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Chapitre Premier

CORPS FINIS (RAPPELS)

Ce chapitre résume les propriétés générales des corps finis. Rappelons

que d'après le théorème de Wedderburn, tout corps fini est commutatif
(pour une démonstration, voir par exemple [1], pp. 35-37, ou [19], p. 1).

§ 1. Classification des corps finis.

1.1. Soit k un corps fini. Sa caractéristique est certainement différente
de 0; c'est un nombre premier p, et le sous-corps premier de k s'identifie à

Fp Z/pZ. Notons /le degré de l'extension k/Fp; k est isomorphe, en

tant qu'espace vectoriel sur Fp, au produit direct de / exemplaires de Fp;
en particulier:

Proposition 1. — Si q désigne le nombre d'éléments de k, on a q — pf.
Considérons alors k*, groupe multiplicatif de k; il est d'ordre q — 1;

on a donc, pour tout élément a de k*, aq~1 — 1, et a fortiori aq a;
comme cette égalité reste vraie pour a 0, elle est vérifiée par tout élément
de k; en conséquence:

Proposition 2. — Si Q désigne une clôture algébrique de k (donc aussi de

Fp), k est égal à l'ensemble des racines dans Q du polynôme Xq — X. En
particulier, k est le corps de décomposition dans Q du polynôme Xq — X, et
tout corpsfini ayant même nombre d'éléments q donc même caractéristique p
que k est nécessairement isomorphe à k.

Pour k Fp, l'identité aq — a s'écrit a? a, et constitue le petit
théorème de Fermât sur les restes modulo p. Pour k quelconque, la proposition

2 permet d'écrire

Zî_1 - 1 n (X-a);X«-X n (X-a);
aek* aek

la première de ces deux égalités montre que les fonctions symétriques
élémentaires des éléments de k*autresque le produit sont toutes nulles, et que
le produit de tous les éléments de k*estégal à - 1 ; pour k Fp, cette
dernière propriété constitue le théorème de Wilson sur les restes modulo p.
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1.2. Soient maintenant p un nombre premier, / un entier > 1, et

posons q — pf. Désignons par Q une clôture algébrique de F^,, et notons k
l'ensemble des racines dans Q du polynôme Xq — X. Ce polynôme ayant
toutes ses racines simples (son dérivé vaut — 1), on voit que card (k) q\
de plus, q étant une puissance de la caractéristique, on a, quels que soient a et
b dans k, (a-\-b)q — aq + bq a + b; on a évidemment aussi (ab)q —

aqbq ab, et k est un sous-corps de Q; en particulier:

Proposition 3. — Quels que soient p premier et/> 1, il existe un corps
fini possédant exactement q pf éléments.

Ce corps est unique à isomorphisme près (prop. 2) ; on le note généralement

Fq.

1.3. Mêmes données que dans la section précédente. Soient fx et f2
deux entiers > 1, et posons, pour i 1,2,

q.qfi;fc. F„. <= ;

on a alors évidemment [kt : FJ ft. Si kl <= k2, la multiplicativité du

degré montre que j\ divise f2. Inversement, supposons que divise f2;
on peut écrire f2 mfu donc q2 qsi aekt, on a alors aql a

(prop. 2), donc aql aq2 — a, et par conséquent aek2 (prop. 2); ainsi,

kx a k2. Au total (et en conservant ces notations):

Proposition 4. — L'inclusion k1 c k2 équivaut à la relation f1 divise f2,
donc à la relation q2 est une puissance de qv

Corollaire 1. — Soient respectivementf' etf" le p.g.c.d. et le p.p.c.m.de

fx et f2. Posons q qf\ q — qr, k' ¥q>, k" Fq„. Alors l'intersection

et le composé de k1 et k2 sont respectivement k' et k ".

§ 2. Groupe additif et groupe multiplicatif d'un corps fini.

Soit k un corps fini à q pf éléments.

2.1. L'extension k/Fp étant de degréf k est isomorphe, en tant qu'espace

vectoriel sur ¥p, et a fortiori en tant que groupe additif, au produit
direct de/exemplaires de ¥p; en conséquence:

Proposition 5. — Le groupe additif k+ de k est un groupe de type

{p, ...,p) (f fois).
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2.2. Passons au groupe multiplicatif k*; il est commutatif, d'ordre

q — 1 ; si N désigne le p.p.c.m. des ordres des éléments de A:*, on vérifie

sans peine qu'il existe dans A:* un élément g d'ordre exactement égal à N
(c'est là une propriété générale des groupes commutatifs d'ordre fini).
Tout élément de k* est évidemment racine du polynôme XN — 1 ; ce

polynôme, de degré N, possède donc au moins q — 1 racines, d'où N > q — 1 ;

or, par construction même, N divise q — 1 ; ainsi, N q — 1 ; mais alors

g est d'ordre q — 1, c'est un générateur de k*9 et on peut énoncer:

Proposition 6. — Le groupe multiplicatif k* de k est un groupe cyclique

d'ordre q — 1.

Pour une autre démonstration de ce résultat, utilisant les propriétés de

l'indicatrice d'Euler, voir [17], pp. 12-13.

2.3. Soit d un entier > 1 ; on se propose d'étudier le groupe des

puissances d-ièmes et le groupe des racines d-ièmes de l'unité dans fc*, c'est-

à-dire l'image et le noyau de l'homomorphisme ud: k* k*, défini par
ud(x) xd(xek*). Posons ö — (#—l,d), uô(x) — xô (x e k*) et notons

g un générateur de k* (prop. 6). L'identité de Bezout a(q— 1) + bd — ô

montre que ud et uô ont même noyau (noter que xq ~1 1 pour tout x e /:*) ;

k* étant fini, il en résulte que l'image de ud et celle de uô ont même ordre;
mais la première est évidemment contenue dans la seconde: ud et uô ont
donc aussi même image. Maintenant, comme 3 divise q — 1, il est clair que
l'image de uô est le sous-groupe de k* engendré par gô, et que le noyau de

ub est le sous-groupe de k* engendré par g(q~D/ô (pour le voir, identifier

par exemple k* à Z/(q—l) Z, g s'identifiant à la classe de 1 (mod #—1)).
En résumé:

Proposition 7. — Soient k un corps fini à q éléments, g un générateur de

k*, d un entier > 1, et posons ô (q— 1, d). Alors :

(i) Dans k*9 les puissances d-ièmes et les puissances Ô-ièmes forment un
même sous-groupe, cyclique, engendré par gô, et d'ordre égal à (q—l)/ô.

(ii) De même, les racines d-ièmes et les racines ô-ièmes de l'unité forment un
même sous-groupe, cyclique, engendré par g^q~1)/ô, et d'ordre égal à ô.

Corollaire 1. — Le groupe quotient k*/k*d est cyclique, d'ordre égal à ô.

Corollaire 2. —- Pour qu 'un élément a de k* soit une puissance d-ième, il
faut et il suffit que a^q~1)/ö 1.
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Pour k — Fp, p impair, et d — S — 2, le corollaire 2 coïncide avec le

critère d'Euler sur les restes et non-restes quadratiques modulo p.

§ 3. Extensions algébriques d'un corps fini.

Soit toujours k un corps fini à q éléments.

3.1. Soit K une extension algébrique de k, de degré fini m; il est clair

que cavd(K) qm, et donc que K — ¥qm. Soit alors i un entier >0;
comme ql est une puissance de la caractéristique de K, l'application op.

K K, définie par ot (x) xql (x e K), est un automorphisme de K,
et même, puisque k F^, un A:-automorphisme de K (prop. 2) ; si j est un
autre entier >0, on a évidemment oi+j oto op, enfin, si (par exemple)

i <y, l'ensemble des x e K tels que ot (x) Oj (x), donc tels que xqJ~l x,
est évidemment égal à K n FqJ-_i9 et ne peut par conséquent être égal à

K — ¥qm que si Fqm cz Fqj_i, donc (prop. 4) si / j (modm); en
particulier, les m fc-automorphismes ot avec 0 < i < m sont distincts, et on
peut affirmer:

Proposition 8. — L'extension K/k est galoisienne ; son groupe de Galois

est cyclique, d'ordre m, engendré par l'automorphisme (dit de Frobenius)

x l-> xq.

Le fait que Kjk est galoisienne peut se voir plus directement: en effet, k
étant évidemment parfait, K/k est séparable, et il suffit de prouver que K/k
est normale, ce qui résulte du fait que K est le corps de décomposition, dans

une clôture algébrique de k, du polynôme Xqm — X (prop. 2).

3.2. Mêmes données que ci-dessus. Soit Tr : K -> k, l'application trace.

La proposition 8 montre que, pour tout élément x de K, on a

(3.2.1) Tr(x) x + xq + + x«""1.

En outre:

Proposition 9. — L'application Tr : K -> k, est surjective. Si x e K,
les deux assertions suivantes sont équivalentes :

(a) 7V(x) 0;

(b) il existe y eK tel que x yq — y.

Démonstration. — Considérons K comme espace vectoriel sur /c; Tr

est alors une forme linéaire, et cette forme linéaire n'est pas nulle (si elle

l'était, (3.2.1) impliquerait que le polynôme X + Xq + + Xqm~l, de
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degré qm~1, admet pour racines les qm éléments de K: absurde): elle est donc

surjective, ce qui prouve la première assertion, et ce qui montre en outre

que le noyau de Tr est un hyperplan de K\ comme Tr (yq —y) 0 pour tout
élément y de K, il reste, pour établir l'équivalence de (a) et (b), à prouver que
l'ensemble des éléments de la forme yq — y (y e K) est également un hyper-
plan de K) et il suffit pour cela de remarquer que l'application y h> yq — y
de K dans K est k-linéaire et de rang m — 1, puisque son noyau (formé des

y e K tels que yq y, donc égal à k\ prop. 2, ou prop. 8) est de dimension 1.

3.3. Mêmes données et notations que ci-dessus. Soit maintenant
N: K -» k, l'application norme. La proposition 8 montre que, pour tout
élément x de K', on a

(3.3.1) N{x)x.x4...x«m-1

En outre:

Proposition 10. — L'application NK*-> k*, est surjective. Si x e K*,
les deux assertions suivantes sont équivalentes :

(a) N (x)1;

(b) il existe y g K* tel que x — yq~ '

Démonstration. — N est un homomorphisme du groupe K* dans le

groupe k*, et il résulte de (3.3.1) et de la proposition 7 (avec 1)/
(q-1)) que le noyau de N est d'ordre (qm-1 1); comme l'ordre de
est égal à qm — 1, l'image de N est nécessairement d'ordre q — 1 card (A:*),
d'où la surjectivité de N. Le noyau de N contenant évidemment tous les
éléments de K* de la forme yq~1 (y eK*), qui en constituent un sous-groupe,
il reste donc, pour établir l'équivalence de (a) et (b), à montrer que ce sous-
groupe est précisément d'ordre (qm- l)/(q-1); mais il suffit pour cela de
remarquer que l'application y h-y9"1 de K* dans est un homomorphisme

dont le noyau (formé des y eK* tels que y"1'1 1, donc égal à k*)
est d'ordre q -1, et dont l'image est alors effectivement d'ordre 1)/
(q-1), puisque K* est lui-même d'ordre qm - 1.

Notes sur le chapitre premier

Théorème de Wedderburn: pour la démonstration originale, voir
Wedderburn (1905); l'idée d'utiliser (comme dans [1] ou [19]) les propriétés
des polynômes cyclotomiques pour simplifier cette démonstration est due
à Witt (1931).
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§1: la classification des corps (commutatifs) finis («champs de Ga-
lois ») remonte essentiellement à Galois (1830).

: § 2 : le fait que le groupe multiplicatif du corps Fp est cyclique est dû à

Euler (1760); sa démonstration utilisait les propriétés de 1'« indicatrice
d'Euler ». Ce résultat est un ingrédient essentiel de la théorie des restes

quadratiques (Euler, Legendre, Gauss), cubiques (Jacobi, Eisenstein),
I biquadratiques (Gauss, Jacobi), et plus généralement des restes de

puissances quelconques (Kummer, etc.); à ce sujet, voir par exemple Dickson,
History of the Theory of Numbers.

§ 3: les propositions 9 et 10 sont des cas particuliers du théorème 90 de

Hilbert relatif aux extensions cycliques (voir [10], pp. 213-215).

Chapitre 2

POLYNÔMES ET IDÉAUX DE POLYNÔMES

On sait que si K est un corps infini, et si F est un polynôme à une ou
plusieurs variables, à coefficients dans K, et identiquement nul sur K, alors
F est nul: tous ses coefficients sont nuls. Ceci n'est plus vrai pour un corps
fini: ainsi, sur k Fq9 le polynôme Xq — X, non nul, est pourtant
identiquement nul (chap. 1, sect. 1.1 et 1.2); c'est à cette particularité des corps
finis qu'est consacré le présent chapitre.

Dans tout le cours de ce chapitre (ainsi que dans les chapitres
suivants), k désignera un corps fini à q pf éléments, n un entier > 1, X

(Xl9..., Xn) une famille de n variables, et k [X] k [Xu Xn] l'anneau
des polynômes en J1? à coefficients dans k\ d'autre part, les éléments

a (au an) de kn seront appelés points (ou points rationnels sur k9 si

cette précision est nécessaire); si Fek [X], si a est un point de kn9 et si

F (a) 0, on dira que a est un zéro de F.

§ 1. Polynômes réduits et polynômes identiquement nuls.

1.1. Soit F un élément de k [X].
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