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D onto C x C. Let p3 : D -> C be projection onto the third factor.
Let cp : C x C -» C be p3 o cp is a morphism. Define m : C x C -» C
as the composition C x C(e' ^ C x C ^ C. w is a morphism and on
closed points it agrees with our old m. We have thus proved the following
theorem.

Theorem 9 Every elliptic curve can be given the structure of an abelian

variety.
We also want to sketch briefly how one goes about proving that a

1-dimensional abelian variety has genus 1.

Theorem 10 (cf. Mumford [2], p. 42) Let Zbe an abelian variety, and let
Q0 be the dual space to the tangent space at e. Then there is a natural
isomorphism Q0 ®k(9x — Qx-

Corollary 11 Let Zbe a 1-dimensional abelian variety. Then Xhas genus 1,

i.e. X is an elliptic curve.

Proof:
dim X 1 => Q0 ~ k => Qx by Theorem 10. Setting D 0 in

the Riemann-Roch theorem gives g I (K) dim H° (K) dim H° (Qx)
dim H° (X, 0X). X irreducible and complete => dim H° (Z, 0X) — 1

=>g 1.

Thus we have the desired connection between (II.) and (III.).

§ 4. Uniqueness of the group law

The various group laws which we have discussed, have all involved the

choice of a k-point e as the identity element. It is natural to ask if this is

the only way in which they can differ, and this is indeed the case.

Recall the following extremely useful lemma.

Lemma 12 (Rigidity Lemma) Let X be a complete variety, Y and Z
any varieties, and let / : X x Z -> Z be a morphism such that for some

y0e Y (k), f{Xx {y0}) is a single point z0eZ(k). Then there is a

morphism g : Y -» Z such that if p2 : X x Y -» Y is projection onto
the second factor, then f — g o p2-

For a proof, see Mumford [2], p. 43.

We state some immediate corollaries.
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Corollary 13 Given the situation in Lemma 12, assume also that for some

x0eX(fc), /({x0} x 7) is the point z0. Then /(X x 7) {z0}.

Proof:

By the rigidity lemma, there exists g : 7 -> Z such that / g o p2.

f(x, y)(g o p2)(x, j) g (y) (g O /?2) (x0, j) /(x0> 7) Zq-

Corollary 14 If Z and 7 are abelian varieties and / : X -> 7 is any
morphism, then there exists a homomorphism h : X -» 7 and a fc-point

7 (fc) such that / Ta o h where Ta denotes translation by a.

Corollary 15 Let X and 7 be abelian varieties. Then X and 7 are
isomorphic as abelian varieties o X and 7 are isomorphic as schemes.

Proof:
(=> obvious
(<= Let / : X -» 7 be an isomorphism of schemes. / can be written

as / 7fl o h with a e 7 (&) and h a homomorphism. Ta is an isomorphism
of schemes with TUa as its inverse. Therefore h TUa of is an isomorphism
of schemes and hence of abelian varieties.

Corollary 16 Let X be a variety and suppose that (X, m) and (X, mr) are
two abelian variety structures on X with identity elements e and e' respectively.

Then m and m! differ only by translation.

Proof:
Let +, —, and translation all denote operations with respect to m. Consider

the morphism (m-mr) : X x X X. We have (m-m')(Xx {V})
ë (m-M')({e'}xX). By Corollary 13, (m-m')(Xx Y) e\ i.e.

m m' + e'.
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