, on prend i/j (x) e2nix/p. Posons
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G G (x, J(x, x). On a alors A) G,
G3 pj, G G J J p,puis

(15) J £ x(x)x(l-x) s J] ^v(l-^)v mod 7i.
x=2 x=l

p—l
Mais, pour n y 0 mod (/>- 1), ona^/^sO mod p\ donc J 0 mod 7c.

l
Comme J J p, J/n est donc une racine sixième de 1, qu'on détermine

comme suit. On a posé p j — 1, d'où p2 - 3/ et ja (l+p)fl
1 + mod 3. Posons x (x) y1 (x); on a z (xy) se z (x) + z (y) mod 3,

d'où

J - p-2+ p[ Yu1(x) + X 1~x) ] -1+2:p £ i (x)
1 2 1

— 1 mod 3

et par suite J — 7i.

Soit maintenant <r premier dans Z [y], premier à 3p; soit s tV(ö-) (t<t;

ona^s 1 mod 3, xs X? donc

Gs Z x M (sx) — X (s)-1 G (s/tt) — 1 G mod er.

Mais d'autre part, si s 3t + 1 :

Gs_1 t= (G3/ — prif (—7T2tî/(j) mod er.

On a (-I/o-) (-1/cr)3 1, et aussi, par transport de structure, (ri/a)
(n/äy1. Comme G est premier à cr, la combinaison des relations ci-

dessus donne alors (s/ri) (n/s), ce qui est la « loi d'Eisenstein ». Si
maintenant on prend p' premier rationnel ^ p, 1 mod 3, et que ri soit un
facteur premier primaire de p\ on peut, dans ce qui précède, remplacer
7i, s successivement par n, p' et par ri, p et combiner les résultats. Cela
donne d'abord (n/ri)2 (ri/71)2, d'où évidemment (n/ri) (ri/ri).

On a ainsi tout l'essentiel de la loi de réciprocité cubique dans Z [y] ;

les résultats complémentaires sont faciles à obtenir. Notons aussi dès

maintenant, sur l'exemple ci-dessus, une propriété de J à laquelle Jacobi et ses

contemporains attachaient beaucoup d'importance. Pour xeF*, on a

X (x) (x/ri)~1 (x- 1/ri) pü xp~~1_v mod ri, donc, d'après (15):

p~x /2v\
J Yj *2v(l ~x)2v — J m°d 71

Cette congruence, jointe à J 0 mod n, détermine complètement J
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modulo p au moyen du coefficient binomial ^ J ; compte tenu d'inégalités

triviales, on peut même dire qu'elle détermine /, donc n, d'une manière

unique.

11. L'exemple du n° 10 contient déjà tous les traits caractéristiques de

« la cyclotomie », c'est-à-dire de la théorie des sommes de Gauss et de Jacobi,

telle qu'elle s'est développée au xixe siècle.

En premier lieu, pour utiliser ces sommes, il faut en déterminer la

décomposition en facteurs premiers dans les corps cyclotomiques auxquels
elles appartiennent. On a vu plus haut la solution pour les sommes d'ordre 3 ;

pour l'ordre 4, elle est analogue; Jacobi examina aussi les sommes d'ordre 5,

8, 12, en utilisant le fait (dont il s'aperçut à cette occasion) que les corps
correspondants n'ont que des idéaux principaux. Pour aller plus loin,
évidemment, il fallait la création (par Kummer, à partir de 1845) de la
théorie des idéaux. Ce qui en limita quelque temps la portée, c'est que
Kummer (qui procédait par construction explicite des valuations dans les

corps en question) ne traita d'abord que les corps Q avec Çl 1,

/ premier impair. L'un de ses premiers triomphes fut justement d'obtenir
la décomposition en idéaux premiers de G 1 dans Z [/], pour £* 1, chaque
fois que p est premier, 1 mod /, et que G est une somme de Gauss

d'ordre / relative à Fp. Un peu plus tard il s'aperçut (non pas pour les sommes
de Gauss, mais, ce qui revient au même, pour les sommes de Jacobi) qu'on
pouvait traiter de même les corps finis Fq, ceux-ci se présentant comme corps
de restes dans Z [Ç] modulo un idéal premier p (premier à /) de degré
> 1 (v. [6]).

12. La décomposition en facteurs premiers ne détermine les sommes en
question qu'à une unité près; c'était déjà insuffisant pour les sommes d'ordre
3 et 4; il en est ainsi à plus forte raison pour les sommes d'ordre /, puisqu'il
y a alors une infinité d'unités dans Z [£], d'après le théorème de Dirichlet
(publié en 1846). Aussi recherche-t-on des précisions supplémentaires sous
forme de congruences. Comme au n° 11, celles-ci sont de deux sortes:

(a) les unes, pour les sommes relatives à Fp (resp. ¥q avec q - pn) donnent,
non seulement leur ordre, mais leur partie principale aux places déterminées
par les facteurs premiers de p ;

(b) les autres, encore plus importantes, concernent le comportement local
de ces sommes dans Qt (Q, ou plus généralement aux places correspondant
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premier, et si Çm 1.

Ces questions ont conduit Kummer et Eisenstein à développer des

techniques très raffinées d'analyse /?-adique, malheureusement tombées par
la suite dans un profond oubli.

13. Enfin, soulignons à nouveau que, pour Eisenstein et Kummer, la

cyclotomie apparaissait surtout comme un moyen pour aborder le problème
des lois de réciprocité, dans le cadre où celui-ci s'est posé jusqu'à Hilbert.
Pour la loi des ra-ièmes puissances, l'exemple de Gauss suggérait de se

placer dans le corps Q (0 et non au-delà, avec 0 comme toujours, racine

primitive de Zm 1. Pour p premier à m dans Z [£], de norme q, et x
premier à p, on note (x/p) celle des racines 0 qui est x(q~1)/m mod p;
on étend ce « symbole de Legendre » à un « symbole de Jacobi » par la

règle (x/ab) (x/a) .(x/b). On se propose alors d'obtenir une expression,
la plus explicite possible, pour (x/y) (.x/y)~x, et aussi les «lois
complémentaires » donnant (x/p) quand x est une unité ou bien divise m.

Finalement les espoirs placés par Jacobi, Eisenstein et Kummer dans la

cyclotomie ne se réalisèrent que partiellement. Elle donne la « loi d'Eisen-
stein », c'est-à-dire la valeur de (x/y). (y/x)~x quand x (ou y) est dans Z;
ce n'est déjà pas un mince résultat. Pour m 4, par un hasard heureux, on
peut en tirer l'énoncé complet de la loi de réciprocité biquadratique au

moyen des propriétés axiomatiques « évidentes » du symbole (x/y), c'est-à-

dire, comme on dirait de nos jours, en faisant de la K-théorie; c'est ce que
faisait sans doute Jacobi dans son cours de Könisgberg, et c'est ce que fit
Eisenstein, qui par la suite appliqua ses idées sur la K-théorie à des problèmes
beaucoup plus généraux. Mais de plus en plus, jusqu'à la fin de sa courte vie,
Eisenstein se consacra plutôt à la mise en œuvre de la théorie des fonctions

elliptiques en vue de ses applications arithmétiques ; c'est de là en particulier
qu'il tire les lois de réciprocité pour m 8. Pendant le même temps,
Kummer, se limitant une fois pour toutes aux lois des /-ièmes puissances

pour / premier impair (et même en fait pour / « régulier »), faisait servir la

cyclotomie, avec plein succès, à la recherche des « lois complémentaires »,

mais, à son grand chagrin, dut constater vers 1853 qu'avec ces résultats et la
loi d'Eisenstein elle avait fourni tout ce dont elle était capable.

14. En 1890, Stickelberger reprit et compléta les résultats de Jacobi,
Kummer et Eisenstein qui donnent la partie principale des sommes de Gauss
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et d'Eisenstein. Nous allons résumer son travail ([7]) en langage p-adique,

ce qui ne change rien au fond des choses mais permet d'être bref.

Soient p premier, q pn, et œ une racine primitive de Wq~1 i;
k Qp (co) est l'extension non ramifiée de Qp de degré n ; on peut identifier

¥q avec Zp [co]/(p), et Fp avec Zp/(p). Les automorphismes de k sur Qp

transforment co en œpV pour 0 < v < n, de sorte que, si t désigne la trace

prise dans k/Qp, on a:

(16) f (a/) co' + coip +Co'""'1,

et t (co1) est dans Zp.

Soit 8 une racine primitive de 1 dans une extension de k; pour
a g Zp, on définit sa de la manière évidente (par continuité p-adique, si l'on
veut). Alors x H pour x g Zp [co], définit, par passage au quotient, un
caractère xj/ du groupe additif Fr D'autre part, l'ensemble des racines de

Xq X dans k est M {0, 1, co,..., coq~2} ; ce sont les représentants
multiplicatifs de F^ dans k. Si donc, pour xeZp [co], on note px l'élément
de M qui est ~ x mod p, x [-» fix définit par passage au quotient un
caractère de F^ à valeurs dans k, et tout caractère de F*, à valeurs dans k,
est de la forme x |-> /i~a. Toutes les sommes de Gauss relatives à F, sauf la

somme triviale égale à — 1, s'écrivent donc dans k (e) sous la forme:

(17) ga£/T" s'00 (0 < a < f — 1),
ß

la somme étant étendue aux fie M x M - {0}.
Dans k (e), n s — 1 est un élément premier, et on a, pour tout

zeZp\

(18) £* (l+nyÎ>'Q>
d'où, pour ga, la série convergente

09) 9a£ Aa,n',Aa,
ï 0 ß \ 1 J

Exprimons t(p) au moyen de (16), et observons que l'identité formelle
(1 JrT)Xxp (1 +T)xp donne

On obtient:
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(20) a,,- zin-nff)
(ip) ß P \ lp J

où 0 < p < n, où la deuxième somme est étendue à p e M x, et la première
à tous les systèmes d'indices (i0, in-i) tels que J]ip i; pour a donné,
on va déterminer la plus petite valeur de i pour laquelle Aa i ^ 0. Les

coefficients du binôme qui figurent au second membre sont des polynômes
en p à coefficients dans Q ; d'ailleurs Y Pb a la valeur q - 1 ou 0 suivant

que b est ou non multiple de q — 1.

Puisque 0 < a < q - 1, on peut écrire a YaP PP avec 0 < p < p
pour 0 < p < n. On a

(21) E «p min (Eyp | Ei/ a mod q- 1 ;jp>0 (0 <p<n)),

le minimum étant atteint seulement pour j0 ^ a0, an_1. En effet,
si l'un des ;p, par exemple jx, est > p, on peut diminuer Yh en remplaçant

jx Par jx ~ P et jx+i (resp. j0 si X n - 1) parjA+1 + 1 (resp.y0 + 1); mais
si tous les jp sont < p, on a YhPP h ap Pour tout p.

Cela posé, supposons Aa i ^ 0. Le second membre de (20) doit donc
contenir un terme de degré 0 mod q — 1 ; cela implique qu'il y a des

entiers ip, jp tels que Y h U 0 <jp < ip9 Yj'pPp — a mod ^ ~ ^ donc

i > Y ap d'après (21). De plus, si i Y ap> ces conditions impliquent
ip m Jp aP Pour tout p, ce qui donne:

(22) AaJ (f-l)nwr^
p

La partie principale de est donc - (n plaP\). C'est le résultat définitif
p

sur la question; on peut dire que pour l'essentiel il se trouvait déjà dans

Kummer. On en déduit évidemment la partie principale des sommes de

Jacobi, que Jacobi avait déjà calculée dans des cas assez généraux ([3 b]).
Les méthodes de Stickelberger et de Kummer, et même sans doute celles de

Jacobi, ne diffèrent pas, pour l'essentiel, de celle qu'on vient d'exposer.
Comme ce résultat donne l'ordre de toute somme de Gauss (ou de Jacobi)
relative à F, en toute place p-adique, il contient évidemment aussi la
décomposition de toutes ces sommes en facteurs premiers.

15. Tout cela ne touche pas à la question (b) du n° 12, qui, en revanche,
est liée, d'une part à la démonstration de la loi d'Eisenstein, et d'autre part
à la propriété des sommes de Jacobi de définir des caractères de Hecke.
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Commençons par la première, en nous plaçant d'abord dans le cas le plus

général; nous suivons Eisenstein ([5 b]) librement, mais d'assez près.

Soit C une racine primitive de Zm 1 ; soit k Q (£). Soit p idéal

premier (premier à m) dans k, de norme # on identifie Fg avec

Z [C]/p ; alors (x/p) détermine un caractère x d'ordre m sur Fq. Soit s une

racine primitive de Xp 1; soit la trace prise dans F^/Fp; x !-» et(x) est

un caractère additif xj/ de Fq. Posons <£> (p) — 1 )m G (x, *A)m; $ ne dépend

pas du choix de e; on l'étend à tous les idéaux premiers à m dans k par la

règle $ (ah) 0 (a) # (b). Appliquant le résultat du n° 14 à G (x, aux
places de k déterminées par p et ses conjugués, on trouve facilement la

décomposition de l'idéal principal (<P (p)), puis de ($ (a)), en facteurs

premiers ; elle est donnée par une puissance symbolique

(23) ($ (a)) a&

où 0 est un élément de l'anneau de groupe du groupe de Galois de k/Q,
défini comme suit. Pour tout t e (Z/mZ)x, soit crt l'automorphisme de k
qui change C en C- Alors on a

(24) 0£ * • <r=î
0 < t < m
U,m) l

(résultat obtenu par Kummer pour m premier).
En particulier, on peut appliquer (23) à un idéal principal a (a), de

sorte qu'on peut écrire

(24) 0 (a) e (a) • a0

où s (a) est une unité de k. Mais d'autre part la valeur absolue des sommes
de Gauss est donnée par (4) ; on en déduit aussitôt | <P (a) |2 N (a)m ;

tenant compte de (23) et (24), il s'ensuit que l'unité s (a), ainsi que tous ses

conjugués dans k, sont de valeur absolue 1. Le théorème de Kronecker
montre qu'alors s (a) est une racine de l'unité, de la forme + Ç.

Soit maintenant pr un idéal premier, premier à m, de norme q' =- p'n'
mv + 1. Pour p, x, comme précédemment, et p premier à p\ posons

G G (x, *A); on a:

G«' IX(x)^(qx) he Z (,/')-* G s G mod y.
Mais on a aussi (cf. le cas m 3 au n° 10):

e- (e-)- A-')-*1")) /£M\ mo„ p.
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11 s'ensuit qu'on a, chaque fois que N (a), N (b) sont premiers entre eux et
à m:

CV(b)\ /<£(a)N-1

puisqu'il en est ainsi pour a p, b p'. Prenons a (a), et appliquons
(24), en observant qu'on a, par transport de structure, pour tu 1 mod m,
c'est-à-dire a„ o~1 :

'a~M\ / a y /a
Ty ~ \b^) ~ ^

On obtient ainsi :

(25) /«»>\ /'«'
b y yv(b)

16. Pour tirer de là la loi d'Eisenstein, nous nous restreignons maintenant

(comme le faisait Eisenstein dès le début) au cas où m est un nombre
premier impair /. Dans ce cas, on a, avec G G (%, ijj) comme tout à

l'heure :

— G)1 — Y X (x)* (}x) — Y (Jx) ~ 1 mod /,

donc 0 (a) 1 mod / quel que soit a (ce qui répond à la question (b) du
n° 12), et par suite s (oc) ± 1 chaque fois que a est tel que a0 s 1

mod (£— l)2; il suffit pour cela qu'on ait a x mod (£ — l)2 avec

xgZ-/Z; Eisenstein dit alors que a est « primaire ». En langage moderne,
ces résultats font voir aussi que a !-* # (a) est un « caractère de Hecke » (un
« Grössencharakter ») de conducteur (£ — l)2. Si dans (25) on prend a
«primaire », et qu'on prenne pour b un idéal premier p de norme q /?", on
obtient (/>/a)n M (a/»)n. Mais n divise / — 1, donc est premier à /. On

a donc (p/ot) (<x/p), d'où finalement (a/oc) (oc/a) chaque fois que a

est entier rationnel premier à /, et que oc est premier à a et « primaire ». C'est

la loi d'Eisenstein.

17. En ce qui concerne les développements plus récents, nous serons
très brefs.

Pour mémoire, rappelons que les sommes de Gauss figurent parmi les

facteurs constants locaux dans les équations fonctionnelles des fonctions L;
ces facteurs sont dits aussi « nombres radiciels » (« root-numbers »,

« Wurzelzahlen »), sans doute parce que Hilbert, qui avait une sorte de
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génie pour les mauvaises terminologies, s'était avisé de baptiser « Wurzelzahl

» ce qu'avant lui on nommait « résolvante de Lagrange », et

« Lagrange'sche Wurzelzahl » ce qu'on a nommé ici somme de Gauss. Les

facteurs constants des équations fonctionnelles, pour les séries L de

Dirichlet, apparaissent pour la première fois dans le calcul de L (1) par
Dirichlet; ce calcul n'est pas autre chose, en substance, que la vérification
de l'équation fonctionnelle qui relie L (1) à L (0). Naturellement, ils
reparaissent, sous une forme plus générale, dans les équations fonctionnelles
des fonctions L de Hecke, puis d'Artin. Ils ont fait l'objet de travaux
considérables de Dwork et de Langlands, complétés en dernier lieu par
Deligne. Langlands a mis en évidence le rôle essentiel joué par ces facteurs

dans la théorie des représentations. L'auteur de ces lignes offre une médaille

(en chocolat) à celui qui proposera la meilleure dénomination pour les

facteurs en question.

18. Lorsqu'on rencontre des nombres algébriques qui, ainsi que tous
leurs conjugués, ont une valeur absolue de la forme pn/1 avec p premier, on
est toujours tenté, de nos jours, de se demander si ce sont des racines de

fonctions zêta en caractéristique p. Il en est effectivement ainsi des sommes
de Gauss et de Jacobi, comme Hasse et Davenport s'en sont aperçus en
1934 ([8]; cf. [9 a]); c'est même à cette occasion qu'ils ont découvert
l'importante relation entre sommes de Gauss à laquelle leur nom est resté

attaché. En particulier, les sommes de Jacobi d'ordre m sont racines (ou
pôles, suivant la dimension) des fonctions zêta des variétés 7 0;
rétrospectivement, on constate que des cas particuliers, exprimés dans un
autre langage, étaient déjà connus de Gauss, et que des cas assez généraux
sont implicites chez Kummer. Notons en passant, à titre de curiosité
historique, que le célèbre Tagebuch de Gauss s'ouvre et se referme sur la
cyclotomie: il débute, en date du 30 mars 1796, par la division du cercle
en 17 parties; il se termine, le 9 juillet 1814, par une note sur le nombre de
solutions de 1 x2 + y2 + x2y2 dans Fp, relié à « la théorie des résidus
biquadratiques » (donc aux « périodes » d'ordre 4).

Quant à la relation de Hasse-Davenport, elle relie les sommes de Gauss
d'ordre m dans Fq et dans une extension FQ de Fq. Soit Q qN ; soient t
et n la trace et la norme dans FQ/Fq ; soit G G (%, une somme de Gauss
relative à Fq; soit G ' la somme de Gauss de G (j° n,\j/ ° t) relative à FQ.
Alors on a — G ' (~G)N. Soit dit en passant, ceci montre une fois de
plus qu'on a pris « le mauvais signe » dans la notation usuelle des sommes
de Gauss. Il n'est sans doute pas trop tard pour rectifier cette faute.
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19. On peut appliquer les résultats cités au n° 18, sur les fonctions zêta
des variétés 0 (et, notons-le en passant, de toutes les variétés

qu'on peut définir comme quotients de ces dernières par des groupes finis
d'automorphismes) au calcul des fonctions zêta de ces mêmes variétés sur des

corps de nombres algébriques. On trouve que ces fonctions sont des produits
de fonctions L de Hecke, ce qui revient à dire que les sommes de Jacobi
définissent des caractères de Hecke dans les corps cyclotomiques. Comme on
l'a vu au n° 16, un cas particulier important (relatif aux sommes — G)1, où
G est une somme de Gauss d'ordre / premier impair) formait le fond de la
démonstration d'Eisenstein pour sa loi de réciprocité. En fait, il s'agit là
d'un résultat très général sur les caractères de Hecke « cyclotomiques »

dans tous les corps abéliens sur Q (cf. [9 b, c]) ; naturellement, ce sont les

corps totalement imaginaires qui sont intéressants de ce point de vue.
Une fois obtenus ces caractères, on peut se proposer d'étudier les

fonctions L de Hecke qui leur correspondent, et notamment leurs valeurs

L (5) pour 5 entier. Il y a lieu de citer à ce sujet un résultat remarquable de

Chowla et Selberg (v. [10]); convenablement interprété, celui-ci fait voir que
la valeur, en a 1, de la fonction L définie par un certain caractère « cyclo
tomique» sur Q(-v/ — n) (pour n premier ma 3 mod 4, c'est celui même

qu'on a défini d'après Cauchy au n° 9) s'exprime élémentairement au moyen
de 71 et des valeurs de la fonction F (s) pour s a/n, 0 < a < n. On

pourrait sans doute aller beaucoup plus loin dans cette voie.
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