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LATTICE POINTS INSIDE A CONVEX BODY

by G. D. Chakerian

A lattice point in the Euclidean plane R2 is a point with integer
coordinates. H. Steinhaus posed as an elementary problem the proof that for
each natural number n there exists a circle in the plane with exactly n lattice

points in its interior. The proof of this, as given for example in [1], [3], [4],

[5], uses the fact that there exists a point P in the plane such that any circle
centered at P passes through at most one lattice point. Then the result is

obtained by considering a continuously expanding family of circles centered

at P. Indeed, using properties of irrational numbers one can show directly

that the point P (a/2, 3) will serve.

It was shown by Browkin that the analogous result holds for a square,
and by Schinzel and Kulikowski that in fact the circle may be replaced by
any plane convex body. See [1], [2], [3], [4] for references to these and related
results. In this note we take a new viewpoint in establishing the existence of
the crucial point P and are able to generalize the result as follows.

Theorem. Let K be a convex body in m-dimensional Euclidean space Rm,

and let S be a countably infinite isolated subset of Rm. Then for each natural
number n there exists a homothetic copy ofK with exactly n points of S in its
interior.

Before proving the theorem, let us consider another way to approach
the problem of Steinhaus. For each pair of distinct lattice points A and B,
let I be the perpendicular bisector of the line segment AB. Note that any
circle passing through both A and B must have its center on /. Thus if there
is a point P not belonging to any of the lines /, then any circle centered at P
passes through at most one lattice point. But the required point P certainly
exists, since there are only countably many such lines /, and the plane
cannot be covered by a countable number of lines. [If one wants to crack a
peanut with a sledgehammer, then observe that each line / is a nowhere
dense set, and the Baire Category Theorem implies the plane is not the
union of a countable number of such sets. An elementary argument follows
by choosing a line m not belonging to the given set of lines. Each of the given
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lines / intersects m in at most one point, giving an at most countable subset

of m\.

It is now apparent how the argument generalizes to show that in a
Euclidean space of any dimension, for each natural number n there exists a

sphere with exactly n lattice points in its interior. Simply observe that the
collection of hyperplanes that are perpendicular bisectors of segments AB,
where A and B are lattice points, is a countable collection of nowhere dense

sets and hence cannot cover the entire space. Hence there is a point P not
belonging to any of these hyperplanes. Thus any sphere centered at P passes

through at most one lattice point, and the result follows.
One observes that the argument used for the existence of P required no

special property of lattice points except that they comprise a countable set,

and the expanding sphere centered at P contains a finite set of lattice points
at any stage because the lattice points are isolated. Thus a stronger result is

implied. Namely, given any countable infinite isolated subset S of a Euclidean

space, there exists a point P such that for each natural number n there exists

a sphere centered at P with exactly n points of S in its interior.
This brings us to the proof of the main theorem. Let K be a convex

body in m-dimensional Euclidean space Rm. That is, K is a compact convex
subset with nonempty interior. Suppose the origin is interior to K. The

gauge function/ : Rm R ofK is defined by/(x) inf {ji > 0 : xjfx e K],
x g Rm. Note that a point x belongs to the boundary of K if and only if
f(x) 1. If x g Rm and X > 0, then x + XK, the set of points of the form

x + Xy for y e K, is homothetic to K. A point a belongs to the boundary of
x + XK if and only if f(a~x) X. Given any two points a and b, the

boundary of x + XK contains both a and b if and only if / (a — x) X

f{b~x). The locus of points x such that the boundary of x + XK

contains both a and b for some X is thus equal to C {a, b) {x :/ {a — x)
f(b — x)}. But for each fixed a and b one has that C {a, b) is a nowhere

dense subset of Rm. [Observe that the graph {(x, 2)gRw+1 : X /(x),
x g Rm} is the boundary of a convex cone in Rm+1. The set C (a, b) is the

projection into Rm of the intersection of a certain distinct pair of translates

of this graph, and it is not difficult to show this is nowhere dense in Rm.]

Now let S be a countably infinite isolated subset of Rm. The collection of
sets C (a, b), for a,beS, is countable, and hence does not cover Rm since

each set is nowhere dense. Thus there exists a point x0 such that the boundary
of x0 + XK contains at most one point of S for each X > 0. For a sufficiently
small value of X the body x0 + XK contains exactly one lattice point. The

theorem follows by choosing successively larger values of X tending to infinity.
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Finally observe that we have obtained a slightly stronger result than

stated in the theorem, since all the homothetic copies of K may be chosen

of the form x0 + XK,, with x0 fixed.
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