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A proof of Theorem 1 may be found on page 28 of Serre [4].
Recall that:

(1) degK = 2g — 2 where K denotes the canonical divisor on X,

(2) the Riemann-Roch theorem, ie. [(D) =degD + 1 — g + [(K—D)
where /(D) = dim, L (D), and

(3) if X is a non-singular plane curve of degree n, then g = (n—1) (n—2)/2.

Def. X is an elliptic curve if g = 1.

Notice that if D is a divisor of degree n on a curve X, then
n<0=L(D)=0=1[1(D) = 0. In particular, on an elliptic curve X,
n>0=deg(K—D) = —n<0=[(K—D) =0=1[(D) = nfrom (1) and
(2) above.

Theorem 2 A non-singular complete curve C in P? of degree 3 is an
elliptic curve.

Proof :
B)=g=0CB-1)3-2)2 = 1.

Theorem 3 Every elliptic curve X is isomorphic 1o a non-singular complete
irreducible curve C in P? of degree 3.

Proof :

Let D be a divisor of degree 3 on X.

Theorem 1 implies that D is very ample, i.e. that we have an isomorphism
from X to a non-singular complete irreducible curve C in P (L(D)).
Riemann-Roch = [(D) = 3 =P (L(D)) = P> Let n=g(C). X an
elliptic curve =1 =g(X)=g(C) = m—-1)(n—2)/2=n = 3.

Thus we have established the desired connection between (1) and (II).

§2 ALGEBRAIC AND GEOMETRIC GROUP LAWS ON AN ELLIPTIC CURVE

Let X be an elliptic curve over k, and let X (k) denote the set of
k-points of X. We begin by defining a group law on X (k) in a rather
algebraic fashion. Let Div® (X) be the group of divisors of degree 0 on X.
Let ~ denote linear equivalence, and let Div® (X)/~ be the quotient
group. If D e Div® (X), let Cl (D) be its image in Div® (X)/~.

Recall that a divisor D = XnpP is called effective if np = 0 for all P.
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Lemma 4 Let D, and D, be effective divisors of degree 1 on X. Then
(4) D1 = D2¢>D1 ~ Dz.

Proof:

(=) Obvious.

(<) D, effective =L (D;) contains all the constant functions.
deg(D,) = 1=1(D,) = 1= L(D,) consists solely of the constant func-
tions. Suppose now that D; ~ D,. Then there exists f€ k (X ) such that
D, + (f) = D,. D, effective = feL(D,)=f constant = D; = D,.

Fix a k-point e of X. Define a map @ from X (k) to Div? (X)/~
by P —» Cl(P—e¢).

Proposition 5 The map @ : X (k) » Div® (X)/~ is a bijection.

Proof:

Claim @ is injective. Let P, P, € X (k). @ (Py) = @ (P,) = Cl(P;—¢)
= Cl(P,—e)<P, —e~P,—e<P ~P,<P =P, So ® is injective.
Claim @ is surjective. Let D e Div® (X)/~ with D e Div® (X) such that
Cl(D) = D. deg(D+e) = 1=1(D+e) = 1 = there exists fe L (D+e),
f# 0, such that (/) + D + e=0, ie. (f) + D + e = P for Pe X (k).
®(P) = Cl(P—e) = CI((f)+ D) = CI(D) = D. Therefore @ is sur-
jective, and hence bijective.

Thus X (k) receives an abelian group structure via @, i.e. the sum of
P, and P, is @71 (@ (Py) + D (Py)) = ¢ ' (Cl(Py—e) + Cl(P,—e))
= ¢~ (CI(P,+P,—2¢)) = that point Q on X' suchthat Q ~ P; + P, — e.
We therefore have a map M : X (k) x X (k) » X (k) which we shall call
the “algebraic” group law.

Now let us assume that C is a non-singular complete cubic in P*. We
proceed to define a “geometric” group law on C (k). If Py, P, e C (k),
there exists a unique line L such that the intersection cycle L.C
= P, + P, + P; for some Pye C(k). If P, # P,, L is the unique line
through P, and P,. If P, = P,, L i1s the unique tangent to C at P,. Py
is thus uniquely determined by P; and P, and we have defined a mapping
@ :C(k)x C(ky—> C(k). Let e be a fixed k-point of C. By repeating
the preceding procedure with the points ¢ (P, P,) and e, we will obtain
a new point P; + P,. Let m : C(k) x C (k) be the resulting map, i.e.

m is the composition of (e, ¢) and @, m = ¢° (e, ¢). m is the “geometric”
group law.
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By using certain geometric properties of P2, it is possible to prove
that m gives C (k) an abelian group structure (cf. Fulton [1], p. 125). We
choose instead to prove the following proposition.

Proposition 6 The “algebraic” group law on C coincides with the “geo-
metric” group law on C, ie. m = M.

Proof :

Let Py, P, € C (k). Let Py = ¢ (P, P,). Then there exists a line L,
such that L; . C = P; + P, + P;. Let P, = ¢ (e, P3) = ¢ (e, ¢ (P, P,))
= m (P, P,). Then there exists a line L, such that L, . C = e + P; + P,.
Let f = L,/L, and regard f as an element of £k (C). (f) =P, + P, — e
—P,=>P,~P, + P, —e, 1.e. P, = M(P,,P,). Therefore m = M.

§ 3. ELLIPTIC CURVES AND ABELIAN VARIETIES

The purpose of this section is to prove the equivalence of notions (II)
and (III). Up to this point, we have a group law on the set of k-points
of an elliptic curve, and we would like to know that this is induced by an
abelian variety structure. We shall also prove that 1-dimensional abelian
varieties are elliptic curves.

Definition Let k be a field. An abelian variety X is a complete non-singular
variety defined over k together with k-morphisms

m: XxX-X
it XX
.e:Spec(k)—->X

which satisfy the usual group axioms (cf. Mumford [2], p. 95).

To show that an elliptic curve can be given the structure of an abelian
variety, it suffices to check that the map ¢ described in § 2 is a morphism.
Recall that ¢ was defined on k-points as taking (Py, P,) e C (k) x C (k)
to the unique third point P; € C (k) such that P, + P, + Py = L. C for
some line L. It is quite easy to see that ¢ is @ morphism on a certain affine
open subset of C x C. To be precise, we have the following lemma.

Lemma 7 ¢ defines a morphism from

& = Spec (k [X1, Y1, Xo, Yol [ (f (X1, Y1), f(X5, 13)) (X1"X2))
to 7 = Spec (k [X3, Y31/ (X3, Y3)( where f'is an affine equation for C.



	§ 2. Algebraic and geometric group laws on an elliptic curve

