
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 19 (1973)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: AN ELEMENTARY PROOF THAT ELLIPTIC CURVES ARE ABELIAN
VARIETIES

Autor: Olson, Loren D.

Kapitel: § 2. Algebraic and geometric group laws on an elliptic curve

DOI: https://doi.org/10.5169/seals-46291

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 19.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-46291
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


— 174 —

A proof of Theorem 1 may be found on page 28 of Serre [4].
Recall that:

(1) degX 2g — 2 where K denotes the canonical divisor on X,
(2) the Riemann-Roch theorem, i.e. 1(D) deg D + 1 — g + l(K—D)

where 1(D) — dimkL(D), and

(3) if X is a non-singular plane curve of degree n, then g (n— 1) (n — 2)/2.

Def. X is an elliptic curve if g 1.

Notice that if D is a divisor of degree n on a curve X, then

n < 0 => L (D) 0=> I (D) — 0. In particular, on an elliptic curve X,
n > 0 => deg(X— D) — n < 0 => l(K—D) 0 => /(D) n from (1) and

(2) above.

Theorem 2 A non-singular complete curve C in P2 of degree 3 is an

elliptic curve.

Proof:
(3)=>g (3 — 1) (3 2)/2 - 1.

Theorem 3 Every elliptic curve X is isomorphic to a non-singular complete
irreducible curve C in P2 of degree 3.

Proof:
Let D be a divisor of degree 3 on X.
Theorem 1 implies that D is very ample, i.e. that we have an isomorphism

from X to a non-singular complete irreducible curve C in P (L(Dfj.
Riemann-Roch => / (D) 3 => P (L(D)) P2. Let n — g (C). X an

elliptic curve => 1 g (X) g (C) — (n— 1) (n — 2)/2 => n — 3.

Thus we have established the desired connection between (I) and (II).

§ 2. Algebraic and geometric group laws on an elliptic curve

Let X be an elliptic curve over k, and let X (fc) denote the set of
Xpoints of X. We begin by defining a group law on X (k) in a rather

algebraic fashion. Let Div° (X) be the group of divisors of degree 0 on X.
Let ~ denote linear equivalence, and let Div° (X)/ ~ be the quotient

group. If D g Div° (X), let Cl (D) be its image in Div° (X)/~.
Recall that a divisor D InPP is called effective if nP ^ 0 for all P.
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Lemma 4 Let D1 and D2 be effective divisors of degree 1 on X. Then

(4) Di D2 ^ ~ D2-

Proof:

(=>) Obvious.

(<=) Dx effective => L (Df) contains all the constant functions.

degCDi) 1 => /(L>i) 1 =>L(Di) consists solely of the constant

functions. Suppose now that D1 ~ D2. Then there exists fe k (X) such that

B1 + (f) D2. D2 effective =>feL{Df)^f constant => D± D2.

Fix a k-point e of X. Define a map $ from X (k) to Div° (X)/~
by P -> CI CP —e).

Proposition 5 The map : X (k) -> Div° (X)/~ is a bijection.

Proof:
Claim <P is injective. Let Pu P2e X (k). # (Pf) (P2) CI (P1 — e)

Cl(P2-e)oP1 - e ~ P2- eoP1 ~ P2oPx ~ P2. So # is injective.
Claim # is surjective. Let Z>eDiv°(X)/~ with i) e Div° (X) such that

C1(D) 15. deg(D + e) 1 => l(D + e) 1 => there exists feL(D + e),

f ^ 0, such that (/') + i) + e ^ 0, i.e. (/) + D + e P for P e X {k).

cP(P) Cl(P-e) CI ((/) + D) Cl (P>) D. Therefore L> is

surjective, and hence bijective.
Thus X (k) receives an abelian group structure via <P, i.e. the sum of

P1 and P2 is ^(^(PJ + $(P2)) - 0-1{C\(P1-e) + Cl(P2-e))
<P~1 (CI (P1+P2 — 2c)) that point Q on Xsuch that Q ~ Pt + P2 — e.

We therefore have a map M : X (k) x X (/c) -» X (k) which we shall call
1 the "algebraic" group law.

Now let us assume that C is a non-singular complete cubic in P2. We

proceed to define a "geometric" group law on C (k). If P1,P2eC(/t),
there exists a unique line L such that the intersection cycle L. C

P1 + P2 + P3 for some P3 e C (k). If P1 =£ P2, L is the unique line

through P1 and P2. If P1 P2, L is the unique tangent to C at Px. P3
is thus uniquely determined by P1 and P2 and we have defined a mapping
<p : C(X) x C(fc)-> C(/c). Let e be a fixed Xpoint of C. By repeating
the preceding procedure with the points <p(P1?P2) and e, we will obtain
a new point Px + P2. Let m : C (k) x C (k) be the resulting map, i.e.

m is the composition of (e, cp) and (p, m (p° (e, <p). m is the "geometric"
group law.
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By using certain geometric properties of P2, it is possible to prove
that m gives C (k) an abelian group structure (cf. Fulton [1], p. 125). We
choose instead to prove the following proposition.

Proposition 6 The "algebraic" group law on C coincides with the
"geometric" group law on C, i.e. m M.

Proof:
Let Pu P2e C (k). Let P3 cp (Pu P2). Then there exists a line

such that L1 C — P1 + P2 + P3. Let P4 cp (e, P3) cp (e, cp (Pl9 P2))
m(Pl9P2). Then there exists a line L2 such that L2 C e + P3 + P4.

Let / L1/L2 and regard / as an element of k (C). (/) P1 + P2 — e

— P4=> P4^PX + P2 — e, i.e. P4 M(P1,P2). Therefore m M.

§ 3. Elliptic curves and abelian varieties

The purpose of this section is to prove the equivalence of notions (II)
and (III). Up to this point, we have a group law on the set of /^-points
of an elliptic curve, and we would like to know that this is induced by an
abelian variety structure. We shall also prove that 1-dimensional abelian
varieties are elliptic curves.

Definition Let A: be a field. An abelian variety X is a complete non-singular
variety defined over k together with &-morphisms

m : X x X-> X
i : X-> X
e : Spec {k) -> X

which satisfy the usual group axioms (cf. Mumford [2], p. 95).

To show that an elliptic curve can be given the structure of an abelian

variety, it suffices to check that the map cp described in § 2 is a morphism.
Recall that ç was defined on k-points as taking (Pl9 P2) e C (k) x C (k)
to the unique third point P3e C (k) such that Px + P2 + P3 L. C for
some line L. It is quite easy to see that cp is a morphism on a certain affine

open subset of C x C. To be precise, we have the following lemma.

Lemma 1 cp defines a morphism from

y Spec (k [X\, YuX2,Y2]/(f(X1Ys),f(X2,72))(X:l~Z2))
to .X Spec (/c [X3, Y3]If(X3,F3)( where / is an affine equation for C.


	§ 2. Algebraic and geometric group laws on an elliptic curve

