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D onto C x C. Let p; : D—> C be projection onto the third factor.
Let ¢ : C x C— Cbe p; 0pi,. ¢ is a morphism. Definem : C x C - C
as the composition C x C©? C x C ® C. m is a morphism and on
closed points it agrees with our old m. We have thus proved the following

theorem.

Theorem 9 Every elliptic curve can be given the structure of an abelian
variety.

We also want to sketch briefly how one goes about proving that a
I-dimensional abelian variety has genus 1.

Theorem 10 (cf. Mumford [2], p. 42) Let X be an abelian variety, and let
Q, be the dual space to the tangent space at e. Then there is a natural
isomorphism Q, ®, 0, ~ Q3.

Corollary 11 Let X be a 1-dimensional abelian variety. Then X has genus 1,
1.e. X is an elliptic curve.

Proof :

dim X = 1= Q, = k= Q3 =~ 0y by Theorem 10. Setting D = 0 in
the Riemann-Roch theorem gives g = [(K) = dim H® (K) = dim H° (Qy)
= dim H° (X, 0y). X irreducible and complete = dim H° (X, 04) = 1
=g = I.

Thus we have the desired connection between (II.) and (IIl.).

§ 4. UNIQUENESS OF THE GROUP LAW

The various group laws which we have discussed, have all involved the
choice of a k-point e as the identity element. It is natural to ask if this is
the only way in which they can differ, and this is indeed the case.

Recall the following extremely useful lemma.

Lemma 12 (Rigidity Lemma) Let X be a complete variety, ¥ and Z
any varieties, and let f: X x Z — Z be a morphism such that for some
yo€ Y (k), f(X x {yo}) is a single point z, € Z (k). Then there is a
morphism g : ¥ — Z such that if p, : X x ¥ — Y is projection onto
the second factor, then f = g o p,.

For a proof, see Mumford [2], p. 43.

We state some immediate corollaries.
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Corollary 13 Given the situation in Lemma 12, assume also that for some
xo€ X (k), f({xo} x Y) is the point z,. Then f(X x ¥) = {zo}.

Proof:
By the rigidity lemma, there exists g : ¥ — Z such that f = g o p,.
fxy) =(gop)(x,3) = g() = (g0ps) (x0,5) = f (X0, %) = 2o.

Corollary 14 If X and Y are abelian varieties and f: X' —» Y is any
morphism, then there exists a homomorphism 4 : X - Y and a k-point
a € Y (k) such that f = T, o h where T, denotes translation by a.

Corollary 15 let X and Y be abelian varieties. Then X and Y are iso-
morphic as abelian varieties <> X and Y are isomorphic as schemes.

Proof :

(= .) obvious

(«=.) Let f: X - Y be an isomorphism of schemes. f can be written
asf = Y,ohwithae Y (k) and & a homomorphism. T, is an isomorphism
of schemes with Ty, as its inverse. Therefore 1 = Ty, 0 fis an isomorphism
of schemes and hence of abelian varieties.

Corollary 16 Let X be a variety and suppose that (X, m) and (X, m’) are
two abelian variety structures on X with identity elements e and e’ respec-
tively. Then m and m’ differ only by translation.

Proof':

Let +, —, and translation all denote operations with respect to m. Con-
sider the morphism (m—m') : X x X — X. We have (m—m’) (X x {e'})
= e = (m—m')({¢'} xX). By Corollary 13, (m—m')(Xx Y) = ¢', ie.
m=m +¢e'.
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