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CHAPITRE PREMIER

CORPS FINIS (RAPPELS)

Ce chapitre résume les propriétés générales des corps finis. Rappelons
que d’aprés le théoréme de Wedderburn, tout corps fini est commutatif
(pour une démonstration, voir par exemple [1], pp. 35-37, ou [19], p. 1).

§ 1. Classification des corps ﬁnfs.

1.1. Soit k un corps fini. Sa caractéristique est certainement différente
de 0; c’est un nombre premier p, et le sous-corps premier de k s’identifie a
F, = Z/pZ. Notons f le degré de I’extension k/F,; k est isomorphe, en
tant qu’espace vectoriel sur F,, au produit direct de f exemplaires de F;
en particulier:

PROPOSITION 1. — Si q désigne le nombre d’éléments de k, on a q = p’.

Considérons alors k*, groupe multiplicatif de k; il est d’ordre ¢ — 1;
on a donc, pour tout élément a de k*, g?~1 = 1, et a fortiori a? = a;
comme cette égalité reste vraie pour a = 0, elle est vérifiée par tout élément
de k; en conséquence:

PROPOSITION 2. —- Si Q désigne une cléture algébrique de k (donc aussi de
F,), k est égal a l’ensemble des racines dans Q du polynéme X% — X. En
particulier, k est le corps de décomposition dans Q du polynéme X1 — X, et
tout corps fini ayant méme nombre d’éléments q (donc méme caractéristique p)
que k est nécessairement isomorphe a k.

Pour k = F,, l'identit¢ a? = g s’écrit a” = a, et constitue le petit
théoréme de Fermat sur les restes modulo p. Pour k quelconque, la propo-
sition 2 permet d’écrire

X' -1 =[] (X-a); X'-X =[][(X—a);
ack* aek
la premiére de ces deux égalités montre que les fonctions symétriques élé-
mentaires des éléments de k* autres que le produit sont toutes nulles, et que
le produit de tous les éléments de k* est égal & — 1; pour k = F,, cette
derniére propriété constitue le théoréme de Wilson sur les restes modulo p-
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1.2. Soient maintenant p un nombre premier, f un entier > 1, et
posons g = p’. Désignons par Q une cloture algébrique de F » €t notons k
Pensemble des racines dans Q du polyndéme X? — X. Ce polyndme ayant
toutes ses racines simples (son dérivé vaut — 1), on voit que card (k) = g¢;
de plus, g étant une puissance de la caractéristique, on a, quels que soient a et
b dans k,(a+b)! = a? + b? = a + b; on a évidemment aussi (ab)? =
a'd? = ab, et k est un sous-corps de Q; en particulier:

PROPOSITION 3. — Quels que soient p premier et f >> 1, il existe un corps
fini possédant exactement q = p’ éléments.

Ce corps est unique a isomorphisme prés (prop. 2); on le note généra-
lement F,.

1.3. Mémes données que dans la section précédente. Soient f; et f,
deux entiers > 1, et posons, pour i = 1, 2,

q; =q’; k =F, cQ;

on a alors évidemment [k; : F ] = f;. Si k; < k,, la multiplicativit¢ du
degré montre que f; divise f,. Inversement, supposons que f; divise f5;
on peut écrire f, = mf;, donc g, = ¢q,;™; si aek,, on a alors a” = a
(prop. 2), donc a" = g” = q, et par conséquent a € k, (prop. 2); ainsi,
k, < k,. Au total (et en conservant ces notations):

PROPOSITION 4. — L’inclusion k, < k, équivaut a la relation f, divise f,,
donc a la relation q, est une puissance de q,.

COROLLAIRE 1. — Soient respectivement f et f le p.g.c.d. et le p.p.c.m.de
fietf, Posons ¢ = q'',q = ¢,k =¥, , k" = F,. Alors l'intersection
et le composé de k, et k, sont respectivement k' et k.

§ 2. Groupe additif et groupe multiplicatif d’un corps fini.

Soit k un corps fini & ¢ = p’ éléments.

2.1. L’extension k/F, étant de degré f, k est isomorphe, en tant qu’es-
pace vectoriel sur F,, et a fortiori en tant que groupe additif, au produit
direct de f exemplaires de F,; en conséquence:

PROPOSITION 5. — Le groupe additif k* de k est un groupe de type

Py ) (f fols).
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2.2. Passons au groupe multiplicatif k*; il est commutatif, d’ordre
g — 1; si N désigne le p.p.c.m. des ordres des éléments de k*, on vérifie
sans peine qu’il existe dans k* un élément g d’ordre exactement ¢gal 4 N
(Cest 13 une propriété générale des groupes commutatifs d’ordre fini).
Tout élément de k* est évidemment racine du polyndme X — 1; ce poly-
ndme, de degré N, posséde donc au moins ¢ — 1 racines, dou N >¢q — 1;
or, par construction méme, N divise ¢ — 1; ainsi, N = g — 1; mais alors
g est d’ordre g — 1, c’est un générateur de k*, et on peut €noncer:

PROPOSITION 6. — Le groupe multiplicatif k* de k est un groupe cyclique
d’ordre q — 1.

Pour une autre démonstration de ce résultat, utilisant les propriétés de
I'indicatrice d’Euler, voir [17], pp. 12-13.

2.3. Soit d un entier > 1; on se propose d’étudier le groupe des puis-
sances d-iémes et le groupe des racines d-iémes de 'unité dans k*, c’est-
a-dire I'image et le noyau de I’homomorphisme u;: k* — k*, défini par
u; (x) = x4 (x e k*). Posons & = (q—1, d), u; (x) = x° (x € k¥) et notons
g un générateur de k* (prop. 6). L’identité de Bezout a(q—1) + bd = o
montre que u, et u; ont méme noyau (noter que x?~* = 1 pour tout x € k*);
k* étant fini, il en résulte que 'image de u, et celle de u; ont méme ordre;
mais la premiére est évidemment contenue dans la seconde: u; et u; ont
donc aussi méme image. Maintenant, comme ¢ divise ¢ — 1, il est clair que
I'image de u; est le sous-groupe de k* engendré par g°, et que le noyau de
u; est le sous-groupe de k* engendré par g~ /° (pour le voir, identifier
par exemple k* & Z/(q—1) Z, g s’identifiant & la classe de 1 (mod g—1)).
En résumé:

PROPOSITION 7. — Soient k un corps fini a q éléments, g un générateur de
k*, d un entier > 1, et posons 6 = (q—1, d). Alors:

(1) Dans k*, les puissances d-iémes et les puissances -iémes forment un
méme sous-groupe, cyclique, engendré par g°, et d’ordre égal a (q—1)/.

(i) De méme, les racines d-iémes et les racines d-iémes de 1’unité forment un
méme sous-groupe, cyclique, engendré par g4~V et d’ordre égal & 6.

COROLLAIRE 1. — Le groupe quotient k*|k*? est cyclique, d’ordre égal a .

COROLLAIRE 2. — Pour qu’un élément a de k* soit une puissance d-iéme, il
faut et il suffit que a4~V = 1.
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Pour k = F,, p impair, et d = 6 = 2, le corollaire 2 coincide avec le
critére d’Euler sur les restes et non-restes quadratiques modulo p.

§ 3. Extensions algébriques d’un corps fini.
Soit toujours k£ un corps fini a g éléments.

3.1. Soit K une extension algébrique de k, de degré fini m; il est clair
que card (K) = g™, et donc que K = F . Soit alors i un entier > 0;
comme ¢ est une puissance de la caractéristique de K, Iapplication o;:
K — K, définie par o;(x) = x¢ (xeK), est un automorphisme de K,
et méme, puisque k = F,, un k-automorphisme de K (prop. 2); si j est un
autre entier > 0, on a évidemment o,;,; = ¢; O 0;; enfin, si (par exemple)
i <J, 'ensemble des x € K tels que ¢; (x) = 0; (x), donc tels que X7 = x,
est évidemment égal & K n F ;_;, et ne peut par conséquent €tre égal a
K =F;m que si F,, = F,;_;, donc (prop. 4) si i =j (mod m); en par-
ticulier, les m k-automorphismes o; avec 0 <{i < m sont distincts, et on
peut affirmer:

PRrOPOSITION 8. — L ’extension K/k est galoisienne ; son groupe de Galois
est cyclique, d’ordre m, engendré par I’automorphisme (dit de Frobenius)
x > x%

Le fait que K/k est galoisienne peut se voir plus directement: en effet, k
étant évidemment parfait, K/k est séparable, et il suffit de prouver que K/k
est normale, ce qui résulte du fait que K est le corps de décomposition, dans
une cloture algébrique de k, du polyndme X4 — X (prop. 2).

3.2. Mémes données que ci-dessus. Soit 7r : K — k, I’application trace.
La proposition 8 montre que, pour tout élément x de K, on a

(3.2.1) Tr(x) = x + x? 4+ ... +x"7"
En outre:
PROPOSITION 9. — L’application Tr : K — k, est surjective. Si x €K,

les deux assertions suivantes sont équivalentes :
(@) Tr(x) = 0;
(b) il existe ye K tel que x = y* — y.
Démonstration. — Considérons K comme espace vectoriel sur k; Tr

est alors une forme linéaire, et cette forme linéaire n’est pas nulle (si elle
Pétait, (3.2.1) impliquerait que le polynéme X 4+ X? 4 ... + X ™= de



—9

degré g™~ 1, admet pour racines les g™ éléments de K: absurde): elle est donc
surjective, ce qui prouve la premiére assertion, et ce qui montre en outre
que le noyau de Tr est un hyperplan de K; comme 7r (y?—y) = 0 pour tout
élément y de K, il reste, pour établir I’équivalence de (a) et (b), & prouver que
I’ensemble des éléments de la forme y? — y (y € K) est également un hyper-
plan de K; et il suffit pour cela de remarquer que I’application y b y? — y
de K dans K est k-linéaire et de rang m — 1, puisque son noyau (formé des
¥y € K'tels que y? = y, donc égal a k: prop. 2, ou prop. 8) est de dimension 1.

3.3. Mémes données et notations que ci-dessus. Soit maintenant
N: K — k, Iapplication norme. La proposition 8 montre que, pour tout
¢lément x de K, on a

(3.3.1) N(x) = x.x2...x8"" " = x@"-D/G@-1
En outre:

PROPOSITION 10. — L ’application N: K* — k*, est surjective. Si x € K*,
les deux assertions suivantes sont équivalentes :

(@ N =1
(b) il existe y e K* tel que x = y*~ 1.

Démonstration. — N est un homomorphisme du groupe K* dans le
groupe k*, et il résulte de (3.3.1) et de la proposition 7 (avec d= (g"—1)/
(¢—1)) que le noyau de N est d’ordre (¢™—1)/(g—1); comme Pordre de K*
estégala g™ — 1,'image de N est nécessairement d’ordre ¢ — 1 = card (k*),
d’ot la surjectivité de N. Le noyau de N contenant évidemment tous les
¢léments de K* de la forme y?~ ! (y € K*), qui en constituent un sous-groupe,
il reste donc, pour établir I’équivalence de (a) et (b), & montrer que ce sous-
groupe est précisément d’ordre (g™ —1)/(g—1); mais il suffit pour cela de
remarquer que l’application y b 2~ ! de K* dans K* est un homomor-
phisme dont le noyau (formé des y € K* tels que y?~! = 1, donc égal & k%)
est d’ordre ¢ — 1, et dont I'image est alors effectivement d’ordre (g"—1)/
(¢—1), puisque K* est lui-méme d’ordre g™ — 1.

Notes sur le chapitre premier

Théoréme de Wedderburn: pour la démonstration originale, voir
Wedderburn (1905); I'idée d’utiliser (comme dans [1] ou [19]) les propriétés
des polyndmes cyclotomiques pour simplifier cette démonstration est due
a Witt (1931).
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§ 1: la classification des corps (commutatifs) finis (« champs de Ga-
lois ») remonte essentiellement & Galois (1830).

§ 2: le fait que le groupe multiplicatif du corps F, est cyclique est di a
Euler (1760); sa démonstration utilisait les propriétés de D'« indicatrice
d’Euler ». Ce résultat est un ingrédient essentiel de la théorie des restes
quadratiques (Euler, Legendre, Gauss), cubiques (Jacobi, Eisenstein),
biquadratiques (Gauss, Jacobi), et plus généralement des restes de puis-
sances quelconques (Kummer, etc.); a ce sujet, voir par exemple Dickson,
History of the Theory of Numbers.

§ 3: les propositions 9 et 10 sont des cas particuliers du théoréme 90 de
Hilbert relatif aux extensions cycliques (voir [10], pp. 213-215).

CHAPITRE 2

POLYNOMES ET IDEAUX DE POLYNOMES

On sait que si K est un corps infini, et si F est un polyndme a une ou
plusieurs variables, a coefficients dans K, et identiquement nul sur K, alors
F est nul: tous ses coefficients sont nuls. Ceci n’est plus vrai pour un corps
fini: ainsi, sur k = F,, le polyndme X? — X, non nul, est pourtant identi-
quement nul (chap. 1, sect. 1.1 et 1.2); c’est & cette particularité des corps
finis qu’est consacré le présent chapitre.

Dans tout le cours de ce chapitre (ainsi que dans les chapitres sui-
vants), k désignera un corps fini & ¢ = p’ éléments, n un entier > 1, X
= (X, ..., X,) une famille de n variables, et k [X] = k [X}, ..., X,] ’anneau

~ des polyndmes en X, ..., X, a coefficients dans k; d’autre part, les éléments

a = (aq,..,a,) de k" seront appelés points (ou points rationnels sur k, si
cette précision est nécessaire); si Fek [X], si a est un point de k", et si
F(a) = 0, on dira que a est un zéro de F.

§ 1. Polynomes réduits et polynomes identiquement nuls.

1.1. Soit F un élément de k [X].
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