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AN ELEMENTARY PROOF THAT ELLIPTIC CURVES
ARE ABELIAN VARIETIES

Loren D. OLsON

The basic purpose of this note is to give an elementary proof of the fact
that an elliptic curve can be given the structure of an abelian variety. It is
easy enough to give the rational points on such a curve an abelian group
structure, but it is rather more difficult to show that the group structure so
obtained actually arises from a morphism of schemes. Using properties of
the Picard scheme, etc., this result follows almost immediately. However,
such an approach presumes a fairly advanced knowledge of the modern
machinery of algebraic geometry, and we would like to present here a more
elementary proof of this fact. All the necessary material for the proof may
be found in Fulton [1] and Mumford [3] together with the first chapter of
Serre [4].

In addition to the proof mentioned above, we include some well-known
results which allow us to outline the essential equivalence of the following
three concepts:

(I) non-singular cubics in P2,
(1) elliptic curves, i.e. non-singular complete irreducible curves of
genus 1, and
(III) 1-dimensional abelian varieties.

§ 1. ELLIPTIC CURVES AND PLANE CUBICS

Let k be an arbitrary field with algebraic closure k. Throughout this
paper, we shall assume that all varieties have a k-point, and that everything
is defined over k. All curves are assumed to be non-singular, complete, and
irreducible.

Let g = g (X) = dim, H' (X, Oy) denote the genus of such a curve X.

Theorem 1. Let D be a divisor on X. Then deg(D)>=2g + 1 = D is

very ample, ie. there is an embedding of X into P (L(D)) where
L(D) = {fek(X)|(f)+ D=0}.
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A proof of Theorem 1 may be found on page 28 of Serre [4].
Recall that:

(1) degK = 2g — 2 where K denotes the canonical divisor on X,

(2) the Riemann-Roch theorem, ie. [(D) =degD + 1 — g + [(K—D)
where /(D) = dim, L (D), and

(3) if X is a non-singular plane curve of degree n, then g = (n—1) (n—2)/2.

Def. X is an elliptic curve if g = 1.

Notice that if D is a divisor of degree n on a curve X, then
n<0=L(D)=0=1[1(D) = 0. In particular, on an elliptic curve X,
n>0=deg(K—D) = —n<0=[(K—D) =0=1[(D) = nfrom (1) and
(2) above.

Theorem 2 A non-singular complete curve C in P? of degree 3 is an
elliptic curve.

Proof :
B)=g=0CB-1)3-2)2 = 1.

Theorem 3 Every elliptic curve X is isomorphic 1o a non-singular complete
irreducible curve C in P? of degree 3.

Proof :

Let D be a divisor of degree 3 on X.

Theorem 1 implies that D is very ample, i.e. that we have an isomorphism
from X to a non-singular complete irreducible curve C in P (L(D)).
Riemann-Roch = [(D) = 3 =P (L(D)) = P> Let n=g(C). X an
elliptic curve =1 =g(X)=g(C) = m—-1)(n—2)/2=n = 3.

Thus we have established the desired connection between (1) and (II).

§2 ALGEBRAIC AND GEOMETRIC GROUP LAWS ON AN ELLIPTIC CURVE

Let X be an elliptic curve over k, and let X (k) denote the set of
k-points of X. We begin by defining a group law on X (k) in a rather
algebraic fashion. Let Div® (X) be the group of divisors of degree 0 on X.
Let ~ denote linear equivalence, and let Div® (X)/~ be the quotient
group. If D e Div® (X), let Cl (D) be its image in Div® (X)/~.

Recall that a divisor D = XnpP is called effective if np = 0 for all P.
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Lemma 4 Let D, and D, be effective divisors of degree 1 on X. Then
(4) D1 = D2¢>D1 ~ Dz.

Proof:

(=) Obvious.

(<) D, effective =L (D;) contains all the constant functions.
deg(D,) = 1=1(D,) = 1= L(D,) consists solely of the constant func-
tions. Suppose now that D; ~ D,. Then there exists f€ k (X ) such that
D, + (f) = D,. D, effective = feL(D,)=f constant = D; = D,.

Fix a k-point e of X. Define a map @ from X (k) to Div? (X)/~
by P —» Cl(P—e¢).

Proposition 5 The map @ : X (k) » Div® (X)/~ is a bijection.

Proof:

Claim @ is injective. Let P, P, € X (k). @ (Py) = @ (P,) = Cl(P;—¢)
= Cl(P,—e)<P, —e~P,—e<P ~P,<P =P, So ® is injective.
Claim @ is surjective. Let D e Div® (X)/~ with D e Div® (X) such that
Cl(D) = D. deg(D+e) = 1=1(D+e) = 1 = there exists fe L (D+e),
f# 0, such that (/) + D + e=0, ie. (f) + D + e = P for Pe X (k).
®(P) = Cl(P—e) = CI((f)+ D) = CI(D) = D. Therefore @ is sur-
jective, and hence bijective.

Thus X (k) receives an abelian group structure via @, i.e. the sum of
P, and P, is @71 (@ (Py) + D (Py)) = ¢ ' (Cl(Py—e) + Cl(P,—e))
= ¢~ (CI(P,+P,—2¢)) = that point Q on X' suchthat Q ~ P; + P, — e.
We therefore have a map M : X (k) x X (k) » X (k) which we shall call
the “algebraic” group law.

Now let us assume that C is a non-singular complete cubic in P*. We
proceed to define a “geometric” group law on C (k). If Py, P, e C (k),
there exists a unique line L such that the intersection cycle L.C
= P, + P, + P; for some Pye C(k). If P, # P,, L is the unique line
through P, and P,. If P, = P,, L i1s the unique tangent to C at P,. Py
is thus uniquely determined by P; and P, and we have defined a mapping
@ :C(k)x C(ky—> C(k). Let e be a fixed k-point of C. By repeating
the preceding procedure with the points ¢ (P, P,) and e, we will obtain
a new point P; + P,. Let m : C(k) x C (k) be the resulting map, i.e.

m is the composition of (e, ¢) and @, m = ¢° (e, ¢). m is the “geometric”
group law.
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By using certain geometric properties of P2, it is possible to prove
that m gives C (k) an abelian group structure (cf. Fulton [1], p. 125). We
choose instead to prove the following proposition.

Proposition 6 The “algebraic” group law on C coincides with the “geo-
metric” group law on C, ie. m = M.

Proof :

Let Py, P, € C (k). Let Py = ¢ (P, P,). Then there exists a line L,
such that L; . C = P; + P, + P;. Let P, = ¢ (e, P3) = ¢ (e, ¢ (P, P,))
= m (P, P,). Then there exists a line L, such that L, . C = e + P; + P,.
Let f = L,/L, and regard f as an element of £k (C). (f) =P, + P, — e
—P,=>P,~P, + P, —e, 1.e. P, = M(P,,P,). Therefore m = M.

§ 3. ELLIPTIC CURVES AND ABELIAN VARIETIES

The purpose of this section is to prove the equivalence of notions (II)
and (III). Up to this point, we have a group law on the set of k-points
of an elliptic curve, and we would like to know that this is induced by an
abelian variety structure. We shall also prove that 1-dimensional abelian
varieties are elliptic curves.

Definition Let k be a field. An abelian variety X is a complete non-singular
variety defined over k together with k-morphisms

m: XxX-X
it XX
.e:Spec(k)—->X

which satisfy the usual group axioms (cf. Mumford [2], p. 95).

To show that an elliptic curve can be given the structure of an abelian
variety, it suffices to check that the map ¢ described in § 2 is a morphism.
Recall that ¢ was defined on k-points as taking (Py, P,) e C (k) x C (k)
to the unique third point P; € C (k) such that P, + P, + Py = L. C for
some line L. It is quite easy to see that ¢ is @ morphism on a certain affine
open subset of C x C. To be precise, we have the following lemma.

Lemma 7 ¢ defines a morphism from

& = Spec (k [X1, Y1, Xo, Yol [ (f (X1, Y1), f(X5, 13)) (X1"X2))
to 7 = Spec (k [X3, Y31/ (X3, Y3)( where f'is an affine equation for C.
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Proof:

In any characteristic, C is isomorphic to a curve in P2 given by
F(X,Y,Z)= Y’Z+ a,XYZ + a, YZ* + X°> + a3 X°Z + a, XZ* + as 2’
with a; € k. Assume C is in this form. Taking Z = 0 as the hyperplane
at infinity, Z n C = (0, 1, 0) which we take as the point e. The affine
equation then becomes f(X,Y)= Y*+ a;XY +a, ¥ + X° + a; X*
+ a,X + as.The k-points of & are points (P, P,) such that Py, P, € C (k)
— {e} and such that if P; = (xy, yy) and P, = (x,, y,), then x; # x,.
The line L through P, and P, is given by L = ¥ — AX — v where
A==y /(x;—x,) and D= Yy, — AX; = Y, — AX,. Letting
Y =AX + v in f(X, Y), we obtain a polynomial in X of degree 3.
P,,P,eC(k)=x, and x, are roots of f(X, A X+v). The third root x;
is thus an element of k, specifically x; = < x; — x, — A% — a;A — as.
Setting y; = Ax; + v, we obtain the third point P; = (x3, y3) in the
intersection cycle L. C, ie. Py = ¢ (P4, P,). [Note that we have just
used an affine version of Lemma 8 below.] Thus the morphism ¢ is defined
by the ring-homomorphism taking X; to — X; — X, A2 —a ) — ay
and Y, to AX; + v.

Thus ¢ may be regarded as a rational map from C x C — C. The
whole point is to prove that ¢ is defined on all of C x C. Let ¢’ denote
the morphism from & to C defined in Lemma 7. We proceed by taking
the closure of the graph of ¢’ in C x C x C and using this closed set
to give us a morphism from C x C - C.

Let 2 = P2 x P2 x P? x P27, where P>  denotes the projective
space consisting of all lines in P? (we identify the line a; X + a,Y + asZ
with the point (a,, a,, a;)). We want to define a certain subscheme of 2,
namely the closed subscheme I" whose k-points consist of all (Py, P,, P3, L)
such that the intersection cycle L.C = P; + P, + P5;. This should of
course give us the graph of our sought-for ¢ after projection onto the
first three factors.

Recall that the procedure for passing between a homogeneous poly-
nomial G' in two variables and an inhomogeneous polynomial G’ in one
- variable implies that G can be written as a product of linear factors over
~ k since G’ can be written as a product of polynomials of degree 1 over k.
~ The resulting factorization is of course unique up to constant factors.

 Lemma 8 (cf. Fulton [1], p. 82) Let F be a curve of degree n in P? and
let L be a line which is not a component of F. Then there exists a hom-
~ogeneous form G (M, N) in k [M, N] of degree n such that the factors of
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G (M, N) correspond (with the same multiplicities) to the points in the
intersection cycle L. F. To be precise: let U = (uy, u,, u3) and V = (v,
V,, U3) be two distinct k-points on the line L. We have an isomorphism
h:P'~ L given by (s, t) - (su; +1tvy, su,+1v,, sus+1tvs). Let G (M, N)
= F(Mu,+ Nv,, Mu,+ Nv,, Mu;+ Nv;). Moreover, let H (M, N)

= [] (t;M—s;N) be a homogeneous form of degree n with ¢, s;€k.
i=1

Let Pi - h(Si, tl)EI/(E). Then LF: P1 + ‘e +Pn¢>H(M, N)

= AG (M, N) for /e k*.

Proof :
G (M, N) factors over k, and we can write G (M, N) = [] (;M+B;N)

i=1
with o;, ;e k. Let PeL (k) and let («, f) = A~ ' (P). The intersection
number I (P, FAL) = ord 5 (F) = the maximal deZ such that
(BM —aN)* ] G (M, N). Bezout’s theorem plus unique factorization finishes
the proof.

Recall that we want to define a closed subscheme I' of Z whose
k-points (P, P,, P;, L) are precisely such that P; + P, + P; = L. C.
One way of defining a closed subscheme I' is to give a set of homogzneous
polynomials and take I' as the closed subscheme defined by them. We
then have to check the statement above concerning the k-points. Take
Y =X,Y,Z,X,, Yy, Z,, X5, Y3, 25,4, 4,, A;) as a coordinate
system for . The first thing we do is to write down three equations
requiring that P, P,, and P; all lie on the line L. The equations are

(Ey) A1 Xy + A, Y, + A Z,
(Ey) Ay X, + AyY, + A3Z,
(Ey) A X5+ A, Y5 + A3Z,

Lemma 8 will now help us find the remaining equations. From now on,
assume (P, P,, P5, L) satisfies E;, E,, and E;. Let L = (a,, a,, a,), i.e.
L is the line a, X + a,Y + a3;Z. At least one of ay, a,, ay s non-zero,
say a; # 0 for the moment. Then U = (a,+a;, —ay, —a;) and
V = (a,, —a;, 0) are two distinct points on L.

From the homogeneous polynomial Gy = A, F(M(A,+ A3)+ NA,,
— MA;—NA;, —MA,( where F is the equation for C. Substituting

(a;, a,, a;) in G, we obtain the polynomial described in Lemma 8 for the
3

two points U and V. Let H; = A, |] ((Z;— Y)M+ Z;N). Evaluating

i=1
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3
H, at (P, P,, Ps, L) yields a; [] ((z;—y;)M+z;N). Using the isomor-

i=1
phism 4 in Lemma 8, we find that h(—z,z,—y) = (—z{a,+as)
+(z;—y)as, —z(—a)+(z;—y) (—ay), —z{—a)+(z;—y) O) = (—za3
— Yy, Viy, 2,0y) = (X, i, 2;) = P; since (Py, Py, P3, L) is assumed to
satisfy E,, E,, and FE;. Thus, by Lemma 8, L.C =P + P, + P;
<G, (Py, Py, P3,L) = AH(P;, P,, P5,L) for some Aek* But how can
we write down this latter condition in terms of polynomials? Write

3
Gl — Z giMiNB—i

and
5
Hl = Z l/liMiN3_i
where g;, h; €k [Z]
Let
8i §j
Dyy; = dd(hi hj) = gih; — g;h;

for 0 <7, j < 3. To say that G, and H, differ by a non-zero constant
A€ k* is precisely the same as requiring the Dy;;’s to be 0. So the case
a; # 0 is taken care of. But clearly we can form the corresponding poly-
nomials G,, K,, and the D,;;’s for a, # 0 and G, Hj, D;;;’s for a; # 0.
We take I' to be the closed subscheme of & defined by £, E,, E; the E|;;s,
the D,;’s, and the Dj;;’s. The k-points of I" are precisely those (P, P,,
P, L) such that L. C = P; + P, + Ps.

Let pyys 0 P — P2 x P? x P? be projection on the first three factors.
P13 is a closed map since P?” is complete. Therefore D = p,,5 (I) is
closed in P2xP2x P’ DcCxCxCcP>*xP*xP? and D
is closed in C x C x C. Consider I',, = C x C x C, where I',, denotes
the graph of @’. Let E be its closure in C x C x C. We claim that D = E.
D is closed and contains I',, hence D =2 E. Consider the projection
D12t D — C x C onto the first two factors. p;, 1s a bijection on closed
points. py, (I',) = & is open in C x C, so py, (I',) = C x C since
C x C 1s irreducible. p;, (E) 1s closed and py, (E) 2 py, (I',). Therefore
P12 (E) = C x C. p,, is a bijection, so D = E. We claim moreover that
P12 18 an isomorphism from D to C x C. We know that p,, restricted to
I, is an isomorphism from I',, onto & (cf. Mumtord [3], p. 71). Thus
P12 18 a birational map from D to C x C. By Zariski’s Main Theorem
(cf. Mumford [3], p. 413) we conclude that p,, is an isomorphism from
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D onto C x C. Let p; : D—> C be projection onto the third factor.
Let ¢ : C x C— Cbe p; 0pi,. ¢ is a morphism. Definem : C x C - C
as the composition C x C©? C x C ® C. m is a morphism and on
closed points it agrees with our old m. We have thus proved the following

theorem.

Theorem 9 Every elliptic curve can be given the structure of an abelian
variety.

We also want to sketch briefly how one goes about proving that a
I-dimensional abelian variety has genus 1.

Theorem 10 (cf. Mumford [2], p. 42) Let X be an abelian variety, and let
Q, be the dual space to the tangent space at e. Then there is a natural
isomorphism Q, ®, 0, ~ Q3.

Corollary 11 Let X be a 1-dimensional abelian variety. Then X has genus 1,
1.e. X is an elliptic curve.

Proof :

dim X = 1= Q, = k= Q3 =~ 0y by Theorem 10. Setting D = 0 in
the Riemann-Roch theorem gives g = [(K) = dim H® (K) = dim H° (Qy)
= dim H° (X, 0y). X irreducible and complete = dim H° (X, 04) = 1
=g = I.

Thus we have the desired connection between (II.) and (IIl.).

§ 4. UNIQUENESS OF THE GROUP LAW

The various group laws which we have discussed, have all involved the
choice of a k-point e as the identity element. It is natural to ask if this is
the only way in which they can differ, and this is indeed the case.

Recall the following extremely useful lemma.

Lemma 12 (Rigidity Lemma) Let X be a complete variety, ¥ and Z
any varieties, and let f: X x Z — Z be a morphism such that for some
yo€ Y (k), f(X x {yo}) is a single point z, € Z (k). Then there is a
morphism g : ¥ — Z such that if p, : X x ¥ — Y is projection onto
the second factor, then f = g o p,.

For a proof, see Mumford [2], p. 43.

We state some immediate corollaries.
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Corollary 13 Given the situation in Lemma 12, assume also that for some
xo€ X (k), f({xo} x Y) is the point z,. Then f(X x ¥) = {zo}.

Proof:
By the rigidity lemma, there exists g : ¥ — Z such that f = g o p,.
fxy) =(gop)(x,3) = g() = (g0ps) (x0,5) = f (X0, %) = 2o.

Corollary 14 If X and Y are abelian varieties and f: X' —» Y is any
morphism, then there exists a homomorphism 4 : X - Y and a k-point
a € Y (k) such that f = T, o h where T, denotes translation by a.

Corollary 15 let X and Y be abelian varieties. Then X and Y are iso-
morphic as abelian varieties <> X and Y are isomorphic as schemes.

Proof :

(= .) obvious

(«=.) Let f: X - Y be an isomorphism of schemes. f can be written
asf = Y,ohwithae Y (k) and & a homomorphism. T, is an isomorphism
of schemes with Ty, as its inverse. Therefore 1 = Ty, 0 fis an isomorphism
of schemes and hence of abelian varieties.

Corollary 16 Let X be a variety and suppose that (X, m) and (X, m’) are
two abelian variety structures on X with identity elements e and e’ respec-
tively. Then m and m’ differ only by translation.

Proof':

Let +, —, and translation all denote operations with respect to m. Con-
sider the morphism (m—m') : X x X — X. We have (m—m’) (X x {e'})
= e = (m—m')({¢'} xX). By Corollary 13, (m—m')(Xx Y) = ¢', ie.
m=m +¢e'.
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